--- license: apache-2.0 tags: - generated_from_trainer datasets: - mlsum metrics: - rouge base_model: google/mt5-base model-index: - name: mt5-base-turkish-sum results: - task: type: summarization name: Summarization dataset: name: mlsum tu type: mlsum args: tu metrics: - type: rouge value: 47.4222 name: Rouge1 --- # [Mukayese: Turkish NLP Strikes Back](https://arxiv.org/abs/2203.01215) ## Summarization: mukayese/mbart-large-turkish-sum This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the mlsum/tu dataset. It achieves the following results on the evaluation set: - Rouge1: 47.4222 - Rouge2: 34.8624 - Rougel: 42.2487 - Rougelsum: 43.9494 Check [this](https://arxiv.org/abs/2203.01215) paper for more details on the model and the dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 - label_smoothing_factor: 0.1 ### Framework versions - Transformers 4.11.3 - Pytorch 1.8.2+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3 ### Citation ``` @misc{safaya-etal-2022-mukayese, title={Mukayese: Turkish NLP Strikes Back}, author={Ali Safaya and Emirhan Kurtuluş and Arda Göktoğan and Deniz Yuret}, year={2022}, eprint={2203.01215}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```