Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +12 -0
- config.json +2542 -0
- configuration_phi4mm.py +235 -0
- generation_config.json +10 -0
- merges.txt +0 -0
- openvino_audio_embeddings_model.bin +3 -0
- openvino_audio_embeddings_model.xml +144 -0
- openvino_audio_encoder_model.bin +3 -0
- openvino_audio_encoder_model.xml +0 -0
- openvino_audio_forward_embeddings_model.bin +3 -0
- openvino_audio_forward_embeddings_model.xml +906 -0
- openvino_audio_text_projection_model.bin +3 -0
- openvino_audio_text_projection_model.xml +264 -0
- openvino_audio_vision_projection_model.bin +3 -0
- openvino_audio_vision_projection_model.xml +264 -0
- openvino_language_model.bin +3 -0
- openvino_language_model.xml +0 -0
- openvino_text_embeddings_model.bin +3 -0
- openvino_text_embeddings_model.xml +107 -0
- openvino_vision_embeddings_model.bin +3 -0
- openvino_vision_embeddings_model.xml +0 -0
- openvino_vision_projection_model.bin +3 -0
- openvino_vision_projection_model.xml +264 -0
- preprocessor_config.json +14 -0
- processing_phi4mm.py +733 -0
- processor_config.json +6 -0
- special_tokens_map.json +30 -0
- tokenizer.json +3 -0
- tokenizer_config.json +126 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|/tool_call|>": 200026,
|
3 |
+
"<|/tool|>": 200024,
|
4 |
+
"<|assistant|>": 200019,
|
5 |
+
"<|end|>": 200020,
|
6 |
+
"<|system|>": 200022,
|
7 |
+
"<|tag|>": 200028,
|
8 |
+
"<|tool_call|>": 200025,
|
9 |
+
"<|tool_response|>": 200027,
|
10 |
+
"<|tool|>": 200023,
|
11 |
+
"<|user|>": 200021
|
12 |
+
}
|
config.json
ADDED
@@ -0,0 +1,2542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"_name_or_path": "C:\\Users\\kinfeylo\\Desktop\\AOAI\\Tools\\ORTModel\\Phi-4-multimodal",
|
4 |
+
"architectures": [
|
5 |
+
"Phi4MMForCausalLM"
|
6 |
+
],
|
7 |
+
"attention_bias": false,
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"audio_processor": {
|
10 |
+
"config": {
|
11 |
+
"activation": "swish",
|
12 |
+
"activation_checkpointing": "",
|
13 |
+
"attention_dim": 1024,
|
14 |
+
"attention_heads": 16,
|
15 |
+
"batch_norm": false,
|
16 |
+
"bias_in_glu": true,
|
17 |
+
"causal": true,
|
18 |
+
"chunk_size": -1,
|
19 |
+
"cnn_layer_norm": true,
|
20 |
+
"conv_activation": "swish",
|
21 |
+
"conv_glu_type": "swish",
|
22 |
+
"depthwise_multiplier": 1,
|
23 |
+
"depthwise_seperable_out_channel": 1024,
|
24 |
+
"dropout_rate": 0.0,
|
25 |
+
"encoder_embedding_config": {
|
26 |
+
"input_size": 80
|
27 |
+
},
|
28 |
+
"ext_pw_kernel_size": 1,
|
29 |
+
"ext_pw_out_channel": 1024,
|
30 |
+
"input_layer": "nemo_conv",
|
31 |
+
"input_size": 80,
|
32 |
+
"kernel_size": 3,
|
33 |
+
"left_chunk": 18,
|
34 |
+
"linear_units": 1536,
|
35 |
+
"nemo_conv_settings": {
|
36 |
+
"conv_channels": 1024
|
37 |
+
},
|
38 |
+
"num_blocks": 24,
|
39 |
+
"relative_attention_bias_args": {
|
40 |
+
"t5_bias_max_distance": 500,
|
41 |
+
"type": "t5"
|
42 |
+
},
|
43 |
+
"time_reduction": 8
|
44 |
+
},
|
45 |
+
"name": "cascades"
|
46 |
+
},
|
47 |
+
"auto_map": {
|
48 |
+
"AutoConfig": "configuration_phi4mm.Phi4MMConfig",
|
49 |
+
"AutoModelForCausalLM": "modeling_phi4mm.Phi4MMForCausalLM",
|
50 |
+
"AutoTokenizer": "Xenova/gpt-4o"
|
51 |
+
},
|
52 |
+
"base_vision_feat_height_reduction": 1,
|
53 |
+
"base_vision_feat_height_target": 16,
|
54 |
+
"bos_token_id": 199999,
|
55 |
+
"crop_size": 448,
|
56 |
+
"embd_layer": {
|
57 |
+
"audio_embd_layer": {
|
58 |
+
"compression_rate": 8,
|
59 |
+
"downsample_rate": 1,
|
60 |
+
"embedding_cls": "audio",
|
61 |
+
"enable_gradient_checkpointing": true,
|
62 |
+
"projection_cls": "mlp",
|
63 |
+
"use_conv_downsample": false,
|
64 |
+
"use_qformer": false
|
65 |
+
},
|
66 |
+
"embedding_cls": "image_audio",
|
67 |
+
"image_embd_layer": {
|
68 |
+
"crop_size": 448,
|
69 |
+
"embedding_cls": "tune_image",
|
70 |
+
"enable_gradient_checkpointing": true,
|
71 |
+
"hd_transform_order": "sub_glb",
|
72 |
+
"image_token_compression_cls": "avg_pool_2d",
|
73 |
+
"projection_cls": "mlp",
|
74 |
+
"use_hd_transform": true,
|
75 |
+
"with_learnable_separator": true
|
76 |
+
}
|
77 |
+
},
|
78 |
+
"embd_pdrop": 0.0,
|
79 |
+
"eos_token_id": 199999,
|
80 |
+
"full_attn_mod": 1,
|
81 |
+
"glb_GN": [
|
82 |
+
[
|
83 |
+
[
|
84 |
+
0.0240478515625,
|
85 |
+
-0.03466796875,
|
86 |
+
-0.0201416015625,
|
87 |
+
0.0208740234375,
|
88 |
+
-0.0042724609375,
|
89 |
+
-0.034423828125,
|
90 |
+
0.01043701171875,
|
91 |
+
-0.03955078125,
|
92 |
+
-0.0103759765625,
|
93 |
+
0.0791015625,
|
94 |
+
-0.0225830078125,
|
95 |
+
0.0174560546875,
|
96 |
+
0.006622314453125,
|
97 |
+
-0.003143310546875,
|
98 |
+
0.0272216796875,
|
99 |
+
0.0400390625,
|
100 |
+
0.0166015625,
|
101 |
+
-0.034912109375,
|
102 |
+
0.015869140625,
|
103 |
+
-0.021728515625,
|
104 |
+
-0.0106201171875,
|
105 |
+
0.0400390625,
|
106 |
+
0.0081787109375,
|
107 |
+
-0.009521484375,
|
108 |
+
0.0107421875,
|
109 |
+
0.000499725341796875,
|
110 |
+
0.0439453125,
|
111 |
+
-0.02734375,
|
112 |
+
0.0179443359375,
|
113 |
+
-0.012451171875,
|
114 |
+
0.042724609375,
|
115 |
+
0.00043487548828125,
|
116 |
+
-0.00213623046875,
|
117 |
+
-0.0164794921875,
|
118 |
+
0.0152587890625,
|
119 |
+
0.034912109375,
|
120 |
+
0.0111083984375,
|
121 |
+
-0.0732421875,
|
122 |
+
-0.017822265625,
|
123 |
+
-0.02783203125,
|
124 |
+
-0.024658203125,
|
125 |
+
-0.0126953125,
|
126 |
+
0.00433349609375,
|
127 |
+
-0.0225830078125,
|
128 |
+
-0.0294189453125,
|
129 |
+
-0.006561279296875,
|
130 |
+
0.027587890625,
|
131 |
+
0.0286865234375,
|
132 |
+
0.0164794921875,
|
133 |
+
-0.048583984375,
|
134 |
+
-0.061279296875,
|
135 |
+
0.006927490234375,
|
136 |
+
-0.0225830078125,
|
137 |
+
0.01434326171875,
|
138 |
+
0.00130462646484375,
|
139 |
+
-0.07080078125,
|
140 |
+
-0.006011962890625,
|
141 |
+
-0.0228271484375,
|
142 |
+
0.01300048828125,
|
143 |
+
0.00225830078125,
|
144 |
+
-0.0052490234375,
|
145 |
+
-0.0218505859375,
|
146 |
+
-0.0025177001953125,
|
147 |
+
0.05078125,
|
148 |
+
-0.0283203125,
|
149 |
+
-0.033203125,
|
150 |
+
-0.0279541015625,
|
151 |
+
0.01025390625,
|
152 |
+
-0.011962890625,
|
153 |
+
0.015625,
|
154 |
+
-0.0021514892578125,
|
155 |
+
0.013671875,
|
156 |
+
0.0634765625,
|
157 |
+
-0.0014190673828125,
|
158 |
+
0.006256103515625,
|
159 |
+
0.000865936279296875,
|
160 |
+
0.03662109375,
|
161 |
+
-0.024169921875,
|
162 |
+
0.030517578125,
|
163 |
+
0.035888671875,
|
164 |
+
0.00396728515625,
|
165 |
+
-0.035400390625,
|
166 |
+
0.0311279296875,
|
167 |
+
-0.015869140625,
|
168 |
+
-0.00531005859375,
|
169 |
+
0.0235595703125,
|
170 |
+
0.003143310546875,
|
171 |
+
-0.02099609375,
|
172 |
+
-0.07177734375,
|
173 |
+
-0.035888671875,
|
174 |
+
-0.03125,
|
175 |
+
0.021240234375,
|
176 |
+
-0.04833984375,
|
177 |
+
-0.0299072265625,
|
178 |
+
-0.10791015625,
|
179 |
+
0.023681640625,
|
180 |
+
0.0291748046875,
|
181 |
+
0.003936767578125,
|
182 |
+
-0.0255126953125,
|
183 |
+
0.018310546875,
|
184 |
+
0.005767822265625,
|
185 |
+
0.01422119140625,
|
186 |
+
0.00787353515625,
|
187 |
+
-0.0030059814453125,
|
188 |
+
0.053466796875,
|
189 |
+
0.02734375,
|
190 |
+
0.024658203125,
|
191 |
+
-0.0081787109375,
|
192 |
+
0.0419921875,
|
193 |
+
-0.0240478515625,
|
194 |
+
-0.0208740234375,
|
195 |
+
0.004058837890625,
|
196 |
+
-0.03369140625,
|
197 |
+
0.0439453125,
|
198 |
+
-0.0625,
|
199 |
+
0.003082275390625,
|
200 |
+
0.01007080078125,
|
201 |
+
-0.047119140625,
|
202 |
+
-0.0224609375,
|
203 |
+
0.0181884765625,
|
204 |
+
0.0196533203125,
|
205 |
+
-0.004608154296875,
|
206 |
+
-0.0458984375,
|
207 |
+
0.04736328125,
|
208 |
+
-0.01513671875,
|
209 |
+
-0.08349609375,
|
210 |
+
-0.0576171875,
|
211 |
+
-0.0263671875,
|
212 |
+
-0.0341796875,
|
213 |
+
-0.017578125,
|
214 |
+
0.0145263671875,
|
215 |
+
0.06884765625,
|
216 |
+
0.0291748046875,
|
217 |
+
-0.0164794921875,
|
218 |
+
0.0859375,
|
219 |
+
-0.02685546875,
|
220 |
+
0.003021240234375,
|
221 |
+
-0.0181884765625,
|
222 |
+
0.041015625,
|
223 |
+
0.018310546875,
|
224 |
+
-0.04638671875,
|
225 |
+
-0.08056640625,
|
226 |
+
-0.03759765625,
|
227 |
+
0.0086669921875,
|
228 |
+
-0.0244140625,
|
229 |
+
0.01385498046875,
|
230 |
+
-0.050048828125,
|
231 |
+
-0.037841796875,
|
232 |
+
-0.014404296875,
|
233 |
+
0.0196533203125,
|
234 |
+
0.048095703125,
|
235 |
+
-0.05029296875,
|
236 |
+
0.000946044921875,
|
237 |
+
-0.003875732421875,
|
238 |
+
0.0078125,
|
239 |
+
-0.00726318359375,
|
240 |
+
-0.01275634765625,
|
241 |
+
0.00193023681640625,
|
242 |
+
-0.01556396484375,
|
243 |
+
-0.03857421875,
|
244 |
+
-0.024169921875,
|
245 |
+
-0.009765625,
|
246 |
+
-0.0208740234375,
|
247 |
+
-0.01141357421875,
|
248 |
+
-0.043701171875,
|
249 |
+
-0.005096435546875,
|
250 |
+
-0.045654296875,
|
251 |
+
0.064453125,
|
252 |
+
0.038818359375,
|
253 |
+
0.0004215240478515625,
|
254 |
+
0.0274658203125,
|
255 |
+
0.00299072265625,
|
256 |
+
-0.003265380859375,
|
257 |
+
-0.00811767578125,
|
258 |
+
-0.034912109375,
|
259 |
+
-0.023681640625,
|
260 |
+
-0.0238037109375,
|
261 |
+
-0.0015106201171875,
|
262 |
+
-0.0225830078125,
|
263 |
+
0.005706787109375,
|
264 |
+
0.040283203125,
|
265 |
+
0.047119140625,
|
266 |
+
0.00872802734375,
|
267 |
+
-0.00933837890625,
|
268 |
+
-0.0546875,
|
269 |
+
-0.007476806640625,
|
270 |
+
-0.02099609375,
|
271 |
+
0.056396484375,
|
272 |
+
0.0189208984375,
|
273 |
+
0.0184326171875,
|
274 |
+
-0.0400390625,
|
275 |
+
-0.0142822265625,
|
276 |
+
-0.0703125,
|
277 |
+
-0.035400390625,
|
278 |
+
-0.0086669921875,
|
279 |
+
-0.0517578125,
|
280 |
+
-0.0289306640625,
|
281 |
+
0.04736328125,
|
282 |
+
0.0028533935546875,
|
283 |
+
0.0439453125,
|
284 |
+
0.0301513671875,
|
285 |
+
0.019287109375,
|
286 |
+
-0.0185546875,
|
287 |
+
-0.0185546875,
|
288 |
+
-0.033935546875,
|
289 |
+
0.0159912109375,
|
290 |
+
0.01434326171875,
|
291 |
+
-0.0128173828125,
|
292 |
+
-0.0225830078125,
|
293 |
+
0.056884765625,
|
294 |
+
0.0556640625,
|
295 |
+
-0.03466796875,
|
296 |
+
0.0135498046875,
|
297 |
+
0.0137939453125,
|
298 |
+
0.0732421875,
|
299 |
+
-0.01116943359375,
|
300 |
+
-0.0128173828125,
|
301 |
+
-0.0004100799560546875,
|
302 |
+
0.01434326171875,
|
303 |
+
0.0299072265625,
|
304 |
+
-0.01446533203125,
|
305 |
+
-0.050048828125,
|
306 |
+
-0.036376953125,
|
307 |
+
-0.00775146484375,
|
308 |
+
0.00439453125,
|
309 |
+
0.00811767578125,
|
310 |
+
0.0147705078125,
|
311 |
+
0.01019287109375,
|
312 |
+
0.0019683837890625,
|
313 |
+
-0.00830078125,
|
314 |
+
-0.007659912109375,
|
315 |
+
0.029541015625,
|
316 |
+
-0.003509521484375,
|
317 |
+
0.043701171875,
|
318 |
+
-0.007781982421875,
|
319 |
+
0.0211181640625,
|
320 |
+
-0.0208740234375,
|
321 |
+
0.039794921875,
|
322 |
+
-0.03759765625,
|
323 |
+
0.0045166015625,
|
324 |
+
0.050048828125,
|
325 |
+
0.0196533203125,
|
326 |
+
0.043701171875,
|
327 |
+
0.00848388671875,
|
328 |
+
-0.043212890625,
|
329 |
+
-0.049560546875,
|
330 |
+
-0.062255859375,
|
331 |
+
0.0272216796875,
|
332 |
+
0.03662109375,
|
333 |
+
-0.034912109375,
|
334 |
+
-0.01336669921875,
|
335 |
+
0.05419921875,
|
336 |
+
-0.042236328125,
|
337 |
+
0.000705718994140625,
|
338 |
+
0.003753662109375,
|
339 |
+
0.0225830078125,
|
340 |
+
0.021240234375,
|
341 |
+
-0.0181884765625,
|
342 |
+
0.0257568359375,
|
343 |
+
0.0238037109375,
|
344 |
+
0.0034332275390625,
|
345 |
+
0.045166015625,
|
346 |
+
0.021728515625,
|
347 |
+
-0.0037384033203125,
|
348 |
+
-0.000598907470703125,
|
349 |
+
0.017578125,
|
350 |
+
-0.012939453125,
|
351 |
+
0.040771484375,
|
352 |
+
-0.05419921875,
|
353 |
+
-0.015380859375,
|
354 |
+
-0.040771484375,
|
355 |
+
-0.004974365234375,
|
356 |
+
-0.06689453125,
|
357 |
+
0.0419921875,
|
358 |
+
-0.00043487548828125,
|
359 |
+
0.042724609375,
|
360 |
+
0.01361083984375,
|
361 |
+
-0.013671875,
|
362 |
+
-0.048095703125,
|
363 |
+
-0.00787353515625,
|
364 |
+
-0.03076171875,
|
365 |
+
0.05078125,
|
366 |
+
0.0269775390625,
|
367 |
+
0.0028076171875,
|
368 |
+
-0.0233154296875,
|
369 |
+
-0.0023956298828125,
|
370 |
+
-0.02294921875,
|
371 |
+
-0.0517578125,
|
372 |
+
0.04541015625,
|
373 |
+
0.0035247802734375,
|
374 |
+
-0.004302978515625,
|
375 |
+
0.019775390625,
|
376 |
+
0.002777099609375,
|
377 |
+
-0.04150390625,
|
378 |
+
0.0150146484375,
|
379 |
+
0.0166015625,
|
380 |
+
0.01104736328125,
|
381 |
+
0.0252685546875,
|
382 |
+
0.02587890625,
|
383 |
+
-0.0079345703125,
|
384 |
+
-0.00347900390625,
|
385 |
+
-0.01171875,
|
386 |
+
-0.06298828125,
|
387 |
+
-0.023193359375,
|
388 |
+
0.0233154296875,
|
389 |
+
-0.0311279296875,
|
390 |
+
0.016845703125,
|
391 |
+
-0.006561279296875,
|
392 |
+
0.0257568359375,
|
393 |
+
0.048583984375,
|
394 |
+
-0.00567626953125,
|
395 |
+
-0.049072265625,
|
396 |
+
0.00119781494140625,
|
397 |
+
0.01416015625,
|
398 |
+
-0.0111083984375,
|
399 |
+
-0.01556396484375,
|
400 |
+
-0.022705078125,
|
401 |
+
-0.0184326171875,
|
402 |
+
-0.044189453125,
|
403 |
+
0.00469970703125,
|
404 |
+
-0.0281982421875,
|
405 |
+
0.031494140625,
|
406 |
+
0.00970458984375,
|
407 |
+
-0.00604248046875,
|
408 |
+
-0.00023937225341796875,
|
409 |
+
0.00732421875,
|
410 |
+
-0.032958984375,
|
411 |
+
-0.0361328125,
|
412 |
+
-0.00909423828125,
|
413 |
+
0.03857421875,
|
414 |
+
-0.06201171875,
|
415 |
+
-0.0283203125,
|
416 |
+
0.0791015625,
|
417 |
+
-0.0108642578125,
|
418 |
+
-0.049072265625,
|
419 |
+
0.01068115234375,
|
420 |
+
-0.049072265625,
|
421 |
+
-0.0380859375,
|
422 |
+
-0.048583984375,
|
423 |
+
-0.026123046875,
|
424 |
+
-0.00872802734375,
|
425 |
+
0.0021209716796875,
|
426 |
+
0.00140380859375,
|
427 |
+
-0.0260009765625,
|
428 |
+
0.0050048828125,
|
429 |
+
0.010986328125,
|
430 |
+
-0.0028228759765625,
|
431 |
+
0.0390625,
|
432 |
+
-0.0205078125,
|
433 |
+
-0.00543212890625,
|
434 |
+
-0.0113525390625,
|
435 |
+
0.045166015625,
|
436 |
+
0.00762939453125,
|
437 |
+
-0.029541015625,
|
438 |
+
-0.0106201171875,
|
439 |
+
-0.021484375,
|
440 |
+
-0.000362396240234375,
|
441 |
+
-0.025146484375,
|
442 |
+
-0.0419921875,
|
443 |
+
-0.04736328125,
|
444 |
+
-0.0186767578125,
|
445 |
+
-0.0029144287109375,
|
446 |
+
-0.04052734375,
|
447 |
+
-0.02734375,
|
448 |
+
-0.009521484375,
|
449 |
+
0.0189208984375,
|
450 |
+
0.033935546875,
|
451 |
+
-0.031982421875,
|
452 |
+
-0.044189453125,
|
453 |
+
-0.036376953125,
|
454 |
+
-0.0035400390625,
|
455 |
+
-0.0191650390625,
|
456 |
+
0.0184326171875,
|
457 |
+
-0.0133056640625,
|
458 |
+
-0.0240478515625,
|
459 |
+
-0.05712890625,
|
460 |
+
-0.005157470703125,
|
461 |
+
0.0208740234375,
|
462 |
+
0.0172119140625,
|
463 |
+
-0.0034332275390625,
|
464 |
+
0.068359375,
|
465 |
+
-0.0191650390625,
|
466 |
+
0.004425048828125,
|
467 |
+
0.04150390625,
|
468 |
+
-0.06689453125,
|
469 |
+
-0.0224609375,
|
470 |
+
-0.002899169921875,
|
471 |
+
0.0167236328125,
|
472 |
+
-0.032958984375,
|
473 |
+
0.037353515625,
|
474 |
+
-0.0184326171875,
|
475 |
+
-0.053466796875,
|
476 |
+
-0.0125732421875,
|
477 |
+
-0.04296875,
|
478 |
+
-0.003143310546875,
|
479 |
+
-0.05810546875,
|
480 |
+
0.068359375,
|
481 |
+
-0.04150390625,
|
482 |
+
-0.01275634765625,
|
483 |
+
-0.017333984375,
|
484 |
+
-0.06787109375,
|
485 |
+
-0.03466796875,
|
486 |
+
0.01806640625,
|
487 |
+
-0.00408935546875,
|
488 |
+
0.0294189453125,
|
489 |
+
-0.0498046875,
|
490 |
+
0.038330078125,
|
491 |
+
-0.0615234375,
|
492 |
+
0.072265625,
|
493 |
+
0.0267333984375,
|
494 |
+
-0.055908203125,
|
495 |
+
0.0284423828125,
|
496 |
+
-0.0159912109375,
|
497 |
+
-0.016845703125,
|
498 |
+
0.051513671875,
|
499 |
+
-0.002105712890625,
|
500 |
+
0.0023193359375,
|
501 |
+
-0.00592041015625,
|
502 |
+
-0.00012874603271484375,
|
503 |
+
0.0247802734375,
|
504 |
+
-0.024169921875,
|
505 |
+
-0.031982421875,
|
506 |
+
-0.0020294189453125,
|
507 |
+
-0.06787109375,
|
508 |
+
-0.0128173828125,
|
509 |
+
0.0057373046875,
|
510 |
+
0.034912109375,
|
511 |
+
-0.01416015625,
|
512 |
+
0.004638671875,
|
513 |
+
0.0032806396484375,
|
514 |
+
-0.022705078125,
|
515 |
+
-0.015625,
|
516 |
+
0.03564453125,
|
517 |
+
-0.0272216796875,
|
518 |
+
-0.042724609375,
|
519 |
+
-0.03271484375,
|
520 |
+
0.035400390625,
|
521 |
+
0.0419921875,
|
522 |
+
0.00787353515625,
|
523 |
+
0.0281982421875,
|
524 |
+
-0.0037841796875,
|
525 |
+
-0.01177978515625,
|
526 |
