--- widget: - text: " Исмоили Сомонӣ - намояндаи бузурги форсу-тоҷик" - text: "Ин фурудгоҳ дар кишвари Индонезия қарор дорад." - text: " Бобоҷон Ғафуров – солҳои 1946-1956" - text: " Лоиқ Шералӣ дар васфи Модар шеър" tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: tajberto-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: tg split: train+test args: tg metrics: - name: Precision type: precision value: 0.576 - name: Recall type: recall value: 0.6923076923076923 - name: F1 type: f1 value: 0.62882096069869 - name: Accuracy type: accuracy value: 0.8934049079754601 --- # tajberto-ner This model is a fine-tuned version of [muhtasham/TajBERTo](https://huggingface.co/muhtasham/TajBERTo) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.6129 - Precision: 0.576 - Recall: 0.6923 - F1: 0.6288 - Accuracy: 0.8934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.0 | 50 | 0.6171 | 0.1667 | 0.2885 | 0.2113 | 0.7646 | | No log | 4.0 | 100 | 0.4733 | 0.2824 | 0.4615 | 0.3504 | 0.8344 | | No log | 6.0 | 150 | 0.3857 | 0.3372 | 0.5577 | 0.4203 | 0.8589 | | No log | 8.0 | 200 | 0.4523 | 0.4519 | 0.5865 | 0.5105 | 0.8765 | | No log | 10.0 | 250 | 0.3870 | 0.44 | 0.6346 | 0.5197 | 0.8834 | | No log | 12.0 | 300 | 0.4512 | 0.5267 | 0.6635 | 0.5872 | 0.8865 | | No log | 14.0 | 350 | 0.4934 | 0.4789 | 0.6538 | 0.5528 | 0.8819 | | No log | 16.0 | 400 | 0.4924 | 0.4783 | 0.6346 | 0.5455 | 0.8842 | | No log | 18.0 | 450 | 0.5355 | 0.4595 | 0.6538 | 0.5397 | 0.8788 | | 0.1682 | 20.0 | 500 | 0.5440 | 0.5547 | 0.6827 | 0.6121 | 0.8942 | | 0.1682 | 22.0 | 550 | 0.5299 | 0.5794 | 0.7019 | 0.6348 | 0.9003 | | 0.1682 | 24.0 | 600 | 0.5735 | 0.5691 | 0.6731 | 0.6167 | 0.8926 | | 0.1682 | 26.0 | 650 | 0.6027 | 0.5833 | 0.6731 | 0.6250 | 0.8796 | | 0.1682 | 28.0 | 700 | 0.6119 | 0.568 | 0.6827 | 0.6201 | 0.8934 | | 0.1682 | 30.0 | 750 | 0.6098 | 0.5635 | 0.6827 | 0.6174 | 0.8911 | | 0.1682 | 32.0 | 800 | 0.6237 | 0.5469 | 0.6731 | 0.6034 | 0.8834 | | 0.1682 | 34.0 | 850 | 0.6215 | 0.5530 | 0.7019 | 0.6186 | 0.8842 | | 0.1682 | 36.0 | 900 | 0.6179 | 0.5802 | 0.7308 | 0.6468 | 0.8888 | | 0.1682 | 38.0 | 950 | 0.6201 | 0.5373 | 0.6923 | 0.6050 | 0.8873 | | 0.0007 | 40.0 | 1000 | 0.6114 | 0.5952 | 0.7212 | 0.6522 | 0.8911 | | 0.0007 | 42.0 | 1050 | 0.6073 | 0.5625 | 0.6923 | 0.6207 | 0.8896 | | 0.0007 | 44.0 | 1100 | 0.6327 | 0.5620 | 0.6538 | 0.6044 | 0.8896 | | 0.0007 | 46.0 | 1150 | 0.6129 | 0.576 | 0.6923 | 0.6288 | 0.8934 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1