File size: 1,364 Bytes
27fc14b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
datasets:
- OpenCoder-LLM/opc-sft-stage1
- OpenCoder-LLM/opc-sft-stage2
- microsoft/orca-agentinstruct-1M-v1
- microsoft/orca-math-word-problems-200k
- NousResearch/hermes-function-calling-v1
- AI-MO/NuminaMath-CoT
- AI-MO/NuminaMath-TIR
- allenai/tulu-3-sft-mixture
- cognitivecomputations/dolphin-coder
- HuggingFaceTB/smoltalk
- cognitivecomputations/samantha-data
- m-a-p/CodeFeedback-Filtered-Instruction
- m-a-p/Code-Feedback
language:
- en
base_model: cognitivecomputations/Dolphin3.0-Mistral-24B
pipeline_tag: text-generation
library_name: transformers
tags:
- mlx
---
# moot20/Dolphin3.0-Mistral-24B-MLX-4bits
The Model [moot20/Dolphin3.0-Mistral-24B-MLX-4bits](https://huggingface.co/moot20/Dolphin3.0-Mistral-24B-MLX-4bits) was
converted to MLX format from [cognitivecomputations/Dolphin3.0-Mistral-24B](https://huggingface.co/cognitivecomputations/Dolphin3.0-Mistral-24B)
using mlx-lm version **0.21.1**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("moot20/Dolphin3.0-Mistral-24B-MLX-4bits")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|