+
-0.03857421875,
|
527 |
+
0.056884765625,
|
528 |
+
-0.0189208984375,
|
529 |
+
0.061767578125,
|
530 |
+
-0.036865234375,
|
531 |
+
0.04638671875,
|
532 |
+
0.060302734375,
|
533 |
+
-0.0537109375,
|
534 |
+
0.0439453125,
|
535 |
+
0.00799560546875,
|
536 |
+
-0.0196533203125,
|
537 |
+
0.0010528564453125,
|
538 |
+
0.0036468505859375,
|
539 |
+
-0.021728515625,
|
540 |
+
0.0032806396484375,
|
541 |
+
-0.006256103515625,
|
542 |
+
0.017822265625,
|
543 |
+
-0.045166015625,
|
544 |
+
-0.0380859375,
|
545 |
+
0.0140380859375,
|
546 |
+
0.016357421875,
|
547 |
+
-0.109375,
|
548 |
+
-0.05859375,
|
549 |
+
0.047607421875,
|
550 |
+
0.01031494140625,
|
551 |
+
-0.01348876953125,
|
552 |
+
0.03466796875,
|
553 |
+
-0.01177978515625,
|
554 |
+
-0.013916015625,
|
555 |
+
-0.0205078125,
|
556 |
+
-0.0439453125,
|
557 |
+
-0.01214599609375,
|
558 |
+
0.035400390625,
|
559 |
+
-0.0184326171875,
|
560 |
+
-0.017822265625,
|
561 |
+
0.0361328125,
|
562 |
+
-0.03662109375,
|
563 |
+
0.0257568359375,
|
564 |
+
0.0022430419921875,
|
565 |
+
-0.03125,
|
566 |
+
-0.0267333984375,
|
567 |
+
-0.03271484375,
|
568 |
+
-0.0260009765625,
|
569 |
+
0.0216064453125,
|
570 |
+
0.04443359375,
|
571 |
+
-0.007293701171875,
|
572 |
+
-0.0177001953125,
|
573 |
+
-0.00286865234375,
|
574 |
+
-0.0017242431640625,
|
575 |
+
-0.0927734375,
|
576 |
+
-0.0164794921875,
|
577 |
+
0.029052734375,
|
578 |
+
0.0242919921875,
|
579 |
+
0.0040283203125,
|
580 |
+
0.012939453125,
|
581 |
+
0.03857421875,
|
582 |
+
0.020263671875,
|
583 |
+
-0.041015625,
|
584 |
+
-0.0169677734375,
|
585 |
+
-0.0301513671875,
|
586 |
+
0.043212890625,
|
587 |
+
0.045654296875,
|
588 |
+
0.01708984375,
|
589 |
+
0.036376953125,
|
590 |
+
0.0125732421875,
|
591 |
+
-0.07177734375,
|
592 |
+
0.006011962890625,
|
593 |
+
-0.01239013671875,
|
594 |
+
-0.0029296875,
|
595 |
+
0.035888671875,
|
596 |
+
-0.03173828125,
|
597 |
+
0.028564453125,
|
598 |
+
0.0308837890625,
|
599 |
+
-0.0517578125,
|
600 |
+
0.021728515625,
|
601 |
+
-0.0179443359375,
|
602 |
+
0.044189453125,
|
603 |
+
0.02783203125,
|
604 |
+
-0.0007476806640625,
|
605 |
+
0.0026397705078125,
|
606 |
+
0.02587890625,
|
607 |
+
0.0625,
|
608 |
+
0.06640625,
|
609 |
+
0.0113525390625,
|
610 |
+
0.027099609375,
|
611 |
+
0.00119781494140625,
|
612 |
+
-0.021484375,
|
613 |
+
0.0296630859375,
|
614 |
+
-0.0106201171875,
|
615 |
+
-0.023193359375,
|
616 |
+
0.0322265625,
|
617 |
+
0.03515625,
|
618 |
+
0.00083160400390625,
|
619 |
+
-0.0238037109375,
|
620 |
+
0.04443359375,
|
621 |
+
0.013671875,
|
622 |
+
0.011474609375,
|
623 |
+
-0.0205078125,
|
624 |
+
-0.0191650390625,
|
625 |
+
0.04443359375,
|
626 |
+
-0.0225830078125,
|
627 |
+
-0.017822265625,
|
628 |
+
-0.0341796875,
|
629 |
+
0.06494140625,
|
630 |
+
0.0294189453125,
|
631 |
+
-0.040771484375,
|
632 |
+
-0.0235595703125,
|
633 |
+
0.043701171875,
|
634 |
+
0.01318359375,
|
635 |
+
-0.0277099609375,
|
636 |
+
0.01055908203125,
|
637 |
+
-0.0081787109375,
|
638 |
+
-0.00714111328125,
|
639 |
+
0.030029296875,
|
640 |
+
-0.032470703125,
|
641 |
+
-0.0030364990234375,
|
642 |
+
0.01031494140625,
|
643 |
+
0.0211181640625,
|
644 |
+
-0.095703125,
|
645 |
+
-0.0003795623779296875,
|
646 |
+
-0.01611328125,
|
647 |
+
0.0205078125,
|
648 |
+
0.004302978515625,
|
649 |
+
0.00457763671875,
|
650 |
+
0.0281982421875,
|
651 |
+
-0.03955078125,
|
652 |
+
0.03369140625,
|
653 |
+
-0.011962890625,
|
654 |
+
-0.01348876953125,
|
655 |
+
0.0081787109375,
|
656 |
+
0.053955078125,
|
657 |
+
-0.02197265625,
|
658 |
+
-0.08935546875,
|
659 |
+
-0.0205078125,
|
660 |
+
0.0269775390625,
|
661 |
+
-8.153915405273438e-05,
|
662 |
+
-0.0296630859375,
|
663 |
+
0.034912109375,
|
664 |
+
-0.03369140625,
|
665 |
+
-0.001007080078125,
|
666 |
+
-0.045166015625,
|
667 |
+
-0.0093994140625,
|
668 |
+
0.020263671875,
|
669 |
+
0.0291748046875,
|
670 |
+
-0.026611328125,
|
671 |
+
-0.002197265625,
|
672 |
+
-0.030517578125,
|
673 |
+
0.0244140625,
|
674 |
+
0.0166015625,
|
675 |
+
0.0272216796875,
|
676 |
+
-0.001312255859375,
|
677 |
+
-0.034912109375,
|
678 |
+
0.035400390625,
|
679 |
+
0.0257568359375,
|
680 |
+
0.005279541015625,
|
681 |
+
0.029052734375,
|
682 |
+
-0.0196533203125,
|
683 |
+
-0.0166015625,
|
684 |
+
-0.0002613067626953125,
|
685 |
+
-0.000545501708984375,
|
686 |
+
0.0849609375,
|
687 |
+
-0.006103515625,
|
688 |
+
0.0390625,
|
689 |
+
-0.0296630859375,
|
690 |
+
0.041259765625,
|
691 |
+
0.025634765625,
|
692 |
+
0.01513671875,
|
693 |
+
-0.00555419921875,
|
694 |
+
0.01348876953125,
|
695 |
+
0.035400390625,
|
696 |
+
0.01409912109375,
|
697 |
+
-0.01806640625,
|
698 |
+
-0.0302734375,
|
699 |
+
-0.060302734375,
|
700 |
+
-0.016845703125,
|
701 |
+
-0.016845703125,
|
702 |
+
0.0189208984375,
|
703 |
+
-0.0311279296875,
|
704 |
+
-0.0537109375,
|
705 |
+
-0.0235595703125,
|
706 |
+
0.0269775390625,
|
707 |
+
-0.0010223388671875,
|
708 |
+
0.0299072265625,
|
709 |
+
0.00140380859375,
|
710 |
+
0.004974365234375,
|
711 |
+
0.00982666015625,
|
712 |
+
0.0028839111328125,
|
713 |
+
-0.0135498046875,
|
714 |
+
0.0203857421875,
|
715 |
+
-0.0235595703125,
|
716 |
+
-0.0283203125,
|
717 |
+
0.0018157958984375,
|
718 |
+
0.01348876953125,
|
719 |
+
-0.0252685546875,
|
720 |
+
0.0186767578125,
|
721 |
+
0.04052734375,
|
722 |
+
-0.01324462890625,
|
723 |
+
0.006866455078125,
|
724 |
+
0.022705078125,
|
725 |
+
0.0255126953125,
|
726 |
+
0.012451171875,
|
727 |
+
-0.0189208984375,
|
728 |
+
-0.007476806640625,
|
729 |
+
0.004425048828125,
|
730 |
+
0.047607421875,
|
731 |
+
0.0140380859375,
|
732 |
+
-0.06689453125,
|
733 |
+
0.008056640625,
|
734 |
+
-0.0201416015625,
|
735 |
+
-0.034423828125,
|
736 |
+
0.023193359375,
|
737 |
+
0.0693359375,
|
738 |
+
0.03125,
|
739 |
+
0.0245361328125,
|
740 |
+
-0.029052734375,
|
741 |
+
0.0252685546875,
|
742 |
+
-0.04150390625,
|
743 |
+
-0.007171630859375,
|
744 |
+
-0.0400390625,
|
745 |
+
0.0166015625,
|
746 |
+
-0.025146484375,
|
747 |
+
-0.0162353515625,
|
748 |
+
-0.019287109375,
|
749 |
+
-0.0223388671875,
|
750 |
+
-0.0089111328125,
|
751 |
+
0.02685546875,
|
752 |
+
-0.0634765625,
|
753 |
+
0.050537109375,
|
754 |
+
0.023193359375,
|
755 |
+
0.04931640625,
|
756 |
+
0.0111083984375,
|
757 |
+
0.01275634765625,
|
758 |
+
0.0380859375,
|
759 |
+
0.05419921875,
|
760 |
+
-0.05859375,
|
761 |
+
-0.0208740234375,
|
762 |
+
-0.046142578125,
|
763 |
+
0.01385498046875,
|
764 |
+
0.0081787109375,
|
765 |
+
0.0240478515625,
|
766 |
+
0.0081787109375,
|
767 |
+
0.04443359375,
|
768 |
+
-0.04736328125,
|
769 |
+
0.021240234375,
|
770 |
+
-0.0084228515625,
|
771 |
+
-0.005767822265625,
|
772 |
+
0.0140380859375,
|
773 |
+
-0.02587890625,
|
774 |
+
0.0014190673828125,
|
775 |
+
-0.0179443359375,
|
776 |
+
-0.0267333984375,
|
777 |
+
-0.0322265625,
|
778 |
+
0.036376953125,
|
779 |
+
-0.049560546875,
|
780 |
+
-0.005340576171875,
|
781 |
+
0.021240234375,
|
782 |
+
0.004913330078125,
|
783 |
+
0.02490234375,
|
784 |
+
0.007293701171875,
|
785 |
+
-0.0517578125,
|
786 |
+
0.00799560546875,
|
787 |
+
-0.040771484375,
|
788 |
+
-0.03857421875,
|
789 |
+
-0.040283203125,
|
790 |
+
-0.007568359375,
|
791 |
+
-0.0250244140625,
|
792 |
+
-0.0230712890625,
|
793 |
+
0.042724609375,
|
794 |
+
0.0172119140625,
|
795 |
+
-0.0185546875,
|
796 |
+
-0.01446533203125,
|
797 |
+
0.0296630859375,
|
798 |
+
0.02099609375,
|
799 |
+
0.030029296875,
|
800 |
+
0.03515625,
|
801 |
+
-0.0277099609375,
|
802 |
+
-0.05029296875,
|
803 |
+
0.031494140625,
|
804 |
+
-0.00262451171875,
|
805 |
+
-0.02001953125,
|
806 |
+
0.033447265625,
|
807 |
+
0.06103515625,
|
808 |
+
-0.0179443359375,
|
809 |
+
-0.03564453125,
|
810 |
+
-0.0194091796875,
|
811 |
+
-0.062255859375,
|
812 |
+
0.0037994384765625,
|
813 |
+
0.038330078125,
|
814 |
+
0.0712890625,
|
815 |
+
-0.0380859375,
|
816 |
+
0.00051116943359375,
|
817 |
+
0.033203125,
|
818 |
+
0.025634765625,
|
819 |
+
-0.02294921875,
|
820 |
+
0.0247802734375,
|
821 |
+
0.033935546875,
|
822 |
+
0.03955078125,
|
823 |
+
-0.01397705078125,
|
824 |
+
-0.006103515625,
|
825 |
+
-0.062255859375,
|
826 |
+
-0.0322265625,
|
827 |
+
-0.004119873046875,
|
828 |
+
-0.017822265625,
|
829 |
+
0.017333984375,
|
830 |
+
0.04345703125,
|
831 |
+
-0.002471923828125,
|
832 |
+
0.0277099609375,
|
833 |
+
-0.0162353515625,
|
834 |
+
0.0751953125,
|
835 |
+
-0.005828857421875,
|
836 |
+
-0.017578125,
|
837 |
+
-0.0220947265625,
|
838 |
+
-0.0439453125,
|
839 |
+
-0.022705078125,
|
840 |
+
-0.028076171875,
|
841 |
+
-0.0164794921875,
|
842 |
+
0.0260009765625,
|
843 |
+
-0.014892578125,
|
844 |
+
-0.01806640625,
|
845 |
+
-0.01141357421875,
|
846 |
+
-0.04248046875,
|
847 |
+
-0.0693359375,
|
848 |
+
0.01141357421875,
|
849 |
+
0.0211181640625,
|
850 |
+
0.007415771484375,
|
851 |
+
-0.03466796875,
|
852 |
+
0.024658203125,
|
853 |
+
0.016357421875,
|
854 |
+
0.04443359375,
|
855 |
+
0.00830078125,
|
856 |
+
-0.033447265625,
|
857 |
+
0.0012359619140625,
|
858 |
+
-0.036865234375,
|
859 |
+
0.0286865234375,
|
860 |
+
-0.04150390625,
|
861 |
+
-0.0308837890625,
|
862 |
+
0.059326171875,
|
863 |
+
-0.0213623046875,
|
864 |
+
0.0140380859375,
|
865 |
+
0.060302734375,
|
866 |
+
0.0101318359375,
|
867 |
+
0.052490234375,
|
868 |
+
0.0242919921875,
|
869 |
+
-0.0213623046875,
|
870 |
+
0.03857421875,
|
871 |
+
-0.000690460205078125,
|
872 |
+
0.048583984375,
|
873 |
+
-0.01300048828125,
|
874 |
+
0.006439208984375,
|
875 |
+
0.005950927734375,
|
876 |
+
-0.06884765625,
|
877 |
+
-0.004364013671875,
|
878 |
+
0.0302734375,
|
879 |
+
0.021728515625,
|
880 |
+
0.029541015625,
|
881 |
+
0.0196533203125,
|
882 |
+
-0.0048828125,
|
883 |
+
-0.0172119140625,
|
884 |
+
0.0009002685546875,
|
885 |
+
-0.0419921875,
|
886 |
+
-0.0185546875,
|
887 |
+
0.06396484375,
|
888 |
+
-0.0028839111328125,
|
889 |
+
0.0272216796875,
|
890 |
+
0.0247802734375,
|
891 |
+
-0.018310546875,
|
892 |
+
0.04052734375,
|
893 |
+
0.06494140625,
|
894 |
+
0.0233154296875,
|
895 |
+
-0.0001506805419921875,
|
896 |
+
-0.0250244140625,
|
897 |
+
-0.06103515625,
|
898 |
+
0.00286865234375,
|
899 |
+
-0.00927734375,
|
900 |
+
-0.01025390625,
|
901 |
+
-0.03466796875,
|
902 |
+
-0.00116729736328125,
|
903 |
+
0.029052734375,
|
904 |
+
0.0150146484375,
|
905 |
+
0.0130615234375,
|
906 |
+
0.068359375,
|
907 |
+
0.054931640625,
|
908 |
+
0.037109375,
|
909 |
+
0.025634765625,
|
910 |
+
-0.02587890625,
|
911 |
+
0.0458984375,
|
912 |
+
0.06591796875,
|
913 |
+
0.01239013671875,
|
914 |
+
-0.0262451171875,
|
915 |
+
0.10693359375,
|
916 |
+
-0.07421875,
|
917 |
+
-0.0174560546875,
|
918 |
+
-0.00604248046875,
|
919 |
+
-0.017578125,
|
920 |
+
0.06103515625,
|
921 |
+
0.0322265625,
|
922 |
+
-0.040771484375,
|
923 |
+
-0.0026397705078125,
|
924 |
+
0.0037841796875,
|
925 |
+
-0.05859375,
|
926 |
+
-0.03662109375,
|
927 |
+
0.0029449462890625,
|
928 |
+
-0.0245361328125,
|
929 |
+
0.0179443359375,
|
930 |
+
0.0220947265625,
|
931 |
+
0.00726318359375,
|
932 |
+
-0.01458740234375,
|
933 |
+
0.0054931640625,
|
934 |
+
0.036376953125,
|
935 |
+
0.02099609375,
|
936 |
+
0.0162353515625,
|
937 |
+
-0.0250244140625,
|
938 |
+
0.109375,
|
939 |
+
-0.024658203125,
|
940 |
+
-0.0206298828125,
|
941 |
+
-0.0269775390625,
|
942 |
+
-0.01043701171875,
|
943 |
+
-0.00994873046875,
|
944 |
+
-0.007720947265625,
|
945 |
+
-0.0002593994140625,
|
946 |
+
-0.01385498046875,
|
947 |
+
0.01153564453125,
|
948 |
+
0.0250244140625,
|
949 |
+
-0.017333984375,
|
950 |
+
-0.034912109375,
|
951 |
+
-0.004913330078125,
|
952 |
+
-0.0223388671875,
|
953 |
+
0.053955078125,
|
954 |
+
0.033447265625,
|
955 |
+
-0.01123046875,
|
956 |
+
-0.0213623046875,
|
957 |
+
0.02880859375,
|
958 |
+
-0.0059814453125,
|
959 |
+
0.00909423828125,
|
960 |
+
0.0021820068359375,
|
961 |
+
-0.050048828125,
|
962 |
+
0.044677734375,
|
963 |
+
-0.025390625,
|
964 |
+
-0.032958984375,
|
965 |
+
-0.033447265625,
|
966 |
+
-0.0250244140625,
|
967 |
+
-0.047607421875,
|
968 |
+
-0.02197265625,
|
969 |
+
-0.017333984375,
|
970 |
+
-0.00897216796875,
|
971 |
+
-0.037353515625,
|
972 |
+
-0.047607421875,
|
973 |
+
-0.006866455078125,
|
974 |
+
0.0145263671875,
|
975 |
+
0.0245361328125,
|
976 |
+
0.0262451171875,
|
977 |
+
0.01953125,
|
978 |
+
0.036376953125,
|
979 |
+
0.0859375,
|
980 |
+
-0.01177978515625,
|
981 |
+
-0.00994873046875,
|
982 |
+
-0.047119140625,
|
983 |
+
0.0166015625,
|
984 |
+
-0.01025390625,
|
985 |
+
0.0093994140625,
|
986 |
+
-0.0274658203125,
|
987 |
+
-0.0220947265625,
|
988 |
+
-0.03369140625,
|
989 |
+
-0.00518798828125,
|
990 |
+
-0.03466796875,
|
991 |
+
0.00179290771484375,
|
992 |
+
0.03173828125,
|
993 |
+
-0.0032958984375,
|
994 |
+
0.036376953125,
|
995 |
+
0.0927734375,
|
996 |
+
-0.01531982421875,
|
997 |
+
-0.037109375,
|
998 |
+
-0.0380859375,
|
999 |
+
-0.0147705078125,
|
1000 |
+
0.026611328125,
|
1001 |
+
-0.01165771484375,
|
1002 |
+
-0.0322265625,
|
1003 |
+
0.031005859375,
|
1004 |
+
-0.0147705078125,
|
1005 |
+
0.00885009765625,
|
1006 |
+
0.0262451171875,
|
1007 |
+
-0.01239013671875,
|
1008 |
+
0.01226806640625,
|
1009 |
+
-0.0179443359375,
|
1010 |
+
0.030029296875,
|
1011 |
+
-0.0234375,
|
1012 |
+
0.0028076171875,
|
1013 |
+
-0.00665283203125,
|
1014 |
+
-0.0230712890625,
|
1015 |
+
-0.0029296875,
|
1016 |
+
-0.02783203125,
|
1017 |
+
-0.01190185546875,
|
1018 |
+
0.00299072265625,
|
1019 |
+
-0.031982421875,
|
1020 |
+
-0.021728515625,
|
1021 |
+
0.0262451171875,
|
1022 |
+
0.04541015625,
|
1023 |
+
0.00189208984375,
|
1024 |
+
0.00811767578125,
|
1025 |
+
-0.030029296875,
|
1026 |
+
-0.0211181640625,
|
1027 |
+
0.05615234375,
|
1028 |
+
0.00994873046875,
|
1029 |
+
-0.0157470703125,
|
1030 |
+
0.03369140625,
|
1031 |
+
0.006683349609375,
|
1032 |
+
0.000865936279296875,
|
1033 |
+
-0.0059814453125,
|
1034 |
+
-0.007476806640625,
|
1035 |
+
-0.0238037109375,
|
1036 |
+
0.0458984375,
|
1037 |
+
-0.004119873046875,
|
1038 |
+
0.0230712890625,
|
1039 |
+
0.00732421875,
|
1040 |
+
0.0225830078125,
|
1041 |
+
0.0294189453125,
|
1042 |
+
-0.0302734375,
|
1043 |
+
-0.023681640625,
|
1044 |
+
0.026123046875,
|
1045 |
+
0.05029296875,
|
1046 |
+
0.056640625,
|
1047 |
+
0.00860595703125,
|
1048 |
+
0.01104736328125,
|
1049 |
+
-0.01129150390625,
|
1050 |
+
-0.00092315673828125,
|
1051 |
+
0.007293701171875,
|
1052 |
+
0.040771484375,
|
1053 |
+
0.002655029296875,
|
1054 |
+
0.0174560546875,
|
1055 |
+
-0.0162353515625,
|
1056 |
+
0.045166015625,
|
1057 |
+
-0.026123046875,
|
1058 |
+
0.0022125244140625,
|
1059 |
+
0.02685546875,
|
1060 |
+
0.03173828125,
|
1061 |
+
0.00830078125,
|
1062 |
+
-0.0556640625,
|
1063 |
+
-0.037109375,
|
1064 |
+
0.0693359375,
|
1065 |
+
0.0291748046875,
|
1066 |
+
0.052490234375,
|
1067 |
+
0.038818359375,
|
1068 |
+
0.0152587890625,
|
1069 |
+
-0.03369140625,
|
1070 |
+
-0.0218505859375,
|
1071 |
+
0.0157470703125,
|
1072 |
+
-0.0260009765625,
|
1073 |
+
0.005706787109375,
|
1074 |
+
0.005462646484375,
|
1075 |
+
0.00494384765625,
|
1076 |
+
0.00885009765625,
|
1077 |
+
0.002044677734375,
|
1078 |
+
0.057861328125,
|
1079 |
+
0.029296875,
|
1080 |
+
-0.0311279296875,
|
1081 |
+
-0.03662109375,
|
1082 |
+
-0.01416015625,
|
1083 |
+
0.007293701171875,
|
1084 |
+
0.018798828125,
|
1085 |
+
-0.043701171875,
|
1086 |
+
0.011962890625,
|
1087 |
+
0.0296630859375,
|
1088 |
+
0.00299072265625,
|
1089 |
+
-0.023681640625,
|
1090 |
+
-0.04443359375,
|
1091 |
+
0.0233154296875,
|
1092 |
+
-0.031005859375,
|
1093 |
+
0.0181884765625,
|
1094 |
+
0.05517578125,
|
1095 |
+
-0.0010528564453125,
|
1096 |
+
-0.00075531005859375,
|
1097 |
+
0.0157470703125,
|
1098 |
+
0.015869140625,
|
1099 |
+
-0.0419921875,
|
1100 |
+
0.00775146484375,
|
1101 |
+
-0.0159912109375,
|
1102 |
+
0.0186767578125,
|
1103 |
+
-0.03857421875,
|
1104 |
+
0.00115966796875,
|
1105 |
+
-0.01336669921875,
|
1106 |
+
0.00933837890625,
|
1107 |
+
-0.01080322265625,
|
1108 |
+
-0.0556640625,
|
1109 |
+
0.00433349609375,
|
1110 |
+
-0.0147705078125,
|
1111 |
+
0.03466796875,
|
1112 |
+
-0.0308837890625,
|
1113 |
+
-0.00162506103515625,
|
1114 |
+
0.050048828125,
|
1115 |
+
-0.04150390625,
|
1116 |
+
-0.0198974609375,
|
1117 |
+
-0.0155029296875,
|
1118 |
+
0.0267333984375,
|
1119 |
+
0.034423828125,
|
1120 |
+
0.03466796875,
|
1121 |
+
