mobicham commited on
Commit
c361859
·
verified ·
1 Parent(s): 893a52a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -0
README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ train: false
4
+ inference: false
5
+ pipeline_tag: text-generation
6
+ ---
7
+ This is a version of the <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B">DeepSeek-R1-Distill-Qwen-1.5B</a> model re-distilled for better performance.
8
+
9
+ ## Performance
10
+
11
+ | Models | <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B">DeepSeek-R1-Distill-Qwen-1.5B</a> | DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1 |
12
+ |:-------------------:|:--------:|:----------------:|
13
+ | ARC (25-shot) | 40.96 | <b>41.3</b> |
14
+ | HellaSwag (10-shot)| 44 | <b>45.22</b> |
15
+ | MMLU (5-shot) | 39.27 | <b>42.01</b> |
16
+ | TruthfulQA-MC2 | 45.17 | <b>46.64</b> |
17
+ | Winogrande (5-shot)| 55.49 | <b>56.75</b> |
18
+ | GSM8K (5-shot) | 69.9 | <b>73.24</b> |
19
+ | Average | 49.13 | <b>50.86</b> |
20
+
21
+ | Models | <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B">DeepSeek-R1-Distill-Qwen-1.5B</a> | DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1 |
22
+ |:-------------------:|:--------:|:----------------:|
23
+ | GPQA (0-shot) | 26.96 | <b>27.8</b> |
24
+ | MMLU PRO (5-shot) | 16.74 | <b>19.44</b> |
25
+ | MUSR (0-shot) | 35.93 | <b>35.94</b> |
26
+ | BBH (3-shot) | 35.12 | 35.11 |
27
+ | Average | | |
28
+
29
+ ## Usage
30
+ ```Python
31
+ from transformers import AutoModelForCausalLM, AutoTokenizer
32
+ compute_dtype = torch.bfloat16
33
+ device = 'cuda'
34
+ model_id = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1"
35
+
36
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation=attn_implementation, device_map=device)
37
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
38
+
39
+ chat = tokenizer.apply_chat_template([{"role":"user", "content":"What is 1.5+102.2?"}], tokenize=True, add_generation_prompt=True, return_tensors="pt")
40
+ outputs = model_student.generate(chat.to(device), max_new_tokens=1024, do_sample=True)
41
+ print(tokenizer.decode(outputs[0]))
42
+ ```
43
+