--- library_name: transformers license: apache-2.0 datasets: - merve/vqav2-small --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/PebmPLcCig5BlpUS99VUc.png) # Idefics3Llama Fine-tuned using QLoRA on VQAv2 - This is the [Idefics3Llama](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) model QLoRA fine-tuned on a very small part of [VQAv2](https://huggingface.co/datasets/merve/vqav2-small) dataset. - Find the fine-tuning notebook [here](https://github.com/merveenoyan/smol-vision/blob/main/Idefics_FT.ipynb). ## Usage You can load and use this model as follows. ```python from transformers import Idefics3ForConditionalGeneration, AutoProcessor peft_model_id = "merve/idefics3llama-vqav2" base_model_id = "HuggingFaceM4/Idefics3-8B-Llama3" processor = AutoProcessor.from_pretrained(base_model_id) model = Idefics3ForConditionalGeneration.from_pretrained(base_model_id) model.load_adapter(peft_model_id).to("cuda") ``` This model was conditioned on a prompt "Answer briefly.". ```python from PIL import Image import requests from transformers.image_utils import load_image DEVICE = "cuda" image = load_image("https://huggingface.co/spaces/merve/OWLSAM2/resolve/main/buddha.JPG") messages = [ { "role": "user", "content": [ {"type": "text", "text": "Answer briefly."}, {"type": "image"}, {"type": "text", "text": "Which country is this located in?"} ] } ] text = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=text, images=image, return_tensors="pt", padding=True).to("cuda") ``` We can infer. ```python generated_ids = model.generate(**inputs, max_new_tokens=500) generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True) print(generated_texts) ##['User: Answer briefly.\n # \n # \n\nWhich country is this located in?\nAssistant: thailand\nAssistant: thailand'] ```