-0.037841796875,
|
1122 |
+
0.034912109375,
|
1123 |
+
0.0017547607421875,
|
1124 |
+
0.0260009765625,
|
1125 |
+
-0.0174560546875,
|
1126 |
+
-0.046630859375,
|
1127 |
+
-0.0159912109375,
|
1128 |
+
-0.0238037109375,
|
1129 |
+
0.04150390625,
|
1130 |
+
-0.03759765625,
|
1131 |
+
0.0093994140625,
|
1132 |
+
0.0196533203125,
|
1133 |
+
-0.019287109375,
|
1134 |
+
0.01214599609375,
|
1135 |
+
0.01318359375,
|
1136 |
+
-0.0203857421875,
|
1137 |
+
-0.01318359375,
|
1138 |
+
-0.01904296875,
|
1139 |
+
0.0235595703125,
|
1140 |
+
0.0101318359375,
|
1141 |
+
0.003326416015625,
|
1142 |
+
-0.04345703125,
|
1143 |
+
-0.003265380859375,
|
1144 |
+
0.050537109375,
|
1145 |
+
-0.021240234375,
|
1146 |
+
0.0281982421875,
|
1147 |
+
-0.004302978515625,
|
1148 |
+
0.0595703125,
|
1149 |
+
-0.0062255859375,
|
1150 |
+
0.0145263671875,
|
1151 |
+
0.01214599609375,
|
1152 |
+
0.00250244140625,
|
1153 |
+
-0.00909423828125,
|
1154 |
+
-0.01519775390625,
|
1155 |
+
-0.018310546875,
|
1156 |
+
0.00946044921875,
|
1157 |
+
-0.064453125,
|
1158 |
+
0.052490234375,
|
1159 |
+
0.037353515625,
|
1160 |
+
0.00823974609375,
|
1161 |
+
-0.0074462890625,
|
1162 |
+
-0.044189453125,
|
1163 |
+
0.023193359375,
|
1164 |
+
0.0400390625,
|
1165 |
+
0.003143310546875,
|
1166 |
+
-0.00012493133544921875,
|
1167 |
+
-0.0230712890625,
|
1168 |
+
-0.0169677734375,
|
1169 |
+
-0.0032806396484375,
|
1170 |
+
-0.0269775390625,
|
1171 |
+
0.01495361328125,
|
1172 |
+
0.033203125,
|
1173 |
+
-0.0390625,
|
1174 |
+
0.024169921875,
|
1175 |
+
-0.05517578125,
|
1176 |
+
0.01416015625,
|
1177 |
+
-0.0057373046875,
|
1178 |
+
0.052490234375,
|
1179 |
+
-0.00439453125,
|
1180 |
+
-0.039306640625,
|
1181 |
+
-0.08056640625,
|
1182 |
+
0.049072265625,
|
1183 |
+
0.002227783203125,
|
1184 |
+
0.02197265625,
|
1185 |
+
-0.052978515625,
|
1186 |
+
-0.0203857421875,
|
1187 |
+
0.034423828125,
|
1188 |
+
-0.0096435546875,
|
1189 |
+
0.043212890625,
|
1190 |
+
0.0361328125,
|
1191 |
+
-0.03662109375,
|
1192 |
+
0.038330078125,
|
1193 |
+
-0.0380859375,
|
1194 |
+
-0.040283203125,
|
1195 |
+
0.0213623046875,
|
1196 |
+
0.02294921875,
|
1197 |
+
-0.00152587890625,
|
1198 |
+
-0.04296875,
|
1199 |
+
0.0400390625,
|
1200 |
+
-0.01361083984375,
|
1201 |
+
-0.00872802734375,
|
1202 |
+
-0.03125,
|
1203 |
+
-0.007476806640625,
|
1204 |
+
0.0267333984375,
|
1205 |
+
-0.000583648681640625,
|
1206 |
+
-0.06201171875,
|
1207 |
+
-0.048828125,
|
1208 |
+
0.041015625,
|
1209 |
+
-0.000545501708984375,
|
1210 |
+
0.041015625,
|
1211 |
+
0.052001953125,
|
1212 |
+
0.019287109375,
|
1213 |
+
-0.014892578125,
|
1214 |
+
0.01434326171875,
|
1215 |
+
0.0120849609375,
|
1216 |
+
0.0059814453125,
|
1217 |
+
-0.0186767578125,
|
1218 |
+
0.01483154296875,
|
1219 |
+
-0.02978515625,
|
1220 |
+
-0.024658203125,
|
1221 |
+
-0.0322265625,
|
1222 |
+
0.056396484375,
|
1223 |
+
0.061279296875,
|
1224 |
+
-0.02099609375,
|
1225 |
+
-0.0172119140625,
|
1226 |
+
0.0279541015625,
|
1227 |
+
0.02294921875,
|
1228 |
+
-0.02099609375,
|
1229 |
+
-0.04541015625,
|
1230 |
+
-0.00897216796875,
|
1231 |
+
-0.032470703125,
|
1232 |
+
0.040283203125,
|
1233 |
+
-0.040283203125,
|
1234 |
+
-0.040771484375,
|
1235 |
+
-0.06787109375
|
1236 |
+
]
|
1237 |
+
]
|
1238 |
+
],
|
1239 |
+
"hd_transform_order": "sub_glb",
|
1240 |
+
"hidden_act": "silu",
|
1241 |
+
"hidden_size": 3072,
|
1242 |
+
"image_dim_out": 1152,
|
1243 |
+
"img_processor": null,
|
1244 |
+
"initializer_range": 0.02,
|
1245 |
+
"intermediate_size": 8192,
|
1246 |
+
"interpolate_factor": 1,
|
1247 |
+
"lm_head_bias": false,
|
1248 |
+
"max_position_embeddings": 131072,
|
1249 |
+
"mlp_bias": false,
|
1250 |
+
"model_type": "phi4mm",
|
1251 |
+
"num_attention_heads": 24,
|
1252 |
+
"num_hidden_layers": 32,
|
1253 |
+
"num_img_tokens": 256,
|
1254 |
+
"num_key_value_heads": 8,
|
1255 |
+
"original_max_position_embeddings": 4096,
|
1256 |
+
"pad_token_id": 199999,
|
1257 |
+
"partial_rotary_factor": 0.75,
|
1258 |
+
"resid_pdrop": 0.0,
|
1259 |
+
"rms_norm_eps": 1e-05,
|
1260 |
+
"rope_scaling": {
|
1261 |
+
"long_factor": [
|
1262 |
+
1,
|
1263 |
+
1.118320672,
|
1264 |
+
1.250641126,
|
1265 |
+
1.398617824,
|
1266 |
+
1.564103225,
|
1267 |
+
1.74916897,
|
1268 |
+
1.956131817,
|
1269 |
+
2.187582649,
|
1270 |
+
2.446418898,
|
1271 |
+
2.735880826,
|
1272 |
+
3.059592084,
|
1273 |
+
3.421605075,
|
1274 |
+
3.826451687,
|
1275 |
+
4.279200023,
|
1276 |
+
4.785517845,
|
1277 |
+
5.351743533,
|
1278 |
+
5.984965424,
|
1279 |
+
6.693110555,
|
1280 |
+
7.485043894,
|
1281 |
+
8.370679318,
|
1282 |
+
9.36110372,
|
1283 |
+
10.4687158,
|
1284 |
+
11.70738129,
|
1285 |
+
13.09260651,
|
1286 |
+
14.64173252,
|
1287 |
+
16.37415215,
|
1288 |
+
18.31155283,
|
1289 |
+
20.47818807,
|
1290 |
+
22.90118105,
|
1291 |
+
25.61086418,
|
1292 |
+
28.64115884,
|
1293 |
+
32.03,
|
1294 |
+
32.1,
|
1295 |
+
32.13,
|
1296 |
+
32.23,
|
1297 |
+
32.6,
|
1298 |
+
32.61,
|
1299 |
+
32.64,
|
1300 |
+
32.66,
|
1301 |
+
32.7,
|
1302 |
+
32.71,
|
1303 |
+
32.93,
|
1304 |
+
32.97,
|
1305 |
+
33.28,
|
1306 |
+
33.49,
|
1307 |
+
33.5,
|
1308 |
+
44.16,
|
1309 |
+
47.77
|
1310 |
+
],
|
1311 |
+
"short_factor": [
|
1312 |
+
1.0,
|
1313 |
+
1.0,
|
1314 |
+
1.0,
|
1315 |
+
1.0,
|
1316 |
+
1.0,
|
1317 |
+
1.0,
|
1318 |
+
1.0,
|
1319 |
+
1.0,
|
1320 |
+
1.0,
|
1321 |
+
1.0,
|
1322 |
+
1.0,
|
1323 |
+
1.0,
|
1324 |
+
1.0,
|
1325 |
+
1.0,
|
1326 |
+
1.0,
|
1327 |
+
1.0,
|
1328 |
+
1.0,
|
1329 |
+
1.0,
|
1330 |
+
1.0,
|
1331 |
+
1.0,
|
1332 |
+
1.0,
|
1333 |
+
1.0,
|
1334 |
+
1.0,
|
1335 |
+
1.0,
|
1336 |
+
1.0,
|
1337 |
+
1.0,
|
1338 |
+
1.0,
|
1339 |
+
1.0,
|
1340 |
+
1.0,
|
1341 |
+
1.0,
|
1342 |
+
1.0,
|
1343 |
+
1.0,
|
1344 |
+
1.0,
|
1345 |
+
1.0,
|
1346 |
+
1.0,
|
1347 |
+
1.0,
|
1348 |
+
1.0,
|
1349 |
+
1.0,
|
1350 |
+
1.0,
|
1351 |
+
1.0,
|
1352 |
+
1.0,
|
1353 |
+
1.0,
|
1354 |
+
1.0,
|
1355 |
+
1.0,
|
1356 |
+
1.0,
|
1357 |
+
1.0,
|
1358 |
+
1.0,
|
1359 |
+
1.0
|
1360 |
+
],
|
1361 |
+
"type": "longrope"
|
1362 |
+
},
|
1363 |
+
"rope_theta": 10000.0,
|
1364 |
+
"sliding_window": 262144,
|
1365 |
+
"speech_lora": {
|
1366 |
+
"dp": 0.01,
|
1367 |
+
"layer": "((layers.*self_attn\\.(qkv|o)_proj)|(layers.*mlp\\.(gate_up|down)_proj))",
|
1368 |
+
"lora_alpha": 640,
|
1369 |
+
"r": 320
|
1370 |
+
},
|
1371 |
+
"sub_GN": [
|
1372 |
+
[
|
1373 |
+
[
|
1374 |
+
[
|
1375 |
+
0.01287841796875,
|
1376 |
+
0.01202392578125,
|
1377 |
+
-0.0006866455078125,
|
1378 |
+
-0.004180908203125,
|
1379 |
+
-3.743171691894531e-05,
|
1380 |
+
-0.000934600830078125,
|
1381 |
+
0.001434326171875,
|
1382 |
+
0.007476806640625,
|
1383 |
+
-0.0035400390625,
|
1384 |
+
-0.0196533203125,
|
1385 |
+
0.00775146484375,
|
1386 |
+
0.00098419189453125,
|
1387 |
+
0.00921630859375,
|
1388 |
+
3.218650817871094e-05,
|
1389 |
+
0.009765625,
|
1390 |
+
-0.0120849609375,
|
1391 |
+
-0.004241943359375,
|
1392 |
+
0.00994873046875,
|
1393 |
+
0.0013580322265625,
|
1394 |
+
0.0012054443359375,
|
1395 |
+
0.0047607421875,
|
1396 |
+
-0.00185394287109375,
|
1397 |
+
-0.0242919921875,
|
1398 |
+
0.01214599609375,
|
1399 |
+
-0.0101318359375,
|
1400 |
+
-0.00070953369140625,
|
1401 |
+
-0.005126953125,
|
1402 |
+
-0.004425048828125,
|
1403 |
+
-0.01251220703125,
|
1404 |
+
0.004119873046875,
|
1405 |
+
-0.00274658203125,
|
1406 |
+
-0.01055908203125,
|
1407 |
+
0.00494384765625,
|
1408 |
+
-0.0028228759765625,
|
1409 |
+
0.0024261474609375,
|
1410 |
+
0.0064697265625,
|
1411 |
+
0.000865936279296875,
|
1412 |
+
-0.00103759765625,
|
1413 |
+
-0.0025787353515625,
|
1414 |
+
0.0166015625,
|
1415 |
+
-0.000675201416015625,
|
1416 |
+
0.01177978515625,
|
1417 |
+
-0.00018024444580078125,
|
1418 |
+
0.00238037109375,
|
1419 |
+
-0.003326416015625,
|
1420 |
+
0.00153350830078125,
|
1421 |
+
-0.00086212158203125,
|
1422 |
+
-0.00628662109375,
|
1423 |
+
-6.079673767089844e-05,
|
1424 |
+
0.005828857421875,
|
1425 |
+
0.001495361328125,
|
1426 |
+
-0.01275634765625,
|
1427 |
+
-0.00909423828125,
|
1428 |
+
0.00592041015625,
|
1429 |
+
4.863739013671875e-05,
|
1430 |
+
0.0067138671875,
|
1431 |
+
-0.003631591796875,
|
1432 |
+
0.0024871826171875,
|
1433 |
+
-8.106231689453125e-05,
|
1434 |
+
-0.00148773193359375,
|
1435 |
+
-1.2993812561035156e-05,
|
1436 |
+
0.00982666015625,
|
1437 |
+
0.004669189453125,
|
1438 |
+
-0.003570556640625,
|
1439 |
+
0.01092529296875,
|
1440 |
+
0.0174560546875,
|
1441 |
+
-0.005645751953125,
|
1442 |
+
0.01263427734375,
|
1443 |
+
0.00909423828125,
|
1444 |
+
-0.00494384765625,
|
1445 |
+
0.00604248046875,
|
1446 |
+
-0.0164794921875,
|
1447 |
+
-0.0016326904296875,
|
1448 |
+
-0.00112152099609375,
|
1449 |
+
0.00177764892578125,
|
1450 |
+
-0.00139617919921875,
|
1451 |
+
-0.00653076171875,
|
1452 |
+
0.00982666015625,
|
1453 |
+
0.000370025634765625,
|
1454 |
+
-0.0159912109375,
|
1455 |
+
0.00171661376953125,
|
1456 |
+
0.0164794921875,
|
1457 |
+
-0.0074462890625,
|
1458 |
+
-0.004638671875,
|
1459 |
+
-0.01007080078125,
|
1460 |
+
-0.004913330078125,
|
1461 |
+
0.0177001953125,
|
1462 |
+
-0.00689697265625,
|
1463 |
+
0.0059814453125,
|
1464 |
+
0.014892578125,
|
1465 |
+
-0.00927734375,
|
1466 |
+
0.025146484375,
|
1467 |
+
0.0042724609375,
|
1468 |
+
-0.00060272216796875,
|
1469 |
+
0.0189208984375,
|
1470 |
+
0.007232666015625,
|
1471 |
+
-0.002349853515625,
|
1472 |
+
0.01483154296875,
|
1473 |
+
-0.005279541015625,
|
1474 |
+
-0.00933837890625,
|
1475 |
+
-0.000530242919921875,
|
1476 |
+
-0.00811767578125,
|
1477 |
+
0.00848388671875,
|
1478 |
+
0.00225830078125,
|
1479 |
+
-0.0026702880859375,
|
1480 |
+
-0.016357421875,
|
1481 |
+
0.0034027099609375,
|
1482 |
+
-0.006317138671875,
|
1483 |
+
-0.00830078125,
|
1484 |
+
-0.007476806640625,
|
1485 |
+
0.016357421875,
|
1486 |
+
0.00408935546875,
|
1487 |
+
-0.0016632080078125,
|
1488 |
+
-0.00872802734375,
|
1489 |
+
-0.00787353515625,
|
1490 |
+
-0.0021820068359375,
|
1491 |
+
0.00185394287109375,
|
1492 |
+
-0.002685546875,
|
1493 |
+
-0.013427734375,
|
1494 |
+
-0.006744384765625,
|
1495 |
+
4.267692565917969e-05,
|
1496 |
+
0.00372314453125,
|
1497 |
+
-0.005340576171875,
|
1498 |
+
0.0010223388671875,
|
1499 |
+
-0.0078125,
|
1500 |
+
-0.0021209716796875,
|
1501 |
+
0.00994873046875,
|
1502 |
+
0.00616455078125,
|
1503 |
+
0.0277099609375,
|
1504 |
+
-0.0096435546875,
|
1505 |
+
-0.01300048828125,
|
1506 |
+
-0.0167236328125,
|
1507 |
+
-0.01220703125,
|
1508 |
+
-0.01214599609375,
|
1509 |
+
-0.0016326904296875,
|
1510 |
+
-0.002685546875,
|
1511 |
+
0.0016632080078125,
|
1512 |
+
-0.0177001953125,
|
1513 |
+
-0.01080322265625,
|
1514 |
+
-0.009521484375,
|
1515 |
+
0.009765625,
|
1516 |
+
0.0107421875,
|
1517 |
+
0.007171630859375,
|
1518 |
+
-0.0030364990234375,
|
1519 |
+
0.01141357421875,
|
1520 |
+
-0.012451171875,
|
1521 |
+
-0.004608154296875,
|
1522 |
+
0.004669189453125,
|
1523 |
+
-0.003265380859375,
|
1524 |
+
-0.00970458984375,
|
1525 |
+
-0.00860595703125,
|
1526 |
+
-0.0103759765625,
|
1527 |
+
0.003326416015625,
|
1528 |
+
0.0167236328125,
|
1529 |
+
0.0084228515625,
|
1530 |
+
0.000736236572265625,
|
1531 |
+
-0.0032806396484375,
|
1532 |
+
0.0125732421875,
|
1533 |
+
-0.004241943359375,
|
1534 |
+
0.0123291015625,
|
1535 |
+
-0.0057373046875,
|
1536 |
+
0.0081787109375,
|
1537 |
+
0.0029296875,
|
1538 |
+
-0.00872802734375,
|
1539 |
+
-0.00150299072265625,
|
1540 |
+
0.01275634765625,
|
1541 |
+
0.0016937255859375,
|
1542 |
+
-0.00616455078125,
|
1543 |
+
0.01275634765625,
|
1544 |
+
-0.0007171630859375,
|
1545 |
+
-0.0220947265625,
|
1546 |
+
-0.0042724609375,
|
1547 |
+
-0.000949859619140625,
|
1548 |
+
0.004486083984375,
|
1549 |
+
0.0029754638671875,
|
1550 |
+
-0.004638671875,
|
1551 |
+
0.0076904296875,
|
1552 |
+
0.00070953369140625,
|
1553 |
+
0.0029449462890625,
|
1554 |
+
0.002227783203125,
|
1555 |
+
-0.01544189453125,
|
1556 |
+
-0.01080322265625,
|
1557 |
+
-0.00057220458984375,
|
1558 |
+
0.00021648406982421875,
|
1559 |
+
0.019775390625,
|
1560 |
+
-0.006317138671875,
|
1561 |
+
-0.017333984375,
|
1562 |
+
-0.015869140625,
|
1563 |
+
-0.0032958984375,
|
1564 |
+
0.0120849609375,
|
1565 |
+
0.00518798828125,
|
1566 |
+
0.004669189453125,
|
1567 |
+
0.0164794921875,
|
1568 |
+
0.004119873046875,
|
1569 |
+
-0.0007476806640625,
|
1570 |
+
-0.0036773681640625,
|
1571 |
+
-0.001953125,
|
1572 |
+
-0.006805419921875,
|
1573 |
+
0.007537841796875,
|
1574 |
+
0.003265380859375,
|
1575 |
+
-0.017822265625,
|
1576 |
+
-0.00592041015625,
|
1577 |
+
-0.00131988525390625,
|
1578 |
+
0.00714111328125,
|
1579 |
+
0.0079345703125,
|
1580 |
+
-0.0015106201171875,
|
1581 |
+
0.004119873046875,
|
1582 |
+
0.0027008056640625,
|
1583 |
+
0.01531982421875,
|
1584 |
+
-0.00537109375,
|
1585 |
+
-0.00225830078125,
|
1586 |
+
-0.0001583099365234375,
|
1587 |
+
-0.005828857421875,
|
1588 |
+
0.01336669921875,
|
1589 |
+
-0.0069580078125,
|
1590 |
+
0.01312255859375,
|
1591 |
+
0.0262451171875,
|
1592 |
+
-0.0027923583984375,
|
1593 |
+
0.006103515625,
|
1594 |
+
-0.0166015625,
|
1595 |
+
0.0074462890625,
|
1596 |
+
0.01092529296875,
|
1597 |
+
0.005859375,
|
1598 |
+
-0.00921630859375,
|
1599 |
+
0.00640869140625,
|
1600 |
+
-0.01007080078125,
|
1601 |
+
0.002105712890625,
|
1602 |
+
0.006072998046875,
|
1603 |
+
-0.0093994140625,
|
1604 |
+
0.006011962890625,
|
1605 |
+
-0.004425048828125,
|
1606 |
+
-0.0164794921875,
|
1607 |
+
-0.00909423828125,
|
1608 |
+
-0.017333984375,
|
1609 |
+
0.00823974609375,
|
1610 |
+
-0.007293701171875,
|
1611 |
+
0.006744384765625,
|
1612 |
+
-0.005340576171875,
|
1613 |
+
-0.004241943359375,
|
1614 |
+
0.00799560546875,
|
1615 |
+
-0.0048828125,
|
1616 |
+
-0.01513671875,
|
1617 |
+
-0.011474609375,
|
1618 |
+
-0.00897216796875,
|
1619 |
+
0.017578125,
|
1620 |
+
-0.006683349609375,
|
1621 |
+
0.01025390625,
|
1622 |
+
-0.0059814453125,
|
1623 |
+
-8.153915405273438e-05,
|
1624 |
+
0.00750732421875,
|
1625 |
+
0.0020294189453125,
|
1626 |
+
-0.0033721923828125,
|
1627 |
+
0.00250244140625,
|
1628 |
+
0.005523681640625,
|
1629 |
+
-0.00150299072265625,
|
1630 |
+
-0.00994873046875,
|
1631 |
+
0.00110626220703125,
|
1632 |
+
0.0084228515625,
|
1633 |
+
-0.0098876953125,
|
1634 |
+
-0.0245361328125,
|
1635 |
+
-0.01495361328125,
|
1636 |
+
-0.0078125,
|
1637 |
+
-0.0137939453125,
|
1638 |
+
-0.00093841552734375,
|
1639 |
+
-0.00811767578125,
|
1640 |
+
-0.003631591796875,
|
1641 |
+
-0.010009765625,
|
1642 |
+
-0.01519775390625,
|
1643 |
+
0.00677490234375,
|
1644 |
+
0.0140380859375,
|
1645 |
+
-0.0064697265625,
|
1646 |
+
-0.002349853515625,
|
1647 |
+
0.003021240234375,
|
1648 |
+
-0.0032501220703125,
|
1649 |
+
-0.001434326171875,
|
1650 |
+
-0.0120849609375,
|
1651 |
+
0.00421142578125,
|
1652 |
+
-0.0130615234375,
|
1653 |
+
-0.001068115234375,
|
1654 |
+
-0.0126953125,
|
1655 |
+
0.0022125244140625,
|
1656 |
+
-0.000629425048828125,
|
1657 |
+
-0.00140380859375,
|
1658 |
+
0.004669189453125,
|
1659 |
+
0.0062255859375,
|
1660 |
+
0.005584716796875,
|
1661 |
+
0.0018463134765625,
|
1662 |
+
0.01116943359375,
|
1663 |
+
-0.0062255859375,
|
1664 |
+
0.0009918212890625,
|
1665 |
+
0.00122833251953125,
|
1666 |
+
0.01141357421875,
|
1667 |
+
-0.009521484375,
|
1668 |
+
0.017578125,
|
1669 |
+
0.006561279296875,
|
1670 |
+
0.003875732421875,
|
1671 |
+
-0.0107421875,
|
1672 |
+
-0.00994873046875,
|
1673 |
+
-0.0069580078125,
|
1674 |
+
0.01470947265625,
|
1675 |
+
-0.00421142578125,
|
1676 |
+
0.006103515625,
|
1677 |
+
0.000392913818359375,
|
1678 |
+
0.004119873046875,
|
1679 |
+
0.0052490234375,
|
1680 |
+
-0.00060272216796875,
|
1681 |
+
-0.01080322265625,
|
1682 |
+
-0.01068115234375,
|
1683 |
+
-0.000774383544921875,
|
1684 |
+
-0.0172119140625,
|
1685 |
+
-0.000835418701171875,
|
1686 |
+
-0.0096435546875,
|
1687 |
+
0.0022735595703125,
|
1688 |
+
-0.001434326171875,
|
1689 |
+
0.003692626953125,
|
1690 |
+
-0.00119781494140625,
|
1691 |
+
0.0026092529296875,
|
1692 |
+
0.02490234375,
|
1693 |
+
0.015380859375,
|
1694 |
+
-0.0201416015625,
|
1695 |
+
0.0238037109375,
|
1696 |
+
-0.0103759765625,
|
1697 |
+
-0.009033203125,
|
1698 |
+
-0.01348876953125,
|
1699 |
+
0.00125885009765625,
|
1700 |
+
0.016845703125,
|
1701 |
+
-0.0028533935546875,
|
1702 |
+
-0.005126953125,
|
1703 |
+
-0.0130615234375,
|
1704 |
+
