--- license: mit train: false inference: true pipeline_tag: text-generation base_model: - deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B --- This is a version of the DeepSeek-R1-Distill-Qwen-1.5B model re-distilled for better performance. ## Performance | Models | DeepSeek-R1-Distill-Qwen-1.5B | DeepSeek-R1-ReDistill-Qwen-1.5B-v1.0 | |:-------------------:|:--------:|:----------------:| | ARC (25-shot) | 40.96 | 41.3 | | HellaSwag (10-shot)| 44 | 45.22 | | MMLU (5-shot) | 39.27 | 42.01 | | TruthfulQA-MC2 | 45.17 | 46.64 | | Winogrande (5-shot)| 55.49 | 56.75 | | GSM8K (5-shot) | 69.9 | 73.24 | | Average | 49.13 | 50.86 | | Models | DeepSeek-R1-Distill-Qwen-1.5B | DeepSeek-R1-ReDistill-Qwen-1.5B-v1.0 | |:-------------------:|:--------:|:----------------:| | GPQA (0-shot) | 26.96 | 27.8 | | MMLU PRO (5-shot) | 16.74 | 19.44 | | MUSR (0-shot) | 35.93 | 35.94 | | BBH (3-shot) | 35.12 | 35.11 | | IfEval (0-shot) | 24.94 | 27.1 | ## Usage ```Python import torch from transformers import AutoModelForCausalLM, AutoTokenizer compute_dtype = torch.bfloat16 device = 'cuda' model_id = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.0" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation="sdpa", device_map=device) tokenizer = AutoTokenizer.from_pretrained(model_id) prompt = "What is 1.5+102.2?" chat = tokenizer.apply_chat_template([{"role":"user", "content":prompt}], tokenize=True, add_generation_prompt=True, return_tensors="pt") outputs = model.generate(chat.to(device), max_new_tokens=1024, do_sample=True) print(tokenizer.decode(outputs[0])) ``` Output: ``` <|begin▁of▁sentence|><|User|>What is 1.5+102.2?<|Assistant|> First, I identify the numbers involved in the addition: 1.5 and 102.2. Next, I add the whole numbers: 1 + 102 equals 103. Then, I add the decimal parts: 0.5 + 0.2 equals 0.7. Finally, I combine the results: 103 + 0.7 equals 103.7. To solve the addition \(1.5 + 102.2\), follow these steps: 1. **Add the whole numbers:** \[ 1 + 102 = 103 \] 2. **Add the decimal parts:** \[ 0.5 + 0.2 = 0.7 \] 3. **Combine the results:** \[ 103 + 0.7 = 103.7 \] So, the final answer is \(\boxed{103.7}\).<|end▁of▁sentence|> ```