-0.00970458984375,
|
1705 |
+
0.00933837890625,
|
1706 |
+
0.01611328125,
|
1707 |
+
-0.0076904296875,
|
1708 |
+
-0.002197265625,
|
1709 |
+
0.006988525390625,
|
1710 |
+
-0.0223388671875,
|
1711 |
+
0.00445556640625,
|
1712 |
+
-0.00433349609375,
|
1713 |
+
0.0084228515625,
|
1714 |
+
-0.00762939453125,
|
1715 |
+
-0.0064697265625,
|
1716 |
+
0.0150146484375,
|
1717 |
+
0.0150146484375,
|
1718 |
+
-0.017333984375,
|
1719 |
+
0.017822265625,
|
1720 |
+
0.00177764892578125,
|
1721 |
+
0.00921630859375,
|
1722 |
+
-0.00927734375,
|
1723 |
+
0.0028533935546875,
|
1724 |
+
-2.2411346435546875e-05,
|
1725 |
+
-0.00130462646484375,
|
1726 |
+
-0.00433349609375,
|
1727 |
+
-0.0013580322265625,
|
1728 |
+
0.01202392578125,
|
1729 |
+
-0.0029754638671875,
|
1730 |
+
-0.000385284423828125,
|
1731 |
+
-0.004608154296875,
|
1732 |
+
-0.0037841796875,
|
1733 |
+
0.002166748046875,
|
1734 |
+
0.01068115234375,
|
1735 |
+
-0.00506591796875,
|
1736 |
+
0.001617431640625,
|
1737 |
+
-0.0107421875,
|
1738 |
+
-7.724761962890625e-05,
|
1739 |
+
-0.005523681640625,
|
1740 |
+
0.012451171875,
|
1741 |
+
-0.00341796875,
|
1742 |
+
0.00286865234375,
|
1743 |
+
0.0244140625,
|
1744 |
+
0.0032196044921875,
|
1745 |
+
0.0048828125,
|
1746 |
+
0.0177001953125,
|
1747 |
+
-0.006072998046875,
|
1748 |
+
0.0087890625,
|
1749 |
+
0.00017833709716796875,
|
1750 |
+
-0.00799560546875,
|
1751 |
+
-0.0250244140625,
|
1752 |
+
0.003326416015625,
|
1753 |
+
0.0017242431640625,
|
1754 |
+
0.004791259765625,
|
1755 |
+
-0.0159912109375,
|
1756 |
+
-0.00177764892578125,
|
1757 |
+
0.019775390625,
|
1758 |
+
-0.0086669921875,
|
1759 |
+
0.01422119140625,
|
1760 |
+
-0.005950927734375,
|
1761 |
+
0.005035400390625,
|
1762 |
+
-0.011474609375,
|
1763 |
+
0.00238037109375,
|
1764 |
+
-0.004547119140625,
|
1765 |
+
0.01177978515625,
|
1766 |
+
0.0115966796875,
|
1767 |
+
0.0030517578125,
|
1768 |
+
-8.7738037109375e-05,
|
1769 |
+
-0.00335693359375,
|
1770 |
+
0.00592041015625,
|
1771 |
+
0.009033203125,
|
1772 |
+
0.00139617919921875,
|
1773 |
+
-0.0185546875,
|
1774 |
+
-0.004547119140625,
|
1775 |
+
0.00543212890625,
|
1776 |
+
0.02001953125,
|
1777 |
+
-0.01019287109375,
|
1778 |
+
-0.01275634765625,
|
1779 |
+
0.005950927734375,
|
1780 |
+
0.00921630859375,
|
1781 |
+
0.00131988525390625,
|
1782 |
+
2.2530555725097656e-05,
|
1783 |
+
-0.00604248046875,
|
1784 |
+
0.00885009765625,
|
1785 |
+
-0.000335693359375,
|
1786 |
+
-0.00848388671875,
|
1787 |
+
-0.0072021484375,
|
1788 |
+
0.0037841796875,
|
1789 |
+
0.00177764892578125,
|
1790 |
+
-0.0113525390625,
|
1791 |
+
-0.00909423828125,
|
1792 |
+
0.004669189453125,
|
1793 |
+
-0.01153564453125,
|
1794 |
+
0.00390625,
|
1795 |
+
0.01116943359375,
|
1796 |
+
-0.002288818359375,
|
1797 |
+
-0.005615234375,
|
1798 |
+
-0.00051116943359375,
|
1799 |
+
0.0029144287109375,
|
1800 |
+
0.0159912109375,
|
1801 |
+
-0.017578125,
|
1802 |
+
-0.01416015625,
|
1803 |
+
0.0017547607421875,
|
1804 |
+
0.00933837890625,
|
1805 |
+
0.000835418701171875,
|
1806 |
+
0.0064697265625,
|
1807 |
+
-0.01080322265625,
|
1808 |
+
0.0172119140625,
|
1809 |
+
-0.007659912109375,
|
1810 |
+
0.00159454345703125,
|
1811 |
+
0.006500244140625,
|
1812 |
+
-0.00750732421875,
|
1813 |
+
0.002532958984375,
|
1814 |
+
-0.00909423828125,
|
1815 |
+
0.006744384765625,
|
1816 |
+
-0.0133056640625,
|
1817 |
+
0.002288818359375,
|
1818 |
+
-0.00101470947265625,
|
1819 |
+
0.003753662109375,
|
1820 |
+
-0.0128173828125,
|
1821 |
+
0.0081787109375,
|
1822 |
+
0.000247955322265625,
|
1823 |
+
-0.004302978515625,
|
1824 |
+
0.01300048828125,
|
1825 |
+
-0.0019989013671875,
|
1826 |
+
0.01031494140625,
|
1827 |
+
0.0015869140625,
|
1828 |
+
0.0135498046875,
|
1829 |
+
-0.00323486328125,
|
1830 |
+
-0.00021648406982421875,
|
1831 |
+
0.00927734375,
|
1832 |
+
-0.01226806640625,
|
1833 |
+
-0.00946044921875,
|
1834 |
+
0.011474609375,
|
1835 |
+
-0.01031494140625,
|
1836 |
+
-0.006927490234375,
|
1837 |
+
-0.0118408203125,
|
1838 |
+
0.004913330078125,
|
1839 |
+
0.01446533203125,
|
1840 |
+
0.0174560546875,
|
1841 |
+
-0.00153350830078125,
|
1842 |
+
0.005126953125,
|
1843 |
+
0.00113677978515625,
|
1844 |
+
-0.000141143798828125,
|
1845 |
+
0.01373291015625,
|
1846 |
+
0.00738525390625,
|
1847 |
+
-0.007415771484375,
|
1848 |
+
-0.005615234375,
|
1849 |
+
-0.00927734375,
|
1850 |
+
0.012939453125,
|
1851 |
+
0.00173187255859375,
|
1852 |
+
-0.00043487548828125,
|
1853 |
+
-0.012451171875,
|
1854 |
+
0.0101318359375,
|
1855 |
+
-0.00150299072265625,
|
1856 |
+
-0.006591796875,
|
1857 |
+
0.0107421875,
|
1858 |
+
0.025634765625,
|
1859 |
+
0.0003414154052734375,
|
1860 |
+
-0.00017070770263671875,
|
1861 |
+
-0.01171875,
|
1862 |
+
0.01806640625,
|
1863 |
+
0.006256103515625,
|
1864 |
+
0.00982666015625,
|
1865 |
+
-0.0030670166015625,
|
1866 |
+
-0.0091552734375,
|
1867 |
+
-0.0179443359375,
|
1868 |
+
0.0020751953125,
|
1869 |
+
0.006744384765625,
|
1870 |
+
-0.00445556640625,
|
1871 |
+
-0.00335693359375,
|
1872 |
+
-0.00543212890625,
|
1873 |
+
-0.015869140625,
|
1874 |
+
-0.005523681640625,
|
1875 |
+
0.0118408203125,
|
1876 |
+
0.0011138916015625,
|
1877 |
+
-0.00543212890625,
|
1878 |
+
-0.00013637542724609375,
|
1879 |
+
-0.001617431640625,
|
1880 |
+
0.001617431640625,
|
1881 |
+
0.004150390625,
|
1882 |
+
0.00074005126953125,
|
1883 |
+
-0.019287109375,
|
1884 |
+
-0.0078125,
|
1885 |
+
-0.016357421875,
|
1886 |
+
-0.0146484375,
|
1887 |
+
-0.003143310546875,
|
1888 |
+
0.0025787353515625,
|
1889 |
+
-0.019287109375,
|
1890 |
+
-0.005218505859375,
|
1891 |
+
-0.00830078125,
|
1892 |
+
0.01080322265625,
|
1893 |
+
-0.004180908203125,
|
1894 |
+
-0.009765625,
|
1895 |
+
-0.006927490234375,
|
1896 |
+
-0.00823974609375,
|
1897 |
+
-0.005035400390625,
|
1898 |
+
-0.0185546875,
|
1899 |
+
-0.019775390625,
|
1900 |
+
0.00011396408081054688,
|
1901 |
+
-0.0020751953125,
|
1902 |
+
-0.00927734375,
|
1903 |
+
-0.006622314453125,
|
1904 |
+
0.0037078857421875,
|
1905 |
+
-0.0027923583984375,
|
1906 |
+
0.0017242431640625,
|
1907 |
+
0.001983642578125,
|
1908 |
+
-0.007080078125,
|
1909 |
+
-0.00640869140625,
|
1910 |
+
-0.007659912109375,
|
1911 |
+
0.0072021484375,
|
1912 |
+
0.002044677734375,
|
1913 |
+
-0.01214599609375,
|
1914 |
+
0.00171661376953125,
|
1915 |
+
-0.0003204345703125,
|
1916 |
+
-0.0002765655517578125,
|
1917 |
+
0.00921630859375,
|
1918 |
+
0.00738525390625,
|
1919 |
+
0.00958251953125,
|
1920 |
+
-0.000583648681640625,
|
1921 |
+
-0.0169677734375,
|
1922 |
+
0.000453948974609375,
|
1923 |
+
0.006317138671875,
|
1924 |
+
-0.0137939453125,
|
1925 |
+
-0.018798828125,
|
1926 |
+
0.0196533203125,
|
1927 |
+
0.01434326171875,
|
1928 |
+
0.0030059814453125,
|
1929 |
+
0.006195068359375,
|
1930 |
+
0.01025390625,
|
1931 |
+
0.015625,
|
1932 |
+
-0.00897216796875,
|
1933 |
+
0.004638671875,
|
1934 |
+
-0.03466796875,
|
1935 |
+
-0.0008697509765625,
|
1936 |
+
-0.000835418701171875,
|
1937 |
+
0.0024261474609375,
|
1938 |
+
-0.012939453125,
|
1939 |
+
0.00848388671875,
|
1940 |
+
-0.000820159912109375,
|
1941 |
+
-0.00927734375,
|
1942 |
+
-0.015625,
|
1943 |
+
0.00567626953125,
|
1944 |
+
-0.0016632080078125,
|
1945 |
+
-0.0019989013671875,
|
1946 |
+
-0.0028533935546875,
|
1947 |
+
-0.002777099609375,
|
1948 |
+
0.0025482177734375,
|
1949 |
+
0.01055908203125,
|
1950 |
+
0.00714111328125,
|
1951 |
+
-0.01055908203125,
|
1952 |
+
0.00162506103515625,
|
1953 |
+
0.0098876953125,
|
1954 |
+
-0.00421142578125,
|
1955 |
+
0.0024261474609375,
|
1956 |
+
0.01373291015625,
|
1957 |
+
0.01611328125,
|
1958 |
+
-0.0106201171875,
|
1959 |
+
-0.0004405975341796875,
|
1960 |
+
-0.0045166015625,
|
1961 |
+
-0.0038909912109375,
|
1962 |
+
0.00145721435546875,
|
1963 |
+
0.01123046875,
|
1964 |
+
0.0022430419921875,
|
1965 |
+
-0.0078125,
|
1966 |
+
0.01177978515625,
|
1967 |
+
-0.00142669677734375,
|
1968 |
+
-0.000701904296875,
|
1969 |
+
-0.0009613037109375,
|
1970 |
+
0.01556396484375,
|
1971 |
+
0.01019287109375,
|
1972 |
+
-0.0155029296875,
|
1973 |
+
-0.00537109375,
|
1974 |
+
0.01483154296875,
|
1975 |
+
-0.01043701171875,
|
1976 |
+
0.01165771484375,
|
1977 |
+
-0.00799560546875,
|
1978 |
+
-0.00390625,
|
1979 |
+
-0.00174713134765625,
|
1980 |
+
0.009033203125,
|
1981 |
+
0.00372314453125,
|
1982 |
+
-0.004852294921875,
|
1983 |
+
-0.003082275390625,
|
1984 |
+
0.012939453125,
|
1985 |
+
-0.01055908203125,
|
1986 |
+
-0.0052490234375,
|
1987 |
+
0.0022125244140625,
|
1988 |
+
0.001556396484375,
|
1989 |
+
-0.010498046875,
|
1990 |
+
0.0020599365234375,
|
1991 |
+
0.01611328125,
|
1992 |
+
-0.00994873046875,
|
1993 |
+
-0.0189208984375,
|
1994 |
+
-0.007537841796875,
|
1995 |
+
-0.00150299072265625,
|
1996 |
+
1.0192394256591797e-05,
|
1997 |
+
-0.007598876953125,
|
1998 |
+
0.0047607421875,
|
1999 |
+
-0.0096435546875,
|
2000 |
+
-0.0166015625,
|
2001 |
+
0.0126953125,
|
2002 |
+
-0.004547119140625,
|
2003 |
+
-0.005828857421875,
|
2004 |
+
0.0007781982421875,
|
2005 |
+
-0.0074462890625,
|
2006 |
+
0.000701904296875,
|
2007 |
+
0.0018768310546875,
|
2008 |
+
0.00396728515625,
|
2009 |
+
0.0107421875,
|
2010 |
+
-0.0062255859375,
|
2011 |
+
0.0211181640625,
|
2012 |
+
-0.0194091796875,
|
2013 |
+
0.004058837890625,
|
2014 |
+
-0.005096435546875,
|
2015 |
+
0.0036773681640625,
|
2016 |
+
0.00726318359375,
|
2017 |
+
-0.003662109375,
|
2018 |
+
0.00885009765625,
|
2019 |
+
-0.008056640625,
|
2020 |
+
0.01446533203125,
|
2021 |
+
-0.010009765625,
|
2022 |
+
0.002288818359375,
|
2023 |
+
0.000629425048828125,
|
2024 |
+
0.003814697265625,
|
2025 |
+
7.581710815429688e-05,
|
2026 |
+
0.001739501953125,
|
2027 |
+
-0.0068359375,
|
2028 |
+
0.00640869140625,
|
2029 |
+
0.002655029296875,
|
2030 |
+
0.0115966796875,
|
2031 |
+
-0.0062255859375,
|
2032 |
+
-0.0032806396484375,
|
2033 |
+
0.01116943359375,
|
2034 |
+
0.000690460205078125,
|
2035 |
+
-0.0062255859375,
|
2036 |
+
-0.01043701171875,
|
2037 |
+
0.0003662109375,
|
2038 |
+
0.01519775390625,
|
2039 |
+
-0.00384521484375,
|
2040 |
+
0.002227783203125,
|
2041 |
+
-0.0027618408203125,
|
2042 |
+
-0.01171875,
|
2043 |
+
0.00286865234375,
|
2044 |
+
-0.001495361328125,
|
2045 |
+
0.00177764892578125,
|
2046 |
+
-0.009033203125,
|
2047 |
+
-0.006744384765625,
|
2048 |
+
-0.0184326171875,
|
2049 |
+
0.0023193359375,
|
2050 |
+
-0.01190185546875,
|
2051 |
+
0.006103515625,
|
2052 |
+
0.005218505859375,
|
2053 |
+
5.3882598876953125e-05,
|
2054 |
+
0.0013427734375,
|
2055 |
+
0.00360107421875,
|
2056 |
+
-0.0031585693359375,
|
2057 |
+
0.0068359375,
|
2058 |
+
0.00156402587890625,
|
2059 |
+
0.0050048828125,
|
2060 |
+
0.02001953125,
|
2061 |
+
-0.00323486328125,
|
2062 |
+
-0.01165771484375,
|
2063 |
+
-0.01275634765625,
|
2064 |
+
0.0002269744873046875,
|
2065 |
+
0.00104522705078125,
|
2066 |
+
-0.0004177093505859375,
|
2067 |
+
-0.006500244140625,
|
2068 |
+
0.0008087158203125,
|
2069 |
+
-0.01123046875,
|
2070 |
+
0.00823974609375,
|
2071 |
+
0.00738525390625,
|
2072 |
+
-0.0019683837890625,
|
2073 |
+
-0.005340576171875,
|
2074 |
+
-0.01214599609375,
|
2075 |
+
-0.0027008056640625,
|
2076 |
+
0.0040283203125,
|
2077 |
+
0.01220703125,
|
2078 |
+
-0.006988525390625,
|
2079 |
+
-0.00579833984375,
|
2080 |
+
0.00372314453125,
|
2081 |
+
-0.002197265625,
|
2082 |
+
-0.007720947265625,
|
2083 |
+
-0.005157470703125,
|
2084 |
+
-0.003448486328125,
|
2085 |
+
-0.011962890625,
|
2086 |
+
0.0125732421875,
|
2087 |
+
-0.00125885009765625,
|
2088 |
+
0.0010223388671875,
|
2089 |
+
0.0012054443359375,
|
2090 |
+
-0.0150146484375,
|
2091 |
+
-0.00127410888671875,
|
2092 |
+
0.01007080078125,
|
2093 |
+
0.00445556640625,
|
2094 |
+
-0.001190185546875,
|
2095 |
+
0.006866455078125,
|
2096 |
+
0.0164794921875,
|
2097 |
+
-0.018310546875,
|
2098 |
+
-0.00408935546875,
|
2099 |
+
-0.0001392364501953125,
|
2100 |
+
0.00543212890625,
|
2101 |
+
0.0020294189453125,
|
2102 |
+
0.0003986358642578125,
|
2103 |
+
0.010498046875,
|
2104 |
+
-0.0189208984375,
|
2105 |
+
-0.01263427734375,
|
2106 |
+
-0.000972747802734375,
|
2107 |
+
-0.00787353515625,
|
2108 |
+
0.00811767578125,
|
2109 |
+
-0.01263427734375,
|
2110 |
+
-0.006500244140625,
|
2111 |
+
-0.00689697265625,
|
2112 |
+
0.01263427734375,
|
2113 |
+
-0.0024566650390625,
|
2114 |
+
0.0198974609375,
|
2115 |
+
-0.006805419921875,
|
2116 |
+
0.00958251953125,
|
2117 |
+
-0.0107421875,
|
2118 |
+
-0.0031585693359375,
|
2119 |
+
0.021484375,
|
2120 |
+
-0.0118408203125,
|
2121 |
+
-0.001708984375,
|
2122 |
+
0.00982666015625,
|
2123 |
+
-0.0022430419921875,
|
2124 |
+
-0.01025390625,
|
2125 |
+
-0.00762939453125,
|
2126 |
+
-0.0162353515625,
|
2127 |
+
-0.00057220458984375,
|
2128 |
+
0.00286865234375,
|
2129 |
+
-0.0020904541015625,
|
2130 |
+
-0.000255584716796875,
|
2131 |
+
0.01104736328125,
|
2132 |
+
-0.006683349609375,
|
2133 |
+
0.0020751953125,
|
2134 |
+
0.000362396240234375,
|
2135 |
+
-0.0052490234375,
|
2136 |
+
0.0011444091796875,
|
2137 |
+
-0.021484375,
|
2138 |
+
-0.00026702880859375,
|
2139 |
+
0.010009765625,
|
2140 |
+
-0.0057373046875,
|
2141 |
+
0.0140380859375,
|
2142 |
+
-0.00946044921875,
|
2143 |
+
0.0072021484375,
|
2144 |
+
0.0028076171875,
|
2145 |
+
-0.0159912109375,
|
2146 |
+
-0.00335693359375,
|
2147 |
+
0.0177001953125,
|
2148 |
+
0.0027923583984375,
|
2149 |
+
0.005706787109375,
|
2150 |
+
0.005584716796875,
|
2151 |
+
0.0084228515625,
|
2152 |
+
-0.001434326171875,
|
2153 |
+
-0.00958251953125,
|
2154 |
+
-0.00848388671875,
|
2155 |
+
-0.0093994140625,
|
2156 |
+
-0.0093994140625,
|
2157 |
+
0.01214599609375,
|
2158 |
+
-0.01312255859375,
|
2159 |
+
-0.01287841796875,
|
2160 |
+
-0.004638671875,
|
2161 |
+
-0.002410888671875,
|
2162 |
+
0.005828857421875,
|
2163 |
+
-0.004669189453125,
|
2164 |
+
-0.006927490234375,
|
2165 |
+
0.002716064453125,
|
2166 |
+
-0.0089111328125,
|
2167 |
+
0.004730224609375,
|
2168 |
+
0.0157470703125,
|
2169 |
+
-0.00173187255859375,
|
2170 |
+
0.00823974609375,
|
2171 |
+
-0.00106048583984375,
|
2172 |
+
-0.01953125,
|
2173 |
+
0.0009918212890625,
|
2174 |
+
0.0026397705078125,
|
2175 |
+
0.01397705078125,
|
2176 |
+
0.003265380859375,
|
2177 |
+
0.001556396484375,
|
2178 |
+
-0.00116729736328125,
|
2179 |
+
-0.001617431640625,
|
2180 |
+
0.009033203125,
|
2181 |
+
-0.00823974609375,
|
2182 |
+
0.00732421875,
|
2183 |
+
-0.002197265625,
|
2184 |
+
-0.01495361328125,
|
2185 |
+
-0.019775390625,
|
2186 |
+
0.004058837890625,
|
2187 |
+
0.01513671875,
|
2188 |
+
0.008056640625,
|
2189 |
+
-0.0111083984375,
|
2190 |
+
0.0068359375,
|
2191 |
+
0.004669189453125,
|
2192 |
+
0.01409912109375,
|
2193 |
+
0.0001277923583984375,
|
2194 |
+
-0.0036773681640625,
|
2195 |
+
-0.00555419921875,
|
2196 |
+
0.00408935546875,
|
2197 |
+
-0.01531982421875,
|
2198 |
+
0.00081634521484375,
|
2199 |
+
0.007080078125,
|
2200 |
+
-0.01080322265625,
|
2201 |
+
0.00665283203125,
|
2202 |
+
-0.005584716796875,
|
2203 |
+
-0.00457763671875,
|
2204 |
+
-0.0125732421875,
|
2205 |
+
0.01141357421875,
|
2206 |
+
-0.0108642578125,
|
2207 |
+
0.0277099609375,
|
2208 |
+
-0.016845703125,
|
2209 |
+
-0.01385498046875,
|
2210 |
+
-0.0107421875,
|
2211 |
+
-0.0123291015625,
|
2212 |
+
-0.01483154296875,
|
2213 |
+
-0.0005035400390625,
|
2214 |
+
-0.00677490234375,
|
2215 |
+
-0.006805419921875,
|
2216 |
+
0.0301513671875,
|
2217 |
+
0.00982666015625,
|
2218 |
+
-0.00194549560546875,
|
2219 |
+
0.01519775390625,
|
2220 |
+
0.0028076171875,
|
2221 |
+
-0.01531982421875,
|
2222 |
+
-0.0076904296875,
|
2223 |
+
0.0048828125,
|
2224 |
+
0.00726318359375,
|
2225 |
+
-0.004119873046875,
|
2226 |
+
-0.008056640625,
|
2227 |
+
0.0037689208984375,
|
2228 |
+
0.01556396484375,
|
2229 |
+
-0.022216796875,
|
2230 |
+
-0.0079345703125,
|
2231 |
+
0.01446533203125,
|
2232 |
+
0.00933837890625,
|
2233 |
+
0.01129150390625,
|
2234 |
+
-0.021240234375,
|
2235 |
+
0.0038604736328125,
|
2236 |
+
-0.00396728515625,
|
2237 |
+
-0.001678466796875,
|
2238 |
+
0.005706787109375,
|
2239 |
+
-0.006683349609375,
|
2240 |
+
-0.0009002685546875,
|
2241 |
+
-0.00075531005859375,
|
2242 |
+
-0.00020122528076171875,
|
2243 |
+
-0.00127410888671875,
|
2244 |
+
-0.016845703125,
|
2245 |
+
0.0011138916015625,
|
2246 |
+
0.0145263671875,
|
2247 |
+
-0.002593994140625,
|
2248 |
+
0.00262451171875,
|
2249 |
+
0.0034027099609375,
|
2250 |
+
-0.0010528564453125,
|
2251 |
+
-0.0040283203125,
|
2252 |
+
0.0008392333984375,
|
2253 |
+
-0.00054168701171875,
|
2254 |
+
0.005950927734375,
|
2255 |
+
0.0155029296875,
|
2256 |
+
0.0050048828125,
|
2257 |
+
0.000873565673828125,
|
2258 |
+
0.007476806640625,
|
2259 |
+
-0.0206298828125,
|
2260 |
+
0.00135040283203125,
|
2261 |
+
0.000751495361328125,
|
2262 |
+
0.0057373046875,
|
2263 |
+
0.0016021728515625,
|
2264 |
+
0.0098876953125,
|
2265 |
+
0.0093994140625,
|
2266 |
+
0.00408935546875,
|
2267 |
+
-0.0174560546875,
|
2268 |
+
-0.01495361328125,
|
2269 |
+
0.00244140625,
|
2270 |
+
0.00836181640625,
|
2271 |
+
-0.00213623046875,
|
2272 |
+
0.0004024505615234375,
|
2273 |
+
0.00640869140625,
|
2274 |
+
-0.001953125,
|
2275 |
+
0.0089111328125,
|
2276 |
+
-0.005584716796875,
|
2277 |
+
0.006591796875,
|
2278 |
+
0.004730224609375,
|
2279 |
+
0.0010223388671875,
|
2280 |
+
0.0125732421875,
|
2281 |
+
0.007476806640625,
|
2282 |
+
-0.00058746337890625,
|
2283 |
+
0.004974365234375,
|
2284 |
+
0.01531982421875,
|
2285 |
+
0.003936767578125,
|
2286 |
+
-0.005706787109375,
|
2287 |
+
0.005157470703125,
|
2288 |
+
-0.00156402587890625,
|
2289 |
+
0.001983642578125,
|
2290 |
+
0.0115966796875,
|
2291 |
+
-0.0272216796875,
|
2292 |
+
-0.01953125,
|
2293 |
+
-0.00025177001953125,
|
2294 |
+
-0.003173828125,
|
2295 |
+
-0.003173828125,
|
2296 |
+
0.00897216796875,
|
2297 |
+
-0.01202392578125,
|
2298 |
+
-0.002471923828125,
|
2299 |
+
0.01556396484375,
|
2300 |
+
0.001190185546875,
|
2301 |
+
-0.0218505859375,
|
2302 |
+
-2.9802322387695312e-05,
|
2303 |
+
-0.015869140625,
|
2304 |
+
0.0118408203125,
|
2305 |
+
-0.004974365234375,
|
2306 |
+
-0.00347900390625,
|
2307 |
+
-0.003997802734375,
|
2308 |
+
-0.0029296875,
|
2309 |
+
-0.00390625,
|
2310 |
+
0.0150146484375,
|
2311 |
+
0.00457763671875,
|
2312 |
+
-0.00020313262939453125,
|
2313 |
+
-0.005157470703125,
|
2314 |
+
-0.010009765625,
|
2315 |
+
-0.0022735595703125,
|
2316 |
+
0.006561279296875,
|
2317 |
+
-0.0103759765625,
|
2318 |
+
-0.01239013671875,
|
2319 |
+
0.0045166015625,
|
2320 |
+
-0.0030670166015625,
|
2321 |
+
-0.00933837890625,
|
2322 |
+
-0.00616455078125,
|
2323 |
+
-0.00250244140625,
|
2324 |
+
0.01031494140625,
|
2325 |
+
0.00193023681640625,
|
2326 |
+
-0.0035247802734375,
|
2327 |
+
0.001251220703125,
|
2328 |
+
0.0022735595703125,
|
2329 |
+
-0.006378173828125,
|
2330 |
+
-0.00787353515625,
|
2331 |
+
-0.0263671875,
|
2332 |
+
-0.007537841796875,
|
2333 |
+
-0.001953125,
|
2334 |
+
0.01177978515625,
|
2335 |
+
-0.0037078857421875,
|
2336 |
+
-0.01556396484375,
|
2337 |
+
-0.00897216796875,
|
2338 |
+
-0.0032958984375,
|
2339 |
+
0.00860595703125,
|
2340 |
+
-0.002288818359375,
|
2341 |
+
-0.002105712890625,
|
2342 |
+
-0.0042724609375,
|
2343 |
+
-0.0205078125,
|
2344 |
+
0.0069580078125,
|
2345 |
+
-0.0028076171875,
|
2346 |
+
0.004302978515625,
|
2347 |
+
-0.0146484375,
|
2348 |
+
0.00665283203125,
|
2349 |
+
-0.0004367828369140625,
|
2350 |
+
-0.01275634765625,
|
2351 |
+
-0.001068115234375,
|
2352 |
+
-0.007720947265625,
|
2353 |
+
0.01544189453125,
|
2354 |
+
0.0218505859375,
|
2355 |
+
-0.01953125,
|
2356 |
+
-0.00897216796875,
|
2357 |
+
-0.0186767578125,
|
2358 |
+
0.0081787109375,
|
2359 |
+
-0.001495361328125,
|
2360 |
+
0.007110595703125,
|
2361 |
+
0.01202392578125,
|
2362 |
+
-0.0118408203125,
|
2363 |
+
-0.007568359375,
|
2364 |
+
-0.007080078125,
|
2365 |
+
-0.00848388671875,
|
2366 |
+
-0.004669189453125,
|
2367 |
+
0.00469970703125,
|
2368 |
+
-0.0008392333984375,
|
2369 |
+
0.0022125244140625,
|
2370 |
+
0.0032958984375,
|
2371 |
+
-0.01025390625,
|
2372 |
+
0.006072998046875,
|
2373 |
+
0.0030975341796875,
|
2374 |
+
0.002349853515625,
|
2375 |
+
0.00762939453125,
|
2376 |
+
0.0079345703125,
|
2377 |
+
-0.0013427734375,
|
2378 |
+
-0.00238037109375,
|
2379 |
+
-0.003814697265625,
|
2380 |
+
-0.001983642578125,
|
2381 |
+
0.0025177001953125,
|
2382 |
+
-0.01513671875,
|
2383 |
+
0.005645751953125,
|
2384 |
+
-0.00013065338134765625,
|
2385 |
+
-0.0113525390625,
|
2386 |
+
-0.0038299560546875,
|
2387 |
+
-0.00927734375,
|
2388 |
+
-0.0125732421875,
|
2389 |
+
-0.004669189453125,
|
2390 |
+
-0.0033416748046875,
|
2391 |
+
-0.0035552978515625,
|
2392 |
+
0.0093994140625,
|
2393 |
+
0.00189971923828125,
|
2394 |
+
-9.250640869140625e-05,
|
2395 |
+
0.000164031982421875,
|
2396 |
+
0.000568389892578125,
|
2397 |
+
0.00537109375,
|
2398 |
+
-0.005523681640625,
|
2399 |
+
0.002899169921875,
|
2400 |
+
-0.0098876953125,
|
2401 |
+
-0.0137939453125,
|
2402 |
+
-0.0030059814453125,
|
2403 |
+
-0.00701904296875,
|
2404 |
+
-0.0084228515625,
|
2405 |
+
-0.000823974609375,
|
2406 |
+
0.00799560546875,
|
2407 |
+
-0.005706787109375,
|
2408 |
+
0.00823974609375,
|
2409 |
+
-0.00946044921875,
|
2410 |
+
-0.0030517578125,
|
2411 |
+
-0.0169677734375,
|
2412 |
+
0.006378173828125,
|
2413 |
+
0.0024566650390625,
|
2414 |
+
0.00775146484375,
|
2415 |
+
0.00101470947265625,
|
2416 |
+
-0.00848388671875,
|
2417 |
+
-0.003265380859375,
|
2418 |
+
-0.004608154296875,
|
2419 |
+
-0.004364013671875,
|
2420 |
+
0.001312255859375,
|
2421 |
+
0.0111083984375,
|
2422 |
+
0.001312255859375,
|
2423 |
+
-0.0078125,
|
2424 |
+
0.0003509521484375,
|
2425 |
+
-0.00131988525390625,
|
2426 |
+
-0.0024261474609375,
|
2427 |
+
0.0047607421875,
|
2428 |
+
-0.01129150390625,
|
2429 |
+
0.005645751953125,
|
2430 |
+
-0.0103759765625,
|
2431 |
+
0.007232666015625,
|
2432 |
+
0.000408172607421875,
|
2433 |
+
0.006011962890625,
|
2434 |
+
0.004547119140625,
|
2435 |
+
0.00136566162109375,
|
2436 |
+
-0.01361083984375,
|
2437 |
+
-0.01055908203125,
|
2438 |
+
-0.000904083251953125,
|
2439 |
+
0.003509521484375,
|
2440 |
+
0.0037689208984375,
|
2441 |
+
-0.024658203125,
|
2442 |
+
0.00909423828125,
|
2443 |
+
0.0034942626953125,
|
2444 |
+
0.0113525390625,
|
2445 |
+
0.005859375,
|
2446 |
+
-0.0027313232421875,
|
2447 |
+
0.0010528564453125,
|
2448 |
+
0.0164794921875,
|
2449 |
+
-0.01226806640625,
|
2450 |
+
-0.013427734375,
|
2451 |
+
0.00023746490478515625,
|
2452 |
+
0.01409912109375,
|
2453 |
+
0.01123046875,
|
2454 |
+
-0.00872802734375,
|
2455 |
+
-0.0010528564453125,
|
2456 |
+
0.006011962890625,
|
2457 |
+
-0.004608154296875,
|
2458 |
+
0.00738525390625,
|
2459 |
+
-0.00341796875,
|
2460 |
+
-0.00482177734375,
|
2461 |
+
0.0024261474609375,
|
2462 |
+
0.0089111328125,
|
2463 |
+
0.0048828125,
|
2464 |
+
0.007110595703125,
|
2465 |
+
0.002899169921875,
|
2466 |
+
-0.004302978515625,
|
2467 |
+
0.004486083984375,
|
2468 |
+
0.00714111328125,
|
2469 |
+
0.0035858154296875,
|
2470 |
+
-0.01092529296875,
|
2471 |
+
0.0045166015625,
|
2472 |
+
0.00148773193359375,
|
2473 |
+
0.00118255615234375,
|
2474 |
+
0.00439453125,
|
2475 |
+
-0.0135498046875,
|
2476 |
+
0.005523681640625,
|
2477 |
+
-0.01055908203125,
|
2478 |
+
-0.004364013671875,
|
2479 |
+
-0.00567626953125,
|
2480 |
+
-0.0050048828125,
|
2481 |
+
-0.006011962890625,
|
2482 |
+
-0.00848388671875,
|
2483 |
+
-0.000545501708984375,
|
2484 |
+
-0.01153564453125,
|
2485 |
+
0.00579833984375,
|
2486 |
+
0.0064697265625,
|
2487 |
+
-0.004180908203125,
|
2488 |
+
-0.00311279296875,
|
2489 |
+
-0.000888824462890625,
|
2490 |
+
0.0025177001953125,
|
2491 |
+
0.0012054443359375,
|
2492 |
+
0.0087890625,
|
2493 |
+
-0.005401611328125,
|
2494 |
+
0.0032806396484375,
|
2495 |
+
-0.01190185546875,
|
2496 |
+
-0.009033203125,
|
2497 |
+
-0.0111083984375,
|
2498 |
+
-0.000640869140625,
|
2499 |
+
-0.009765625,
|
2500 |
+
-0.0167236328125,
|
2501 |
+
-0.0023956298828125,
|
2502 |
+
0.00023937225341796875,
|
2503 |
+
-0.0189208984375,
|
2504 |
+
-0.007080078125,
|
2505 |
+
-0.00014019012451171875,
|
2506 |
+
-0.00958251953125,
|
2507 |
+
-0.0076904296875,
|
2508 |
+
-0.0027008056640625,
|
2509 |
+
0.0047607421875,
|
2510 |
+
0.0087890625,
|
2511 |
+
-0.0047607421875,
|
2512 |
+
-1.0967254638671875e-05,
|
2513 |
+
0.010009765625,
|
2514 |
+
0.003387451171875,
|
2515 |
+
0.015869140625,
|
2516 |
+
0.0096435546875,
|
2517 |
+
0.010009765625,
|
2518 |
+
1.1861324310302734e-05,
|
2519 |
+
0.001678466796875,
|
2520 |
+
-0.00055694580078125,
|
2521 |
+
-0.00140380859375,
|
2522 |
+
-0.0031280517578125,
|
2523 |
+
-0.005645751953125,
|
2524 |
+
-0.00162506103515625,
|
2525 |
+
-0.003326416015625,
|
2526 |
+
0.0181884765625
|
2527 |
+
]
|
2528 |
+
]
|
2529 |
+
]
|
2530 |
+
],
|
2531 |
+
"tie_word_embeddings": true,
|
2532 |
+
"torch_dtype": "float32",
|
2533 |
+
"transformers_version": "4.49.0",
|
2534 |
+
"use_cache": true,
|
2535 |
+
"vision_lora": {
|
2536 |
+
"dp": 0.0,
|
2537 |
+
"layer": "layers.*((self_attn\\.(qkv_proj|o_proj))|(mlp\\.(gate_up|down)_proj))",
|
2538 |
+
"lora_alpha": 512,
|
2539 |
+
"r": 256
|
2540 |
+
},
|
2541 |
+
"vocab_size": 200064
|
2542 |
+
}
|
configuration_phi4mm.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Phi-4-MM model configuration"""
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class Phi4MMConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`Phi4MMModel`]. It is used to instantiate a Phi-4-MM
|
28 |
+
model according to the specified arguments, defining the model architecture.
|
29 |
+
|
30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
31 |
+
documentation from [`PretrainedConfig`] for more information.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
vocab_size (`int`, *optional*, defaults to 200064):
|
35 |
+
Vocabulary size of the Phi-4-MM model. Defines the number of different tokens that can be represented by the
|
36 |
+
`inputs_ids` passed when calling [`Phi4MMModel`].
|
37 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
38 |
+
Dimension of the hidden representations.
|
39 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
40 |
+
Dimension of the MLP representations.
|
41 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
42 |
+
Number of hidden layers in the Transformer decoder.
|
43 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
44 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
45 |
+
num_key_value_heads (`int`, *optional*):
|
46 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
47 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
48 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
49 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
50 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
51 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
52 |
+
`num_attention_heads`.
|
53 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
54 |
+
Dropout probability for mlp outputs.
|
55 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
56 |
+
The dropout ratio for the embeddings.
|
57 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
58 |
+
The dropout ratio after computing the attention scores.
|
59 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
60 |
+
The non-linear activation function (function or string) in the decoder.
|
61 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
62 |
+
The maximum sequence length that this model might ever be used with.
|
63 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
64 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
65 |
+
original RoPE embeddings when using long scaling.
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
69 |
+
The epsilon value used for the RMSNorm.
|
70 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
72 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
73 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
74 |
+
Whether to tie weight embeddings
|
75 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
76 |
+
The base period of the RoPE embeddings.
|
77 |
+
rope_scaling (`dict`, *optional*):
|
78 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
79 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
|
80 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
81 |
+
divided by the number of attention heads divided by 2.
|
82 |
+
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
|
83 |
+
Percentage of the query and keys which will have rotary embedding.
|
84 |
+
bos_token_id (`int`, *optional*, defaults to 199999):
|
85 |
+
The id of the "beginning-of-sequence" token.
|
86 |
+
eos_token_id (`int`, *optional*, defaults to 199999):
|
87 |
+
The id of the "end-of-sequence" token.
|
88 |
+
pad_token_id (`int`, *optional*, defaults to 199999):
|
89 |
+
The id of the padding token.
|
90 |
+
sliding_window (`int`, *optional*):
|
91 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
92 |
+
|
93 |
+
Example:
|
94 |
+
|
95 |
+
```python
|
96 |
+
>>> from transformers import Phi4MMModel, Phi4MMConfig
|
97 |
+
|
98 |
+
>>> # Initializing a Phi-4-MM style configuration
|
99 |
+
>>> configuration = Phi4MMConfig.from_pretrained("TBA")
|
100 |
+
|
101 |
+
>>> # Initializing a model from the configuration
|
102 |
+
>>> model = Phi4MMModel(configuration)
|
103 |
+
|
104 |
+
>>> # Accessing the model configuration
|
105 |
+
>>> configuration = model.config
|
106 |
+
```"""
|
107 |
+
|
108 |
+
model_type = "phi4mm"
|
109 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_size=200064,
|
114 |
+
hidden_size=3072,
|
115 |
+
intermediate_size=8192,
|
116 |
+
num_hidden_layers=32,
|
117 |
+
num_attention_heads=32,
|
118 |
+
num_key_value_heads=None,
|
119 |
+
resid_pdrop=0.0,
|
120 |
+
embd_pdrop=0.0,
|
121 |
+
attention_dropout=0.0,
|
122 |
+
hidden_act="silu",
|
123 |
+
max_position_embeddings=4096,
|
124 |
+
original_max_position_embeddings=4096,
|
125 |
+
initializer_range=0.02,
|
126 |
+
rms_norm_eps=1e-5,
|
127 |
+
use_cache=True,
|
128 |
+
tie_word_embeddings=False,
|
129 |
+
rope_theta=10000.0,
|
130 |
+
rope_scaling=None,
|
131 |
+
partial_rotary_factor=1,
|
132 |
+
bos_token_id=199999,
|
133 |
+
eos_token_id=199999,
|
134 |
+
pad_token_id=199999,
|
135 |
+
sliding_window=None,
|
136 |
+
embd_layer: str = "default",
|
137 |
+
img_processor=None,
|
138 |
+
audio_processor=None,
|
139 |
+
vision_lora=None,
|
140 |
+
speech_lora=None,
|
141 |
+
**kwargs,
|
142 |
+
):
|
143 |
+
self.embd_layer = embd_layer
|
144 |
+
self.img_processor = img_processor
|
145 |
+
self.audio_processor = audio_processor
|
146 |
+
self.vision_lora = vision_lora
|
147 |
+
self.speech_lora = speech_lora
|
148 |
+
|
149 |
+
self.vocab_size = vocab_size
|
150 |
+
self.hidden_size = hidden_size
|
151 |
+
self.intermediate_size = intermediate_size
|
152 |
+
self.num_hidden_layers = num_hidden_layers
|
153 |
+
self.num_attention_heads = num_attention_heads
|
154 |
+
|
155 |
+
if num_key_value_heads is None:
|
156 |
+
num_key_value_heads = num_attention_heads
|
157 |
+
|
158 |
+
self.num_key_value_heads = num_key_value_heads
|
159 |
+
self.resid_pdrop = resid_pdrop
|
160 |
+
self.embd_pdrop = embd_pdrop
|
161 |
+
self.attention_dropout = attention_dropout
|
162 |
+
self.hidden_act = hidden_act
|
163 |
+
self.max_position_embeddings = max_position_embeddings
|
164 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
165 |
+
self.initializer_range = initializer_range
|
166 |
+
self.rms_norm_eps = rms_norm_eps
|
167 |
+
self.use_cache = use_cache
|
168 |
+
self.rope_theta = rope_theta
|
169 |
+
self.rope_scaling = rope_scaling
|
170 |
+
self.partial_rotary_factor = partial_rotary_factor
|
171 |
+
self._rope_scaling_adjustment()
|
172 |
+
self._rope_scaling_validation()
|
173 |
+
self.sliding_window = sliding_window
|
174 |
+
|
175 |
+
super().__init__(
|
176 |
+
bos_token_id=bos_token_id,
|
177 |
+
eos_token_id=eos_token_id,
|
178 |
+
pad_token_id=pad_token_id,
|
179 |
+
tie_word_embeddings=tie_word_embeddings,
|
180 |
+
**kwargs,
|
181 |
+
)
|
182 |
+
|
183 |
+
def _rope_scaling_adjustment(self):
|
184 |
+
"""
|
185 |
+
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
|
186 |
+
"""
|
187 |
+
if self.rope_scaling is None:
|
188 |
+
return
|
189 |
+
|
190 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
191 |
+
|
192 |
+
# For backward compatibility if previous version used "su" or "yarn"
|
193 |
+
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
|
194 |
+
self.rope_scaling["type"] = "longrope"
|
195 |
+
|
196 |
+
def _rope_scaling_validation(self):
|
197 |
+
"""
|
198 |
+
Validate the `rope_scaling` configuration.
|
199 |
+
"""
|
200 |
+
if self.rope_scaling is None:
|
201 |
+
return
|
202 |
+
|
203 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
204 |
+
raise ValueError(
|
205 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
206 |
+
f"got {self.rope_scaling}"
|
207 |
+
)
|
208 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
209 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
210 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
211 |
+
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
|
212 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
|
213 |
+
if not (
|
214 |
+
isinstance(rope_scaling_short_factor, list)
|
215 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
216 |
+
):
|
217 |
+
raise ValueError(
|
218 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
219 |
+
)
|
220 |
+
rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor)
|
221 |
+
if not len(rope_scaling_short_factor) == rotary_ndims // 2:
|
222 |
+
raise ValueError(
|
223 |
+
f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}"
|
224 |
+
)
|
225 |
+
if not (
|
226 |
+
isinstance(rope_scaling_long_factor, list)
|
227 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
228 |
+
):
|
229 |
+
raise ValueError(
|
230 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
231 |
+
)
|
232 |
+
if not len(rope_scaling_long_factor) == rotary_ndims // 2:
|
233 |
+
raise ValueError(
|
234 |
+
f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}"
|
235 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 199999,
|
4 |
+
"eos_token_id": [
|
5 |
+
200020,
|
6 |
+
199999
|
7 |
+
],
|
8 |
+
"pad_token_id": 199999,
|
9 |
+
"transformers_version": "4.49.0"
|
10 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
openvino_audio_embeddings_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43b1464773066a6585f88ac7445481d772fedd3f39aa3bcf26e749ef07eb151d
|
3 |
+
size 320
|
openvino_audio_embeddings_model.xml
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="Model16683" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="input_" type="Parameter" version="opset1">
|
5 |
+
<data shape="?,?,?" element_type="f32" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="FP32" names="input_">
|
8 |
+
<dim>-1</dim>
|
9 |
+
<dim>-1</dim>
|
10 |
+
<dim>-1</dim>
|
11 |
+
</port>
|
12 |
+
</output>
|
13 |
+
</layer>
|
14 |
+
<layer id="1" name="Constant_3240972_compressed" type="Const" version="opset1">
|
15 |
+
<data element_type="f16" shape="1, 1, 80" offset="0" size="160" />
|
16 |
+
<output>
|
17 |
+
<port id="0" precision="FP16">
|
18 |
+
<dim>1</dim>
|
19 |
+
<dim>1</dim>
|
20 |
+
<dim>80</dim>
|
21 |
+
</port>
|
22 |
+
</output>
|
23 |
+
</layer>
|
24 |
+
<layer id="2" name="Constant_3240972" type="Convert" version="opset1">
|
25 |
+
<data destination_type="f32" />
|
26 |
+
<rt_info>
|
27 |
+
<attribute name="decompression" version="0" />
|
28 |
+
</rt_info>
|
29 |
+
<input>
|
30 |
+
<port id="0" precision="FP16">
|
31 |
+
<dim>1</dim>
|
32 |
+
<dim>1</dim>
|
33 |
+
<dim>80</dim>
|
34 |
+
</port>
|
35 |
+
</input>
|
36 |
+
<output>
|
37 |
+
<port id="1" precision="FP32">
|
38 |
+
<dim>1</dim>
|
39 |
+
<dim>1</dim>
|
40 |
+
<dim>80</dim>
|
41 |
+
</port>
|
42 |
+
</output>
|
43 |
+
</layer>
|
44 |
+
<layer id="3" name="Multiply_3240960" type="Multiply" version="opset1">
|
45 |
+
<data auto_broadcast="numpy" />
|
46 |
+
<input>
|
47 |
+
<port id="0" precision="FP32">
|
48 |
+
<dim>-1</dim>
|
49 |
+
<dim>-1</dim>
|
50 |
+
<dim>-1</dim>
|
51 |
+
</port>
|
52 |
+
<port id="1" precision="FP32">
|
53 |
+
<dim>1</dim>
|
54 |
+
<dim>1</dim>
|
55 |
+
<dim>80</dim>
|
56 |
+
</port>
|
57 |
+
</input>
|
58 |
+
<output>
|
59 |
+
<port id="2" precision="FP32">
|
60 |
+
<dim>-1</dim>
|
61 |
+
<dim>-1</dim>
|
62 |
+
<dim>80</dim>
|
63 |
+
</port>
|
64 |
+
</output>
|
65 |
+
</layer>
|
66 |
+
<layer id="4" name="Constant_3240973_compressed" type="Const" version="opset1">
|
67 |
+
<data element_type="f16" shape="1, 1, 80" offset="160" size="160" />
|
68 |
+
<output>
|
69 |
+
<port id="0" precision="FP16">
|
70 |
+
<dim>1</dim>
|
71 |
+
<dim>1</dim>
|
72 |
+
<dim>80</dim>
|
73 |
+
</port>
|
74 |
+
</output>
|
75 |
+
</layer>
|
76 |
+
<layer id="5" name="Constant_3240973" type="Convert" version="opset1">
|
77 |
+
<data destination_type="f32" />
|
78 |
+
<rt_info>
|
79 |
+
<attribute name="decompression" version="0" />
|
80 |
+
</rt_info>
|
81 |
+
<input>
|
82 |
+
<port id="0" precision="FP16">
|
83 |
+
<dim>1</dim>
|
84 |
+
<dim>1</dim>
|
85 |
+
<dim>80</dim>
|
86 |
+
</port>
|
87 |
+
</input>
|
88 |
+
<output>
|
89 |
+
<port id="1" precision="FP32">
|
90 |
+
<dim>1</dim>
|
91 |
+
<dim>1</dim>
|
92 |
+
<dim>80</dim>
|
93 |
+
</port>
|
94 |
+
</output>
|
95 |
+
</layer>
|
96 |
+
<layer id="6" name="aten::mul/Multiply" type="Add" version="opset1">
|
97 |
+
<data auto_broadcast="numpy" />
|
98 |
+
<input>
|
99 |
+
<port id="0" precision="FP32">
|
100 |
+
<dim>-1</dim>
|
101 |
+
<dim>-1</dim>
|
102 |
+
<dim>80</dim>
|
103 |
+
</port>
|
104 |
+
<port id="1" precision="FP32">
|
105 |
+
<dim>1</dim>
|
106 |
+
<dim>1</dim>
|
107 |
+
<dim>80</dim>
|
108 |
+
</port>
|
109 |
+
</input>
|
110 |
+
<output>
|
111 |
+
<port id="2" precision="FP32">
|
112 |
+
<dim>-1</dim>
|
113 |
+
<dim>-1</dim>
|
114 |
+
<dim>80</dim>
|
115 |
+
</port>
|
116 |
+
</output>
|
117 |
+
</layer>
|
118 |
+
<layer id="7" name="Result_3239208" type="Result" version="opset1">
|
119 |
+
<input>
|
120 |
+
<port id="0" precision="FP32">
|
121 |
+
<dim>-1</dim>
|
122 |
+
<dim>-1</dim>
|
123 |
+
<dim>80</dim>
|
124 |
+
</port>
|
125 |
+
</input>
|
126 |
+
</layer>
|
127 |
+
</layers>
|
128 |
+
<edges>
|
129 |
+
<edge from-layer="0" from-port="0" to-layer="3" to-port="0" />
|
130 |
+
<edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
|
131 |
+
<edge from-layer="2" from-port="1" to-layer="3" to-port="1" />
|
132 |
+
<edge from-layer="3" from-port="2" to-layer="6" to-port="0" />
|
133 |
+
<edge from-layer="4" from-port="0" to-layer="5" to-port="0" />
|
134 |
+
<edge from-layer="5" from-port="1" to-layer="6" to-port="1" />
|
135 |
+
<edge from-layer="6" from-port="2" to-layer="7" to-port="0" />
|
136 |
+
</edges>
|
137 |
+
<rt_info>
|
138 |
+
<Runtime_version value="2025.1.0-18311-da00e90afb7" />
|
139 |
+
<conversion_parameters>
|
140 |
+
<framework value="pytorch" />
|
141 |
+
<is_python_object value="True" />
|
142 |
+
</conversion_parameters>
|
143 |
+
</rt_info>
|
144 |
+
</net>
|
openvino_audio_encoder_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f8c8a1b1579a4db3292236a88a12650e8eee9833b40629e8e665f61d45c8535
|
3 |
+
size 432016128
|
openvino_audio_encoder_model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
openvino_audio_forward_embeddings_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e430beb598d4d854bc527fbe6c34b1a435cb4c1249325718ac92546ab82b6441
|
3 |
+
size 25233456
|
openvino_audio_forward_embeddings_model.xml
ADDED
@@ -0,0 +1,906 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="Model16686" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="input_tensor" type="Parameter" version="opset1">
|
5 |
+
<data shape="?,?,?" element_type="f32" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="FP32" names="input_tensor">
|
8 |
+
<dim>-1</dim>
|
9 |
+
<dim>-1</dim>
|
10 |
+
<dim>-1</dim>
|
11 |
+
</port>
|
12 |
+
</output>
|
13 |
+
</layer>
|
14 |
+
<layer id="1" name="10" type="Const" version="opset1">
|
15 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
16 |
+
<output>
|
17 |
+
<port id="0" precision="I64" names="10" />
|
18 |
+
</output>
|
19 |
+
</layer>
|
20 |
+
<layer id="2" name="__module.embed/aten::unsqueeze/Unsqueeze" type="Unsqueeze" version="opset1">
|
21 |
+
<input>
|
22 |
+
<port id="0" precision="FP32">
|
23 |
+
<dim>-1</dim>
|
24 |
+
<dim>-1</dim>
|
25 |
+
<dim>-1</dim>
|
26 |
+
</port>
|
27 |
+
<port id="1" precision="I64" />
|
28 |
+
</input>
|
29 |
+
<output>
|
30 |
+
<port id="2" precision="FP32" names="13">
|
31 |
+
<dim>-1</dim>
|
32 |
+
<dim>1</dim>
|
33 |
+
<dim>-1</dim>
|
34 |
+
<dim>-1</dim>
|
35 |
+
</port>
|
36 |
+
</output>
|
37 |
+
</layer>
|
38 |
+
<layer id="3" name="self.embed.conv.0.weight_compressed" type="Const" version="opset1">
|
39 |
+
<data element_type="f16" shape="1024, 1, 3, 3" offset="8" size="18432" />
|
40 |
+
<output>
|
41 |
+
<port id="0" precision="FP16" names="self.embed.conv.0.weight">
|
42 |
+
<dim>1024</dim>
|
43 |
+
<dim>1</dim>
|
44 |
+
<dim>3</dim>
|
45 |
+
<dim>3</dim>
|
46 |
+
</port>
|
47 |
+
</output>
|
48 |
+
</layer>
|
49 |
+
<layer id="4" name="self.embed.conv.0.weight" type="Convert" version="opset1">
|
50 |
+
<data destination_type="f32" />
|
51 |
+
<rt_info>
|
52 |
+
<attribute name="decompression" version="0" />
|
53 |
+
</rt_info>
|
54 |
+
<input>
|
55 |
+
<port id="0" precision="FP16">
|
56 |
+
<dim>1024</dim>
|
57 |
+
<dim>1</dim>
|
58 |
+
<dim>3</dim>
|
59 |
+
<dim>3</dim>
|
60 |
+
</port>
|
61 |
+
</input>
|
62 |
+
<output>
|
63 |
+
<port id="1" precision="FP32">
|
64 |
+
<dim>1024</dim>
|
65 |
+
<dim>1</dim>
|
66 |
+
<dim>3</dim>
|
67 |
+
<dim>3</dim>
|
68 |
+
</port>
|
69 |
+
</output>
|
70 |
+
</layer>
|
71 |
+
<layer id="5" name="__module.embed.conv.0/aten::_convolution/Convolution" type="Convolution" version="opset1">
|
72 |
+
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
|
73 |
+
<input>
|
74 |
+
<port id="0" precision="FP32">
|
75 |
+
<dim>-1</dim>
|
76 |
+
<dim>1</dim>
|
77 |
+
<dim>-1</dim>
|
78 |
+
<dim>-1</dim>
|
79 |
+
</port>
|
80 |
+
<port id="1" precision="FP32">
|
81 |
+
<dim>1024</dim>
|
82 |
+
<dim>1</dim>
|
83 |
+
<dim>3</dim>
|
84 |
+
<dim>3</dim>
|
85 |
+
</port>
|
86 |
+
</input>
|
87 |
+
<output>
|
88 |
+
<port id="2" precision="FP32">
|
89 |
+
<dim>-1</dim>
|
90 |
+
<dim>1024</dim>
|
91 |
+
<dim>-1</dim>
|
92 |
+
<dim>-1</dim>
|
93 |
+
</port>
|
94 |
+
</output>
|
95 |
+
</layer>
|
96 |
+
<layer id="6" name="__module.embed.conv.0/aten::_convolution/Reshape_compressed" type="Const" version="opset1">
|
97 |
+
<data element_type="f16" shape="1, 1024, 1, 1" offset="18440" size="2048" />
|
98 |
+
<output>
|
99 |
+
<port id="0" precision="FP16">
|
100 |
+
<dim>1</dim>
|
101 |
+
<dim>1024</dim>
|
102 |
+
<dim>1</dim>
|
103 |
+
<dim>1</dim>
|
104 |
+
</port>
|
105 |
+
</output>
|
106 |
+
</layer>
|
107 |
+
<layer id="7" name="__module.embed.conv.0/aten::_convolution/Reshape" type="Convert" version="opset1">
|
108 |
+
<data destination_type="f32" />
|
109 |
+
<rt_info>
|
110 |
+
<attribute name="decompression" version="0" />
|
111 |
+
</rt_info>
|
112 |
+
<input>
|
113 |
+
<port id="0" precision="FP16">
|
114 |
+
<dim>1</dim>
|
115 |
+
<dim>1024</dim>
|
116 |
+
<dim>1</dim>
|
117 |
+
<dim>1</dim>
|
118 |
+
</port>
|
119 |
+
</input>
|
120 |
+
<output>
|
121 |
+
<port id="1" precision="FP32">
|
122 |
+
<dim>1</dim>
|
123 |
+
<dim>1024</dim>
|
124 |
+
<dim>1</dim>
|
125 |
+
<dim>1</dim>
|
126 |
+
</port>
|
127 |
+
</output>
|
128 |
+
</layer>
|
129 |
+
<layer id="8" name="__module.embed.conv.0/aten::_convolution/Add" type="Add" version="opset1">
|
130 |
+
<data auto_broadcast="numpy" />
|
131 |
+
<input>
|
132 |
+
<port id="0" precision="FP32">
|
133 |
+
<dim>-1</dim>
|
134 |
+
<dim>1024</dim>
|
135 |
+
<dim>-1</dim>
|
136 |
+
<dim>-1</dim>
|
137 |
+
</port>
|
138 |
+
<port id="1" precision="FP32">
|
139 |
+
<dim>1</dim>
|
140 |
+
<dim>1024</dim>
|
141 |
+
<dim>1</dim>
|
142 |
+
<dim>1</dim>
|
143 |
+
</port>
|
144 |
+
</input>
|
145 |
+
<output>
|
146 |
+
<port id="2" precision="FP32" names="25">
|
147 |
+
<dim>-1</dim>
|
148 |
+
<dim>1024</dim>
|
149 |
+
<dim>-1</dim>
|
150 |
+
<dim>-1</dim>
|
151 |
+
</port>
|
152 |
+
</output>
|
153 |
+
</layer>
|
154 |
+
<layer id="9" name="__module.embed.conv.1/aten::relu/Relu" type="ReLU" version="opset1">
|
155 |
+
<input>
|
156 |
+
<port id="0" precision="FP32">
|
157 |
+
<dim>-1</dim>
|
158 |
+
<dim>1024</dim>
|
159 |
+
<dim>-1</dim>
|
160 |
+
<dim>-1</dim>
|
161 |
+
</port>
|
162 |
+
</input>
|
163 |
+
<output>
|
164 |
+
<port id="1" precision="FP32" names="26">
|
165 |
+
<dim>-1</dim>
|
166 |
+
<dim>1024</dim>
|
167 |
+
<dim>-1</dim>
|
168 |
+
<dim>-1</dim>
|
169 |
+
</port>
|
170 |
+
</output>
|
171 |
+
</layer>
|
172 |
+
<layer id="10" name="__module.embed.conv.2/aten::_convolution/Reshape_compressed" type="Const" version="opset1">
|
173 |
+
<data element_type="f16" shape="1024, 1, 1, 3, 3" offset="20488" size="18432" />
|
174 |
+
<output>
|
175 |
+
<port id="0" precision="FP16">
|
176 |
+
<dim>1024</dim>
|
177 |
+
<dim>1</dim>
|
178 |
+
<dim>1</dim>
|
179 |
+
<dim>3</dim>
|
180 |
+
<dim>3</dim>
|
181 |
+
</port>
|
182 |
+
</output>
|
183 |
+
</layer>
|
184 |
+
<layer id="11" name="__module.embed.conv.2/aten::_convolution/Reshape" type="Convert" version="opset1">
|
185 |
+
<data destination_type="f32" />
|
186 |
+
<rt_info>
|
187 |
+
<attribute name="decompression" version="0" />
|
188 |
+
</rt_info>
|
189 |
+
<input>
|
190 |
+
<port id="0" precision="FP16">
|
191 |
+
<dim>1024</dim>
|
192 |
+
<dim>1</dim>
|
193 |
+
<dim>1</dim>
|
194 |
+
<dim>3</dim>
|
195 |
+
<dim>3</dim>
|
196 |
+
</port>
|
197 |
+
</input>
|
198 |
+
<output>
|
199 |
+
<port id="1" precision="FP32">
|
200 |
+
<dim>1024</dim>
|
201 |
+
<dim>1</dim>
|
202 |
+
<dim>1</dim>
|
203 |
+
<dim>3</dim>
|
204 |
+
<dim>3</dim>
|
205 |
+
</port>
|
206 |
+
</output>
|
207 |
+
</layer>
|
208 |
+
<layer id="12" name="__module.embed.conv.2/aten::_convolution/GroupConvolution" type="GroupConvolution" version="opset1">
|
209 |
+
<data strides="2, 2" pads_begin="1, 1" pads_end="1, 1" dilations="1, 1" auto_pad="explicit" />
|
210 |
+
<input>
|
211 |
+
<port id="0" precision="FP32">
|
212 |
+
<dim>-1</dim>
|
213 |
+
<dim>1024</dim>
|
214 |
+
<dim>-1</dim>
|
215 |
+
<dim>-1</dim>
|
216 |
+
</port>
|
217 |
+
<port id="1" precision="FP32">
|
218 |
+
<dim>1024</dim>
|
219 |
+
<dim>1</dim>
|
220 |
+
<dim>1</dim>
|
221 |
+
<dim>3</dim>
|
222 |
+
<dim>3</dim>
|
223 |
+
</port>
|
224 |
+
</input>
|
225 |
+
<output>
|
226 |
+
<port id="2" precision="FP32">
|
227 |
+
<dim>-1</dim>
|
228 |
+
<dim>1024</dim>
|
229 |
+
<dim>-1</dim>
|
230 |
+
<dim>-1</dim>
|
231 |
+
</port>
|
232 |
+
</output>
|
233 |
+
</layer>
|
234 |
+
<layer id="13" name="__module.embed.conv.2/aten::_convolution/Reshape_1_compressed" type="Const" version="opset1">
|
235 |
+
<data element_type="f16" shape="1, 1024, 1, 1" offset="38920" size="2048" />
|
236 |
+
<output>
|
237 |
+
<port id="0" precision="FP16">
|
238 |
+
<dim>1</dim>
|
239 |
+
<dim>1024</dim>
|
240 |
+
<dim>1</dim>
|
241 |
+
<dim>1</dim>
|
242 |
+
</port>
|
243 |
+
</output>
|
244 |
+
</layer>
|
245 |
+
<layer id="14" name="__module.embed.conv.2/aten::_convolution/Reshape_1" type="Convert" version="opset1">
|
246 |
+
<data destination_type="f32" />
|
247 |
+
<rt_info>
|
248 |
+
<attribute name="decompression" version="0" />
|
249 |
+
</rt_info>
|
250 |
+
<input>
|
251 |
+
<port id="0" precision="FP16">
|
252 |
+
<dim>1</dim>
|
253 |
+
<dim>1024</dim>
|
254 |
+
<dim>1</dim>
|
255 |
+
<dim>1</dim>
|
256 |
+
</port>
|
257 |
+
</input>
|
258 |
+
<output>
|
259 |
+
<port id="1" precision="FP32">
|
260 |
+
<dim>1</dim>
|
261 |
+
<dim>1024</dim>
|
262 |
+
<dim>1</dim>
|
263 |
+
<dim>1</dim>
|
264 |
+
</port>
|
265 |
+
</output>
|
266 |
+
</layer>
|
267 |
+
<layer id="15" name="__module.embed.conv.2/aten::_convolution/Add" type="Add" version="opset1">
|
268 |
+
<data auto_broadcast="numpy" />
|
269 |
+
<input>
|
270 |
+
<port id="0" precision="FP32">
|
271 |
+
<dim>-1</dim>
|
272 |
+
<dim>1024</dim>
|
273 |
+
<dim>-1</dim>
|
274 |
+
<dim>-1</dim>
|
275 |
+
</port>
|
276 |
+
<port id="1" precision="FP32">
|
277 |
+
<dim>1</dim>
|
278 |
+
<dim>1024</dim>
|
279 |
+
<dim>1</dim>
|
280 |
+
<dim>1</dim>
|
281 |
+
</port>
|
282 |
+
</input>
|
283 |
+
<output>
|
284 |
+
<port id="2" precision="FP32" names="33">
|
285 |
+
<dim>-1</dim>
|
286 |
+
<dim>1024</dim>
|
287 |
+
<dim>-1</dim>
|
288 |
+
<dim>-1</dim>
|
289 |
+
</port>
|
290 |
+
</output>
|
291 |
+
</layer>
|
292 |
+
<layer id="16" name="self.embed.conv.3.weight_compressed" type="Const" version="opset1">
|
293 |
+
<data element_type="f16" shape="1024, 1024, 1, 1" offset="40968" size="2097152" />
|
294 |
+
<output>
|
295 |
+
<port id="0" precision="FP16" names="self.embed.conv.3.weight">
|
296 |
+
<dim>1024</dim>
|
297 |
+
<dim>1024</dim>
|
298 |
+
<dim>1</dim>
|
299 |
+
<dim>1</dim>
|
300 |
+
</port>
|
301 |
+
</output>
|
302 |
+
</layer>
|
303 |
+
<layer id="17" name="self.embed.conv.3.weight" type="Convert" version="opset1">
|
304 |
+
<data destination_type="f32" />
|
305 |
+
<rt_info>
|
306 |
+
<attribute name="decompression" version="0" />
|
307 |
+
</rt_info>
|
308 |
+
<input>
|
309 |
+
<port id="0" precision="FP16">
|
310 |
+
<dim>1024</dim>
|
311 |
+
<dim>1024</dim>
|
312 |
+
<dim>1</dim>
|
313 |
+
<dim>1</dim>
|
314 |
+
</port>
|
315 |
+
</input>
|
316 |
+
<output>
|
317 |
+
<port id="1" precision="FP32">
|
318 |
+
<dim>1024</dim>
|
319 |
+
<dim>1024</dim>
|
320 |
+
<dim>1</dim>
|
321 |
+
<dim>1</dim>
|
322 |
+
</port>
|
323 |
+
</output>
|
324 |
+
</layer>
|
325 |
+
<layer id="18" name="__module.embed.conv.3/aten::_convolution/Convolution" type="Convolution" version="opset1">
|
326 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
|
327 |
+
<input>
|
328 |
+
<port id="0" precision="FP32">
|
329 |
+
<dim>-1</dim>
|
330 |
+
<dim>1024</dim>
|
331 |
+
<dim>-1</dim>
|
332 |
+
<dim>-1</dim>
|
333 |
+
</port>
|
334 |
+
<port id="1" precision="FP32">
|
335 |
+
<dim>1024</dim>
|
336 |
+
<dim>1024</dim>
|
337 |
+
<dim>1</dim>
|
338 |
+
<dim>1</dim>
|
339 |
+
</port>
|
340 |
+
</input>
|
341 |
+
<output>
|
342 |
+
<port id="2" precision="FP32">
|
343 |
+
<dim>-1</dim>
|
344 |
+
<dim>1024</dim>
|
345 |
+
<dim>-1</dim>
|
346 |
+
<dim>-1</dim>
|
347 |
+
</port>
|
348 |
+
</output>
|
349 |
+
</layer>
|
350 |
+
<layer id="19" name="__module.embed.conv.3/aten::_convolution/Reshape_compressed" type="Const" version="opset1">
|
351 |
+
<data element_type="f16" shape="1, 1024, 1, 1" offset="2138120" size="2048" />
|
352 |
+
<output>
|
353 |
+
<port id="0" precision="FP16">
|
354 |
+
<dim>1</dim>
|
355 |
+
<dim>1024</dim>
|
356 |
+
<dim>1</dim>
|
357 |
+
<dim>1</dim>
|
358 |
+
</port>
|
359 |
+
</output>
|
360 |
+
</layer>
|
361 |
+
<layer id="20" name="__module.embed.conv.3/aten::_convolution/Reshape" type="Convert" version="opset1">
|
362 |
+
<data destination_type="f32" />
|
363 |
+
<rt_info>
|
364 |
+
<attribute name="decompression" version="0" />
|
365 |
+
</rt_info>
|
366 |
+
<input>
|
367 |
+
<port id="0" precision="FP16">
|
368 |
+
<dim>1</dim>
|
369 |
+
<dim>1024</dim>
|
370 |
+
<dim>1</dim>
|
371 |
+
<dim>1</dim>
|
372 |
+
</port>
|
373 |
+
</input>
|
374 |
+
<output>
|
375 |
+
<port id="1" precision="FP32">
|
376 |
+
<dim>1</dim>
|
377 |
+
<dim>1024</dim>
|
378 |
+
<dim>1</dim>
|
379 |
+
<dim>1</dim>
|
380 |
+
</port>
|
381 |
+
</output>
|
382 |
+
</layer>
|
383 |
+
<layer id="21" name="__module.embed.conv.3/aten::_convolution/Add" type="Add" version="opset1">
|
384 |
+
<data auto_broadcast="numpy" />
|
385 |
+
<input>
|
386 |
+
<port id="0" precision="FP32">
|
387 |
+
<dim>-1</dim>
|
388 |
+
<dim>1024</dim>
|
389 |
+
<dim>-1</dim>
|
390 |
+
<dim>-1</dim>
|
391 |
+
</port>
|
392 |
+
<port id="1" precision="FP32">
|
393 |
+
<dim>1</dim>
|
394 |
+
<dim>1024</dim>
|
395 |
+
<dim>1</dim>
|
396 |
+
<dim>1</dim>
|
397 |
+
</port>
|
398 |
+
</input>
|
399 |
+
<output>
|
400 |
+
<port id="2" precision="FP32" names="40">
|
401 |
+
<dim>-1</dim>
|
402 |
+
<dim>1024</dim>
|
403 |
+
<dim>-1</dim>
|
404 |
+
<dim>-1</dim>
|
405 |
+
</port>
|
406 |
+
</output>
|
407 |
+
</layer>
|
408 |
+
<layer id="22" name="__module.embed.conv.1/aten::relu/Relu_1" type="ReLU" version="opset1">
|
409 |
+
<input>
|
410 |
+
<port id="0" precision="FP32">
|
411 |
+
<dim>-1</dim>
|
412 |
+
<dim>1024</dim>
|
413 |
+
<dim>-1</dim>
|
414 |
+
<dim>-1</dim>
|
415 |
+
</port>
|
416 |
+
</input>
|
417 |
+
<output>
|
418 |
+
<port id="1" precision="FP32" names="41">
|
419 |
+
<dim>-1</dim>
|
420 |
+
<dim>1024</dim>
|
421 |
+
<dim>-1</dim>
|
422 |
+
<dim>-1</dim>
|
423 |
+
</port>
|
424 |
+
</output>
|
425 |
+
</layer>
|
426 |
+
<layer id="23" name="__module.embed.conv.5/aten::_convolution/Reshape_compressed" type="Const" version="opset1">
|
427 |
+
<data element_type="f16" shape="1024, 1, 1, 3, 3" offset="2140168" size="18432" />
|
428 |
+
<output>
|
429 |
+
<port id="0" precision="FP16">
|
430 |
+
<dim>1024</dim>
|
431 |
+
<dim>1</dim>
|
432 |
+
<dim>1</dim>
|
433 |
+
<dim>3</dim>
|
434 |
+
<dim>3</dim>
|
435 |
+
</port>
|
436 |
+
</output>
|
437 |
+
</layer>
|
438 |
+
<layer id="24" name="__module.embed.conv.5/aten::_convolution/Reshape" type="Convert" version="opset1">
|
439 |
+
<data destination_type="f32" />
|
440 |
+
<rt_info>
|
441 |
+
<attribute name="decompression" version="0" />
|
442 |
+
</rt_info>
|
443 |
+
<input>
|
444 |
+
<port id="0" precision="FP16">
|
445 |
+
<dim>1024</dim>
|
446 |
+
<dim>1</dim>
|
447 |
+
<dim>1</dim>
|
448 |
+
<dim>3</dim>
|
449 |
+
<dim>3</dim>
|
450 |
+
</port>
|
451 |
+
</input>
|
452 |
+
<output>
|
453 |
+
<port id="1" precision="FP32">
|
454 |
+
<dim>1024</dim>
|
455 |
+
<dim>1</dim>
|
456 |
+
<dim>1</dim>
|
457 |
+
<dim>3</dim>
|
458 |
+
<dim>3</dim>
|
459 |
+
</port>
|
460 |
+
</output>
|
461 |
+
</layer>
|
462 |
+
<layer id="25" name="__module.embed.conv.5/aten::_convolution/GroupConvolution" type="GroupConvolution" version="opset1">
|
463 |
+
<data strides="2, 2" pads_begin="1, 1" pads_end="1, 1" dilations="1, 1" auto_pad="explicit" />
|
464 |
+
<input>
|
465 |
+
<port id="0" precision="FP32">
|
466 |
+
<dim>-1</dim>
|
467 |
+
<dim>1024</dim>
|
468 |
+
<dim>-1</dim>
|
469 |
+
<dim>-1</dim>
|
470 |
+
</port>
|
471 |
+
<port id="1" precision="FP32">
|
472 |
+
<dim>1024</dim>
|
473 |
+
<dim>1</dim>
|
474 |
+
<dim>1</dim>
|
475 |
+
<dim>3</dim>
|
476 |
+
<dim>3</dim>
|
477 |
+
</port>
|
478 |
+
</input>
|
479 |
+
<output>
|
480 |
+
<port id="2" precision="FP32">
|
481 |
+
<dim>-1</dim>
|
482 |
+
<dim>1024</dim>
|
483 |
+
<dim>-1</dim>
|
484 |
+
<dim>-1</dim>
|
485 |
+
</port>
|
486 |
+
</output>
|
487 |
+
</layer>
|
488 |
+
<layer id="26" name="__module.embed.conv.5/aten::_convolution/Reshape_1_compressed" type="Const" version="opset1">
|
489 |
+
<data element_type="f16" shape="1, 1024, 1, 1" offset="2158600" size="2048" />
|
490 |
+
<output>
|
491 |
+
<port id="0" precision="FP16">
|
492 |
+
<dim>1</dim>
|
493 |
+
<dim>1024</dim>
|
494 |
+
<dim>1</dim>
|
495 |
+
<dim>1</dim>
|
496 |
+
</port>
|
497 |
+
</output>
|
498 |
+
</layer>
|
499 |
+
<layer id="27" name="__module.embed.conv.5/aten::_convolution/Reshape_1" type="Convert" version="opset1">
|
500 |
+
<data destination_type="f32" />
|
501 |
+
<rt_info>
|
502 |
+
<attribute name="decompression" version="0" />
|
503 |
+
</rt_info>
|
504 |
+
<input>
|
505 |
+
<port id="0" precision="FP16">
|
506 |
+
<dim>1</dim>
|
507 |
+
<dim>1024</dim>
|
508 |
+
<dim>1</dim>
|
509 |
+
<dim>1</dim>
|
510 |
+
</port>
|
511 |
+
</input>
|
512 |
+
<output>
|
513 |
+
<port id="1" precision="FP32">
|
514 |
+
<dim>1</dim>
|
515 |
+
<dim>1024</dim>
|
516 |
+
<dim>1</dim>
|
517 |
+
<dim>1</dim>
|
518 |
+
</port>
|
519 |
+
</output>
|
520 |
+
</layer>
|
521 |
+
<layer id="28" name="__module.embed.conv.5/aten::_convolution/Add" type="Add" version="opset1">
|
522 |
+
<data auto_broadcast="numpy" />
|
523 |
+
<input>
|
524 |
+
<port id="0" precision="FP32">
|
525 |
+
<dim>-1</dim>
|
526 |
+
<dim>1024</dim>
|
527 |
+
<dim>-1</dim>
|
528 |
+
<dim>-1</dim>
|
529 |
+
</port>
|
530 |
+
<port id="1" precision="FP32">
|
531 |
+
<dim>1</dim>
|
532 |
+
<dim>1024</dim>
|
533 |
+
<dim>1</dim>
|
534 |
+
<dim>1</dim>
|
535 |
+
</port>
|
536 |
+
</input>
|
537 |
+
<output>
|
538 |
+
<port id="2" precision="FP32" names="48">
|
539 |
+
<dim>-1</dim>
|
540 |
+
<dim>1024</dim>
|
541 |
+
<dim>-1</dim>
|
542 |
+
<dim>-1</dim>
|
543 |
+
</port>
|
544 |
+
</output>
|
545 |
+
</layer>
|
546 |
+
<layer id="29" name="self.embed.conv.6.weight_compressed" type="Const" version="opset1">
|
547 |
+
<data element_type="f16" shape="1024, 1024, 1, 1" offset="2160648" size="2097152" />
|
548 |
+
<output>
|
549 |
+
<port id="0" precision="FP16" names="self.embed.conv.6.weight">
|
550 |
+
<dim>1024</dim>
|
551 |
+
<dim>1024</dim>
|
552 |
+
<dim>1</dim>
|
553 |
+
<dim>1</dim>
|
554 |
+
</port>
|
555 |
+
</output>
|
556 |
+
</layer>
|
557 |
+
<layer id="30" name="self.embed.conv.6.weight" type="Convert" version="opset1">
|
558 |
+
<data destination_type="f32" />
|
559 |
+
<rt_info>
|
560 |
+
<attribute name="decompression" version="0" />
|
561 |
+
</rt_info>
|
562 |
+
<input>
|
563 |
+
<port id="0" precision="FP16">
|
564 |
+
<dim>1024</dim>
|
565 |
+
<dim>1024</dim>
|
566 |
+
<dim>1</dim>
|
567 |
+
<dim>1</dim>
|
568 |
+
</port>
|
569 |
+
</input>
|
570 |
+
<output>
|
571 |
+
<port id="1" precision="FP32">
|
572 |
+
<dim>1024</dim>
|
573 |
+
<dim>1024</dim>
|
574 |
+
<dim>1</dim>
|
575 |
+
<dim>1</dim>
|
576 |
+
</port>
|
577 |
+
</output>
|
578 |
+
</layer>
|
579 |
+
<layer id="31" name="__module.embed.conv.6/aten::_convolution/Convolution" type="Convolution" version="opset1">
|
580 |
+
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
|
581 |
+
<input>
|
582 |
+
<port id="0" precision="FP32">
|
583 |
+
<dim>-1</dim>
|
584 |
+
<dim>1024</dim>
|
585 |
+
<dim>-1</dim>
|
586 |
+
<dim>-1</dim>
|
587 |
+
</port>
|
588 |
+
<port id="1" precision="FP32">
|
589 |
+
<dim>1024</dim>
|
590 |
+
<dim>1024</dim>
|
591 |
+
<dim>1</dim>
|
592 |
+
<dim>1</dim>
|
593 |
+
</port>
|
594 |
+
</input>
|
595 |
+
<output>
|
596 |
+
<port id="2" precision="FP32">
|
597 |
+
<dim>-1</dim>
|
598 |
+
<dim>1024</dim>
|
599 |
+
<dim>-1</dim>
|
600 |
+
<dim>-1</dim>
|
601 |
+
</port>
|
602 |
+
</output>
|
603 |
+
</layer>
|
604 |
+
<layer id="32" name="__module.embed.conv.6/aten::_convolution/Reshape_compressed" type="Const" version="opset1">
|
605 |
+
<data element_type="f16" shape="1, 1024, 1, 1" offset="4257800" size="2048" />
|
606 |
+
<output>
|
607 |
+
<port id="0" precision="FP16">
|
608 |
+
<dim>1</dim>
|
609 |
+
<dim>1024</dim>
|
610 |
+
<dim>1</dim>
|
611 |
+
<dim>1</dim>
|
612 |
+
</port>
|
613 |
+
</output>
|
614 |
+
</layer>
|
615 |
+
<layer id="33" name="__module.embed.conv.6/aten::_convolution/Reshape" type="Convert" version="opset1">
|
616 |
+
<data destination_type="f32" />
|
617 |
+
<rt_info>
|
618 |
+
<attribute name="decompression" version="0" />
|
619 |
+
</rt_info>
|
620 |
+
<input>
|
621 |
+
<port id="0" precision="FP16">
|
622 |
+
<dim>1</dim>
|
623 |
+
<dim>1024</dim>
|
624 |
+
<dim>1</dim>
|
625 |
+
<dim>1</dim>
|
626 |
+
</port>
|
627 |
+
</input>
|
628 |
+
<output>
|
629 |
+
<port id="1" precision="FP32">
|
630 |
+
<dim>1</dim>
|
631 |
+
<dim>1024</dim>
|
632 |
+
<dim>1</dim>
|
633 |
+
<dim>1</dim>
|
634 |
+
</port>
|
635 |
+
</output>
|
636 |
+
</layer>
|
637 |
+
<layer id="34" name="__module.embed.conv.6/aten::_convolution/Add" type="Add" version="opset1">
|
638 |
+
<data auto_broadcast="numpy" />
|
639 |
+
<input>
|
640 |
+
<port id="0" precision="FP32">
|
641 |
+
<dim>-1</dim>
|
642 |
+
<dim>1024</dim>
|
643 |
+
<dim>-1</dim>
|
644 |
+
<dim>-1</dim>
|
645 |
+
</port>
|
646 |
+
<port id="1" precision="FP32">
|
647 |
+
<dim>1</dim>
|
648 |
+
<dim>1024</dim>
|
649 |
+
<dim>1</dim>
|
650 |
+
<dim>1</dim>
|
651 |
+
</port>
|
652 |
+
</input>
|
653 |
+
<output>
|
654 |
+
<port id="2" precision="FP32" names="55">
|
655 |
+
<dim>-1</dim>
|
656 |
+
<dim>1024</dim>
|
657 |
+
<dim>-1</dim>
|
658 |
+
<dim>-1</dim>
|
659 |
+
</port>
|
660 |
+
</output>
|
661 |
+
</layer>
|
662 |
+
<layer id="35" name="__module.embed.conv.1/aten::relu/Relu_2" type="ReLU" version="opset1">
|
663 |
+
<input>
|
664 |
+
<port id="0" precision="FP32">
|
665 |
+
<dim>-1</dim>
|
666 |
+
<dim>1024</dim>
|
667 |
+
<dim>-1</dim>
|
668 |
+
<dim>-1</dim>
|
669 |
+
</port>
|
670 |
+
</input>
|
671 |
+
<output>
|
672 |
+
<port id="1" precision="FP32" names="56,x">
|
673 |
+
<dim>-1</dim>
|
674 |
+
<dim>1024</dim>
|
675 |
+
<dim>-1</dim>
|
676 |
+
<dim>-1</dim>
|
677 |
+
</port>
|
678 |
+
</output>
|
679 |
+
</layer>
|
680 |
+
<layer id="36" name="__module.embed/aten::transpose/Constant" type="Const" version="opset1">
|
681 |
+
<data element_type="i32" shape="4" offset="4259848" size="16" />
|
682 |
+
<output>
|
683 |
+
<port id="0" precision="I32">
|
684 |
+
<dim>4</dim>
|
685 |
+
</port>
|
686 |
+
</output>
|
687 |
+
</layer>
|
688 |
+
<layer id="37" name="__module.embed/aten::transpose/Transpose" type="Transpose" version="opset1">
|
689 |
+
<input>
|
690 |
+
<port id="0" precision="FP32">
|
691 |
+
<dim>-1</dim>
|
692 |
+
<dim>1024</dim>
|
693 |
+
<dim>-1</dim>
|
694 |
+
<dim>-1</dim>
|
695 |
+
</port>
|
696 |
+
<port id="1" precision="I32">
|
697 |
+
<dim>4</dim>
|
698 |
+
</port>
|
699 |
+
</input>
|
700 |
+
<output>
|
701 |
+
<port id="2" precision="FP32" names="59">
|
702 |
+
<dim>-1</dim>
|
703 |
+
<dim>-1</dim>
|
704 |
+
<dim>1024</dim>
|
705 |
+
<dim>-1</dim>
|
706 |
+
</port>
|
707 |
+
</output>
|
708 |
+
</layer>
|
709 |
+
<layer id="38" name="Constant_3243459" type="Const" version="opset1">
|
710 |
+
<data element_type="i64" shape="3" offset="4259864" size="24" />
|
711 |
+
<rt_info>
|
712 |
+
<attribute name="precise" version="0" />
|
713 |
+
</rt_info>
|
714 |
+
<output>
|
715 |
+
<port id="0" precision="I64">
|
716 |
+
<dim>3</dim>
|
717 |
+
</port>
|
718 |
+
</output>
|
719 |
+
</layer>
|
720 |
+
<layer id="39" name="__module.embed/aten::reshape/Reshape" type="Reshape" version="opset1">
|
721 |
+
<data special_zero="true" />
|
722 |
+
<input>
|
723 |
+
<port id="0" precision="FP32">
|
724 |
+
<dim>-1</dim>
|
725 |
+
<dim>-1</dim>
|
726 |
+
<dim>1024</dim>
|
727 |
+
<dim>-1</dim>
|
728 |
+
</port>
|
729 |
+
<port id="1" precision="I64">
|
730 |
+
<dim>3</dim>
|
731 |
+
</port>
|
732 |
+
</input>
|
733 |
+
<output>
|
734 |
+
<port id="2" precision="FP32" names="61">
|
735 |
+
<dim>-1</dim>
|
736 |
+
<dim>-1</dim>
|
737 |
+
<dim>-1</dim>
|
738 |
+
</port>
|
739 |
+
</output>
|
740 |
+
</layer>
|
741 |
+
<layer id="40" name="self.embed.out.weight_compressed" type="Const" version="opset1">
|
742 |
+
<data element_type="f16" shape="1024, 10240" offset="4259888" size="20971520" />
|
743 |
+
<output>
|
744 |
+
<port id="0" precision="FP16" names="self.embed.out.weight">
|
745 |
+
<dim>1024</dim>
|
746 |
+
<dim>10240</dim>
|
747 |
+
</port>
|
748 |
+
</output>
|
749 |
+
</layer>
|
750 |
+
<layer id="41" name="self.embed.out.weight" type="Convert" version="opset1">
|
751 |
+
<data destination_type="f32" />
|
752 |
+
<rt_info>
|
753 |
+
<attribute name="decompression" version="0" />
|
754 |
+
</rt_info>
|
755 |
+
<input>
|
756 |
+
<port id="0" precision="FP16">
|
757 |
+
<dim>1024</dim>
|
758 |
+
<dim>10240</dim>
|
759 |
+
</port>
|
760 |
+
</input>
|
761 |
+
<output>
|
762 |
+
<port id="1" precision="FP32">
|
763 |
+
<dim>1024</dim>
|
764 |
+
<dim>10240</dim>
|
765 |
+
</port>
|
766 |
+
</output>
|
767 |
+
</layer>
|
768 |
+
<layer id="42" name="__module.embed.out/aten::linear/MatMul" type="MatMul" version="opset1">
|
769 |
+
<data transpose_a="false" transpose_b="true" />
|
770 |
+
<input>
|
771 |
+
<port id="0" precision="FP32">
|
772 |
+
<dim>-1</dim>
|
773 |
+
<dim>-1</dim>
|
774 |
+
<dim>-1</dim>
|
775 |
+
</port>
|
776 |
+
<port id="1" precision="FP32">
|
777 |
+
<dim>1024</dim>
|
778 |
+
<dim>10240</dim>
|
779 |
+
</port>
|
780 |
+
</input>
|
781 |
+
<output>
|
782 |
+
<port id="2" precision="FP32">
|
783 |
+
<dim>-1</dim>
|
784 |
+
<dim>-1</dim>
|
785 |
+
<dim>1024</dim>
|
786 |
+
</port>
|
787 |
+
</output>
|
788 |
+
</layer>
|
789 |
+
<layer id="43" name="Constant_3243449_compressed" type="Const" version="opset1">
|
790 |
+
<data element_type="f16" shape="1, 1, 1024" offset="25231408" size="2048" />
|
791 |
+
<output>
|
792 |
+
<port id="0" precision="FP16">
|
793 |
+
<dim>1</dim>
|
794 |
+
<dim>1</dim>
|
795 |
+
<dim>1024</dim>
|
796 |
+
</port>
|
797 |
+
</output>
|
798 |
+
</layer>
|
799 |
+
<layer id="44" name="Constant_3243449" type="Convert" version="opset1">
|
800 |
+
<data destination_type="f32" />
|
801 |
+
<rt_info>
|
802 |
+
<attribute name="decompression" version="0" />
|
803 |
+
</rt_info>
|
804 |
+
<input>
|
805 |
+
<port id="0" precision="FP16">
|
806 |
+
<dim>1</dim>
|
807 |
+
<dim>1</dim>
|
808 |
+
<dim>1024</dim>
|
809 |
+
</port>
|
810 |
+
</input>
|
811 |
+
<output>
|
812 |
+
<port id="1" precision="FP32">
|
813 |
+
<dim>1</dim>
|
814 |
+
<dim>1</dim>
|
815 |
+
<dim>1024</dim>
|
816 |
+
</port>
|
817 |
+
</output>
|
818 |
+
</layer>
|
819 |
+
<layer id="45" name="__module.embed.out/aten::linear/Add" type="Add" version="opset1">
|
820 |
+
<data auto_broadcast="numpy" />
|
821 |
+
<input>
|
822 |
+
<port id="0" precision="FP32">
|
823 |
+
<dim>-1</dim>
|
824 |
+
<dim>-1</dim>
|
825 |
+
<dim>1024</dim>
|
826 |
+
</port>
|
827 |
+
<port id="1" precision="FP32">
|
828 |
+
<dim>1</dim>
|
829 |
+
<dim>1</dim>
|
830 |
+
<dim>1024</dim>
|
831 |
+
</port>
|
832 |
+
</input>
|
833 |
+
<output>
|
834 |
+
<port id="2" precision="FP32">
|
835 |
+
<dim>-1</dim>
|
836 |
+
<dim>-1</dim>
|
837 |
+
<dim>1024</dim>
|
838 |
+
</port>
|
839 |
+
</output>
|
840 |
+
</layer>
|
841 |
+
<layer id="46" name="Result_3241509" type="Result" version="opset1">
|
842 |
+
<input>
|
843 |
+
<port id="0" precision="FP32">
|
844 |
+
<dim>-1</dim>
|
845 |
+
<dim>-1</dim>
|
846 |
+
<dim>1024</dim>
|
847 |
+
</port>
|
848 |
+
</input>
|
849 |
+
</layer>
|
850 |
+
</layers>
|
851 |
+
<edges>
|
852 |
+
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
|
853 |
+
<edge from-layer="1" from-port="0" to-layer="2" to-port="1" />
|
854 |
+
<edge from-layer="2" from-port="2" to-layer="5" to-port="0" />
|
855 |
+
<edge from-layer="3" from-port="0" to-layer="4" to-port="0" />
|
856 |
+
<edge from-layer="4" from-port="1" to-layer="5" to-port="1" />
|
857 |
+
<edge from-layer="5" from-port="2" to-layer="8" to-port="0" />
|
858 |
+
<edge from-layer="6" from-port="0" to-layer="7" to-port="0" />
|
859 |
+
<edge from-layer="7" from-port="1" to-layer="8" to-port="1" />
|
860 |
+
<edge from-layer="8" from-port="2" to-layer="9" to-port="0" />
|
861 |
+
<edge from-layer="9" from-port="1" to-layer="12" to-port="0" />
|
862 |
+
<edge from-layer="10" from-port="0" to-layer="11" to-port="0" />
|
863 |
+
<edge from-layer="11" from-port="1" to-layer="12" to-port="1" />
|
864 |
+
<edge from-layer="12" from-port="2" to-layer="15" to-port="0" />
|
865 |
+
<edge from-layer="13" from-port="0" to-layer="14" to-port="0" />
|
866 |
+
<edge from-layer="14" from-port="1" to-layer="15" to-port="1" />
|
867 |
+
<edge from-layer="15" from-port="2" to-layer="18" to-port="0" />
|
868 |
+
<edge from-layer="16" from-port="0" to-layer="17" to-port="0" />
|
869 |
+
<edge from-layer="17" from-port="1" to-layer="18" to-port="1" />
|
870 |
+
<edge from-layer="18" from-port="2" to-layer="21" to-port="0" />
|
871 |
+
<edge from-layer="19" from-port="0" to-layer="20" to-port="0" />
|
872 |
+
<edge from-layer="20" from-port="1" to-layer="21" to-port="1" />
|
873 |
+
<edge from-layer="21" from-port="2" to-layer="22" to-port="0" />
|
874 |
+
<edge from-layer="22" from-port="1" to-layer="25" to-port="0" />
|
875 |
+
<edge from-layer="23" from-port="0" to-layer="24" to-port="0" />
|
876 |
+
<edge from-layer="24" from-port="1" to-layer="25" to-port="1" />
|
877 |
+
<edge from-layer="25" from-port="2" to-layer="28" to-port="0" />
|
878 |
+
<edge from-layer="26" from-port="0" to-layer="27" to-port="0" />
|
879 |
+
<edge from-layer="27" from-port="1" to-layer="28" to-port="1" />
|
880 |
+
<edge from-layer="28" from-port="2" to-layer="31" to-port="0" />
|
881 |
+
<edge from-layer="29" from-port="0" to-layer="30" to-port="0" />
|
882 |
+
<edge from-layer="30" from-port="1" to-layer="31" to-port="1" />
|
883 |
+
<edge from-layer="31" from-port="2" to-layer="34" to-port="0" />
|
884 |
+
<edge from-layer="32" from-port="0" to-layer="33" to-port="0" />
|
885 |
+
<edge from-layer="33" from-port="1" to-layer="34" to-port="1" />
|
886 |
+
<edge from-layer="34" from-port="2" to-layer="35" to-port="0" />
|
887 |
+
<edge from-layer="35" from-port="1" to-layer="37" to-port="0" />
|
888 |
+
<edge from-layer="36" from-port="0" to-layer="37" to-port="1" />
|
889 |
+
<edge from-layer="37" from-port="2" to-layer="39" to-port="0" />
|
890 |
+
<edge from-layer="38" from-port="0" to-layer="39" to-port="1" />
|
891 |
+
<edge from-layer="39" from-port="2" to-layer="42" to-port="0" />
|
892 |
+
<edge from-layer="40" from-port="0" to-layer="41" to-port="0" />
|
893 |
+
<edge from-layer="41" from-port="1" to-layer="42" to-port="1" />
|
894 |
+
<edge from-layer="42" from-port="2" to-layer="45" to-port="0" />
|
895 |
+
<edge from-layer="43" from-port="0" to-layer="44" to-port="0" />
|
896 |
+
<edge from-layer="44" from-port="1" to-layer="45" to-port="1" />
|
897 |
+
<edge from-layer="45" from-port="2" to-layer="46" to-port="0" />
|
898 |
+
</edges>
|
899 |
+
<rt_info>
|
900 |
+
<Runtime_version value="2025.1.0-18311-da00e90afb7" />
|
901 |
+
<conversion_parameters>
|
902 |
+
<framework value="pytorch" />
|
903 |
+
<is_python_object value="True" />
|
904 |
+
</conversion_parameters>
|
905 |
+
</rt_info>
|
906 |
+
</net>
|
openvino_audio_text_projection_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f01e541b7df78261c7f24db84a60d13c0cc36b93cfdb4598af83a5cc0016276
|
3 |
+
size 25178112
|
openvino_audio_text_projection_model.xml
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="Model27385" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="input" type="Parameter" version="opset1">
|
5 |
+
<data shape="?,?,?" element_type="f32" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="FP32" names="input">
|
8 |
+
<dim>-1</dim>
|
9 |
+
<dim>-1</dim>
|
10 |
+
<dim>-1</dim>
|
11 |
+
</port>
|
12 |
+
</output>
|
13 |
+
</layer>
|
14 |
+
<layer id="1" name="self.0.weight_compressed" type="Const" version="opset1">
|
15 |
+
<data element_type="f16" shape="3072, 1024" offset="0" size="6291456" />
|
16 |
+
<output>
|
17 |
+
<port id="0" precision="FP16" names="self.0.weight">
|
18 |
+
<dim>3072</dim>
|
19 |
+
<dim>1024</dim>
|
20 |
+
</port>
|
21 |
+
</output>
|
22 |
+
</layer>
|
23 |
+
<layer id="2" name="self.0.weight" type="Convert" version="opset1">
|
24 |
+
<data destination_type="f32" />
|
25 |
+
<rt_info>
|
26 |
+
<attribute name="decompression" version="0" />
|
27 |
+
</rt_info>
|
28 |
+
<input>
|
29 |
+
<port id="0" precision="FP16">
|
30 |
+
<dim>3072</dim>
|
31 |
+
<dim>1024</dim>
|
32 |
+
</port>
|
33 |
+
</input>
|
34 |
+
<output>
|
35 |
+
<port id="1" precision="FP32">
|
36 |
+
<dim>3072</dim>
|
37 |
+
<dim>1024</dim>
|
38 |
+
</port>
|
39 |
+
</output>
|
40 |
+
</layer>
|
41 |
+
<layer id="3" name="__module.0/aten::linear/MatMul" type="MatMul" version="opset1">
|
42 |
+
<data transpose_a="false" transpose_b="true" />
|
43 |
+
<input>
|
44 |
+
<port id="0" precision="FP32">
|
45 |
+
<dim>-1</dim>
|
46 |
+
<dim>-1</dim>
|
47 |
+
<dim>-1</dim>
|
48 |
+
</port>
|
49 |
+
<port id="1" precision="FP32">
|
50 |
+
<dim>3072</dim>
|
51 |
+
<dim>1024</dim>
|
52 |
+
</port>
|
53 |
+
</input>
|
54 |
+
<output>
|
55 |
+
<port id="2" precision="FP32">
|
56 |
+
<dim>-1</dim>
|
57 |
+
<dim>-1</dim>
|
58 |
+
<dim>3072</dim>
|
59 |
+
</port>
|
60 |
+
</output>
|
61 |
+
</layer>
|
62 |
+
<layer id="4" name="Constant_4741778_compressed" type="Const" version="opset1">
|
63 |
+
<data element_type="f16" shape="1, 1, 3072" offset="6291456" size="6144" />
|
64 |
+
<output>
|
65 |
+
<port id="0" precision="FP16">
|
66 |
+
<dim>1</dim>
|
67 |
+
<dim>1</dim>
|
68 |
+
<dim>3072</dim>
|
69 |
+
</port>
|
70 |
+
</output>
|
71 |
+
</layer>
|
72 |
+
<layer id="5" name="Constant_4741778" type="Convert" version="opset1">
|
73 |
+
<data destination_type="f32" />
|
74 |
+
<rt_info>
|
75 |
+
<attribute name="decompression" version="0" />
|
76 |
+
</rt_info>
|
77 |
+
<input>
|
78 |
+
<port id="0" precision="FP16">
|
79 |
+
<dim>1</dim>
|
80 |
+
<dim>1</dim>
|
81 |
+
<dim>3072</dim>
|
82 |
+
</port>
|
83 |
+
</input>
|
84 |
+
<output>
|
85 |
+
<port id="1" precision="FP32">
|
86 |
+
<dim>1</dim>
|
87 |
+
<dim>1</dim>
|
88 |
+
<dim>3072</dim>
|
89 |
+
</port>
|
90 |
+
</output>
|
91 |
+
</layer>
|
92 |
+
<layer id="6" name="__module.0/aten::linear/Add" type="Add" version="opset1">
|
93 |
+
<data auto_broadcast="numpy" />
|
94 |
+
<input>
|
95 |
+
<port id="0" precision="FP32">
|
96 |
+
<dim>-1</dim>
|
97 |
+
<dim>-1</dim>
|
98 |
+
<dim>3072</dim>
|
99 |
+
</port>
|
100 |
+
<port id="1" precision="FP32">
|
101 |
+
<dim>1</dim>
|
102 |
+
<dim>1</dim>
|
103 |
+
<dim>3072</dim>
|
104 |
+
</port>
|
105 |
+
</input>
|
106 |
+
<output>
|
107 |
+
<port id="2" precision="FP32" names="10">
|
108 |
+
<dim>-1</dim>
|
109 |
+
<dim>-1</dim>
|
110 |
+
<dim>3072</dim>
|
111 |
+
</port>
|
112 |
+
</output>
|
113 |
+
</layer>
|
114 |
+
<layer id="7" name="__module.1/aten::gelu/Gelu" type="Gelu" version="opset7">
|
115 |
+
<data approximation_mode="ERF" />
|
116 |
+
<input>
|
117 |
+
<port id="0" precision="FP32">
|
118 |
+
<dim>-1</dim>
|
119 |
+
<dim>-1</dim>
|
120 |
+
<dim>3072</dim>
|
121 |
+
</port>
|
122 |
+
</input>
|
123 |
+
<output>
|
124 |
+
<port id="1" precision="FP32" names="12">
|
125 |
+
<dim>-1</dim>
|
126 |
+
<dim>-1</dim>
|
127 |
+
<dim>3072</dim>
|
128 |
+
</port>
|
129 |
+
</output>
|
130 |
+
</layer>
|
131 |
+
<layer id="8" name="self.2.weight_compressed" type="Const" version="opset1">
|
132 |
+
<data element_type="f16" shape="3072, 3072" offset="6297600" size="18874368" />
|
133 |
+
<output>
|
134 |
+
<port id="0" precision="FP16" names="self.2.weight">
|
135 |
+
<dim>3072</dim>
|
136 |
+
<dim>3072</dim>
|
137 |
+
</port>
|
138 |
+
</output>
|
139 |
+
</layer>
|
140 |
+
<layer id="9" name="self.2.weight" type="Convert" version="opset1">
|
141 |
+
<data destination_type="f32" />
|
142 |
+
<rt_info>
|
143 |
+
<attribute name="decompression" version="0" />
|
144 |
+
</rt_info>
|
145 |
+
<input>
|
146 |
+
<port id="0" precision="FP16">
|
147 |
+
<dim>3072</dim>
|
148 |
+
<dim>3072</dim>
|
149 |
+
</port>
|
150 |
+
</input>
|
151 |
+
<output>
|
152 |
+
<port id="1" precision="FP32">
|
153 |
+
<dim>3072</dim>
|
154 |
+
<dim>3072</dim>
|
155 |
+
</port>
|
156 |
+
</output>
|
157 |
+
</layer>
|
158 |
+
<layer id="10" name="__module.2/aten::linear/MatMul" type="MatMul" version="opset1">
|
159 |
+
<data transpose_a="false" transpose_b="true" />
|
160 |
+
<input>
|
161 |
+
<port id="0" precision="FP32">
|
162 |
+
<dim>-1</dim>
|
163 |
+
<dim>-1</dim>
|
164 |
+
<dim>3072</dim>
|
165 |
+
</port>
|
166 |
+
<port id="1" precision="FP32">
|
167 |
+
<dim>3072</dim>
|
168 |
+
<dim>3072</dim>
|
169 |
+
</port>
|
170 |
+
</input>
|
171 |
+
<output>
|
172 |
+
<port id="2" precision="FP32">
|
173 |
+
<dim>-1</dim>
|
174 |
+
<dim>-1</dim>
|
175 |
+
<dim>3072</dim>
|
176 |
+
</port>
|
177 |
+
</output>
|
178 |
+
</layer>
|
179 |
+
<layer id="11" name="Constant_4741779_compressed" type="Const" version="opset1">
|
180 |
+
<data element_type="f16" shape="1, 1, 3072" offset="25171968" size="6144" />
|
181 |
+
<output>
|
182 |
+
<port id="0" precision="FP16">
|
183 |
+
<dim>1</dim>
|
184 |
+
<dim>1</dim>
|
185 |
+
<dim>3072</dim>
|
186 |
+
</port>
|
187 |
+
</output>
|
188 |
+
</layer>
|
189 |
+
<layer id="12" name="Constant_4741779" type="Convert" version="opset1">
|
190 |
+
<data destination_type="f32" />
|
191 |
+
<rt_info>
|
192 |
+
<attribute name="decompression" version="0" />
|
193 |
+
</rt_info>
|
194 |
+
<input>
|
195 |
+
<port id="0" precision="FP16">
|
196 |
+
<dim>1</dim>
|
197 |
+
<dim>1</dim>
|
198 |
+
<dim>3072</dim>
|
199 |
+
</port>
|
200 |
+
</input>
|
201 |
+
<output>
|
202 |
+
<port id="1" precision="FP32">
|
203 |
+
<dim>1</dim>
|
204 |
+
<dim>1</dim>
|
205 |
+
<dim>3072</dim>
|
206 |
+
</port>
|
207 |
+
</output>
|
208 |
+
</layer>
|
209 |
+
<layer id="13" name="__module.2/aten::linear/Add" type="Add" version="opset1">
|
210 |
+
<data auto_broadcast="numpy" />
|
211 |
+
<input>
|
212 |
+
<port id="0" precision="FP32">
|
213 |
+
<dim>-1</dim>
|
214 |
+
<dim>-1</dim>
|
215 |
+
<dim>3072</dim>
|
216 |
+
</port>
|
217 |
+
<port id="1" precision="FP32">
|
218 |
+
<dim>1</dim>
|
219 |
+
<dim>1</dim>
|
220 |
+
<dim>3072</dim>
|
221 |
+
</port>
|
222 |
+
</input>
|
223 |
+
<output>
|
224 |
+
<port id="2" precision="FP32">
|
225 |
+
<dim>-1</dim>
|
226 |
+
<dim>-1</dim>
|
227 |
+
<dim>3072</dim>
|
228 |
+
</port>
|
229 |
+
</output>
|
230 |
+
</layer>
|
231 |
+
<layer id="14" name="Result_4740047" type="Result" version="opset1">
|
232 |
+
<input>
|
233 |
+
<port id="0" precision="FP32">
|
234 |
+
<dim>-1</dim>
|
235 |
+
<dim>-1</dim>
|
236 |
+
<dim>3072</dim>
|
237 |
+
</port>
|
238 |
+
</input>
|
239 |
+
</layer>
|
240 |
+
</layers>
|
241 |
+
<edges>
|
242 |
+
<edge from-layer="0" from-port="0" to-layer="3" to-port="0" />
|
243 |
+
<edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
|
244 |
+
<edge from-layer="2" from-port="1" to-layer="3" to-port="1" />
|
245 |
+
<edge from-layer="3" from-port="2" to-layer="6" to-port="0" />
|
246 |
+
<edge from-layer="4" from-port="0" to-layer="5" to-port="0" />
|
247 |
+
<edge from-layer="5" from-port="1" to-layer="6" to-port="1" />
|
248 |
+
<edge from-layer="6" from-port="2" to-layer="7" to-port="0" />
|
249 |
+
<edge from-layer="7" from-port="1" to-layer="10" to-port="0" />
|
250 |
+
<edge from-layer="8" from-port="0" to-layer="9" to-port="0" />
|
251 |
+
<edge from-layer="9" from-port="1" to-layer="10" to-port="1" />
|
252 |
+
<edge from-layer="10" from-port="2" to-layer="13" to-port="0" />
|
253 |
+
<edge from-layer="11" from-port="0" to-layer="12" to-port="0" />
|
254 |
+
<edge from-layer="12" from-port="1" to-layer="13" to-port="1" />
|
255 |
+
<edge from-layer="13" from-port="2" to-layer="14" to-port="0" />
|
256 |
+
</edges>
|
257 |
+
<rt_info>
|
258 |
+
<Runtime_version value="2025.1.0-18311-da00e90afb7" />
|
259 |
+
<conversion_parameters>
|
260 |
+
<framework value="pytorch" />
|
261 |
+
<is_python_object value="True" />
|
262 |
+
</conversion_parameters>
|
263 |
+
</rt_info>
|
264 |
+
</net>
|
openvino_audio_vision_projection_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f01e541b7df78261c7f24db84a60d13c0cc36b93cfdb4598af83a5cc0016276
|
3 |
+
size 25178112
|
openvino_audio_vision_projection_model.xml
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="Model27388" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="input" type="Parameter" version="opset1">
|
5 |
+
<data shape="?,?,?" element_type="f32" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="FP32" names="input">
|
8 |
+
<dim>-1</dim>
|
9 |
+
<dim>-1</dim>
|
10 |
+
<dim>-1</dim>
|
11 |
+
</port>
|
12 |
+
</output>
|
13 |
+
</layer>
|
14 |
+
<layer id="1" name="self.0.weight_compressed" type="Const" version="opset1">
|
15 |
+
<data element_type="f16" shape="3072, 1024" offset="0" size="6291456" />
|
16 |
+
<output>
|
17 |
+
<port id="0" precision="FP16" names="self.0.weight">
|
18 |
+
<dim>3072</dim>
|
19 |
+
<dim>1024</dim>
|
20 |
+
</port>
|
21 |
+
</output>
|
22 |
+
</layer>
|
23 |
+
<layer id="2" name="self.0.weight" type="Convert" version="opset1">
|
24 |
+
<data destination_type="f32" />
|
25 |
+
<rt_info>
|
26 |
+
<attribute name="decompression" version="0" />
|
27 |
+
</rt_info>
|
28 |
+
<input>
|
29 |
+
<port id="0" precision="FP16">
|
30 |
+
<dim>3072</dim>
|
31 |
+
<dim>1024</dim>
|
32 |
+
</port>
|
33 |
+
</input>
|
34 |
+
<output>
|
35 |
+
<port id="1" precision="FP32">
|
36 |
+
<dim>3072</dim>
|
37 |
+
<dim>1024</dim>
|
38 |
+
</port>
|
39 |
+
</output>
|
40 |
+
</layer>
|
41 |
+
<layer id="3" name="__module.0/aten::linear/MatMul" type="MatMul" version="opset1">
|
42 |
+
<data transpose_a="false" transpose_b="true" />
|
43 |
+
<input>
|
44 |
+
<port id="0" precision="FP32">
|
45 |
+
<dim>-1</dim>
|
46 |
+
<dim>-1</dim>
|
47 |
+
<dim>-1</dim>
|
48 |
+
</port>
|
49 |
+
<port id="1" precision="FP32">
|
50 |
+
<dim>3072</dim>
|
51 |
+
<dim>1024</dim>
|
52 |
+
</port>
|
53 |
+
</input>
|
54 |
+
<output>
|
55 |
+
<port id="2" precision="FP32">
|
56 |
+
<dim>-1</dim>
|
57 |
+
<dim>-1</dim>
|
58 |
+
<dim>3072</dim>
|
59 |
+
</port>
|
60 |
+
</output>
|
61 |
+
</layer>
|
62 |
+
<layer id="4" name="Constant_4743673_compressed" type="Const" version="opset1">
|
63 |
+
<data element_type="f16" shape="1, 1, 3072" offset="6291456" size="6144" />
|
64 |
+
<output>
|
65 |
+
<port id="0" precision="FP16">
|
66 |
+
<dim>1</dim>
|
67 |
+
<dim>1</dim>
|
68 |
+
<dim>3072</dim>
|
69 |
+
</port>
|
70 |
+
</output>
|
71 |
+
</layer>
|
72 |
+
<layer id="5" name="Constant_4743673" type="Convert" version="opset1">
|
73 |
+
<data destination_type="f32" />
|
74 |
+
<rt_info>
|
75 |
+
<attribute name="decompression" version="0" />
|
76 |
+
</rt_info>
|
77 |
+
<input>
|
78 |
+
<port id="0" precision="FP16">
|
79 |
+
<dim>1</dim>
|
80 |
+
<dim>1</dim>
|
81 |
+
<dim>3072</dim>
|
82 |
+
</port>
|
83 |
+
</input>
|
84 |
+
<output>
|
85 |
+
<port id="1" precision="FP32">
|
86 |
+
<dim>1</dim>
|
87 |
+
<dim>1</dim>
|
88 |
+
<dim>3072</dim>
|
89 |
+
</port>
|
90 |
+
</output>
|
91 |
+
</layer>
|
92 |
+
<layer id="6" name="__module.0/aten::linear/Add" type="Add" version="opset1">
|
93 |
+
<data auto_broadcast="numpy" />
|
94 |
+
<input>
|
95 |
+
<port id="0" precision="FP32">
|
96 |
+
<dim>-1</dim>
|
97 |
+
<dim>-1</dim>
|
98 |
+
<dim>3072</dim>
|
99 |
+
</port>
|
100 |
+
<port id="1" precision="FP32">
|
101 |
+
<dim>1</dim>
|
102 |
+
<dim>1</dim>
|
103 |
+
<dim>3072</dim>
|
104 |
+
</port>
|
105 |
+
</input>
|
106 |
+
<output>
|
107 |
+
<port id="2" precision="FP32" names="10">
|
108 |
+
<dim>-1</dim>
|
109 |
+
<dim>-1</dim>
|
110 |
+
<dim>3072</dim>
|
111 |
+
</port>
|
112 |
+
</output>
|
113 |
+
</layer>
|
114 |
+
<layer id="7" name="__module.1/aten::gelu/Gelu" type="Gelu" version="opset7">
|
115 |
+
<data approximation_mode="ERF" />
|
116 |
+
<input>
|
117 |
+
<port id="0" precision="FP32">
|
118 |
+
<dim>-1</dim>
|
119 |
+
<dim>-1</dim>
|
120 |
+
<dim>3072</dim>
|
121 |
+
</port>
|
122 |
+
</input>
|
123 |
+
<output>
|
124 |
+
<port id="1" precision="FP32" names="12">
|
125 |
+
<dim>-1</dim>
|
126 |
+
<dim>-1</dim>
|
127 |
+
<dim>3072</dim>
|
128 |
+
</port>
|
129 |
+
</output>
|
130 |
+
</layer>
|
131 |
+
<layer id="8" name="self.2.weight_compressed" type="Const" version="opset1">
|
132 |
+
<data element_type="f16" shape="3072, 3072" offset="6297600" size="18874368" />
|
133 |
+
<output>
|
134 |
+
<port id="0" precision="FP16" names="self.2.weight">
|
135 |
+
<dim>3072</dim>
|
136 |
+
<dim>3072</dim>
|
137 |
+
</port>
|
138 |
+
</output>
|
139 |
+
</layer>
|
140 |
+
<layer id="9" name="self.2.weight" type="Convert" version="opset1">
|
141 |
+
<data destination_type="f32" />
|
142 |
+
<rt_info>
|
143 |
+
<attribute name="decompression" version="0" />
|
144 |
+
</rt_info>
|
145 |
+
<input>
|
146 |
+
<port id="0" precision="FP16">
|
147 |
+
<dim>3072</dim>
|
148 |
+
<dim>3072</dim>
|
149 |
+
</port>
|
150 |
+
</input>
|
151 |
+
<output>
|
152 |
+
<port id="1" precision="FP32">
|
153 |
+
<dim>3072</dim>
|
154 |
+
<dim>3072</dim>
|
155 |
+
</port>
|
156 |
+
</output>
|
157 |
+
</layer>
|
158 |
+
<layer id="10" name="__module.2/aten::linear/MatMul" type="MatMul" version="opset1">
|
159 |
+
<data transpose_a="false" transpose_b="true" />
|
160 |
+
<input>
|
161 |
+
<port id="0" precision="FP32">
|
162 |
+
<dim>-1</dim>
|
163 |
+
<dim>-1</dim>
|
164 |
+
<dim>3072</dim>
|
165 |
+
</port>
|
166 |
+
<port id="1" precision="FP32">
|
167 |
+
<dim>3072</dim>
|
168 |
+
<dim>3072</dim>
|
169 |
+
</port>
|
170 |
+
</input>
|
171 |
+
<output>
|
172 |
+
<port id="2" precision="FP32">
|
173 |
+
<dim>-1</dim>
|
174 |
+
<dim>-1</dim>
|
175 |
+
<dim>3072</dim>
|
176 |
+
</port>
|
177 |
+
</output>
|
178 |
+
</layer>
|
179 |
+
<layer id="11" name="Constant_4743674_compressed" type="Const" version="opset1">
|
180 |
+
<data element_type="f16" shape="1, 1, 3072" offset="25171968" size="6144" />
|
181 |
+
<output>
|
182 |
+
<port id="0" precision="FP16">
|
183 |
+
<dim>1</dim>
|
184 |
+
<dim>1</dim>
|
185 |
+
<dim>3072</dim>
|
186 |
+
</port>
|
187 |
+
</output>
|
188 |
+
</layer>
|
189 |
+
<layer id="12" name="Constant_4743674" type="Convert" version="opset1">
|
190 |
+
<data destination_type="f32" />
|
191 |
+
<rt_info>
|
192 |
+
<attribute name="decompression" version="0" />
|
193 |
+
</rt_info>
|
194 |
+
<input>
|
195 |
+
<port id="0" precision="FP16">
|
196 |
+
<dim>1</dim>
|
197 |
+
<dim>1</dim>
|
198 |
+
<dim>3072</dim>
|
199 |
+
</port>
|
200 |
+
</input>
|
201 |
+
<output>
|
202 |
+
<port id="1" precision="FP32">
|
203 |
+
<dim>1</dim>
|
204 |
+
<dim>1</dim>
|
205 |
+
<dim>3072</dim>
|
206 |
+
</port>
|
207 |
+
</output>
|
208 |
+
</layer>
|
209 |
+
<layer id="13" name="__module.2/aten::linear/Add" type="Add" version="opset1">
|
210 |
+
<data auto_broadcast="numpy" />
|
211 |
+
<input>
|
212 |
+
<port id="0" precision="FP32">
|
213 |
+
<dim>-1</dim>
|
214 |
+
<dim>-1</dim>
|
215 |
+
<dim>3072</dim>
|
216 |
+
</port>
|
217 |
+
<port id="1" precision="FP32">
|
218 |
+
<dim>1</dim>
|
219 |
+
<dim>1</dim>
|
220 |
+
<dim>3072</dim>
|
221 |
+
</port>
|
222 |
+
</input>
|
223 |
+
<output>
|
224 |
+
<port id="2" precision="FP32">
|
225 |
+
<dim>-1</dim>
|
226 |
+
<dim>-1</dim>
|
227 |
+
<dim>3072</dim>
|
228 |
+
</port>
|
229 |
+
</output>
|
230 |
+
</layer>
|
231 |
+
<layer id="14" name="Result_4741942" type="Result" version="opset1">
|
232 |
+
<input>
|
233 |
+
<port id="0" precision="FP32">
|
234 |
+
<dim>-1</dim>
|
235 |
+
<dim>-1</dim>
|
236 |
+
<dim>3072</dim>
|
237 |
+
</port>
|
238 |
+
</input>
|
239 |
+
</layer>
|
240 |
+
</layers>
|
241 |
+
<edges>
|
242 |
+
<edge from-layer="0" from-port="0" to-layer="3" to-port="0" />
|
243 |
+
<edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
|
244 |
+
<edge from-layer="2" from-port="1" to-layer="3" to-port="1" />
|
245 |
+
<edge from-layer="3" from-port="2" to-layer="6" to-port="0" />
|
246 |
+
<edge from-layer="4" from-port="0" to-layer="5" to-port="0" />
|
247 |
+
<edge from-layer="5" from-port="1" to-layer="6" to-port="1" />
|
248 |
+
<edge from-layer="6" from-port="2" to-layer="7" to-port="0" />
|
249 |
+
<edge from-layer="7" from-port="1" to-layer="10" to-port="0" />
|
250 |
+
<edge from-layer="8" from-port="0" to-layer="9" to-port="0" />
|
251 |
+
<edge from-layer="9" from-port="1" to-layer="10" to-port="1" />
|
252 |
+
<edge from-layer="10" from-port="2" to-layer="13" to-port="0" />
|
253 |
+
<edge from-layer="11" from-port="0" to-layer="12" to-port="0" />
|
254 |
+
<edge from-layer="12" from-port="1" to-layer="13" to-port="1" />
|
255 |
+
<edge from-layer="13" from-port="2" to-layer="14" to-port="0" />
|
256 |
+
</edges>
|
257 |
+
<rt_info>
|
258 |
+
<Runtime_version value="2025.1.0-18311-da00e90afb7" />
|
259 |
+
<conversion_parameters>
|
260 |
+
<framework value="pytorch" />
|
261 |
+
<is_python_object value="True" />
|
262 |
+
</conversion_parameters>
|
263 |
+
</rt_info>
|
264 |
+
</net>
|
openvino_language_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c023c393dd796ef9d1d16e4e03e5dc059a5d9bc99da25845c256d2edfa679c33
|
3 |
+
size 2768460624
|
openvino_language_model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
openvino_text_embeddings_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:464ddd70c11b2bc5d66f3da60e7edf051e848b6c520088768759ad9bd6645153
|
3 |
+
size 1229193220
|
openvino_text_embeddings_model.xml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="Model0" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="input" type="Parameter" version="opset1">
|
5 |
+
<data shape="?,?" element_type="i64" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="I64" names="input">
|
8 |
+
<dim>-1</dim>
|
9 |
+
<dim>-1</dim>
|
10 |
+
</port>
|
11 |
+
</output>
|
12 |
+
</layer>
|
13 |
+
<layer id="1" name="self.weight_compressed" type="Const" version="opset1">
|
14 |
+
<data element_type="f16" shape="200064, 3072" offset="0" size="1229193216" />
|
15 |
+
<output>
|
16 |
+
<port id="0" precision="FP16" names="self.weight">
|
17 |
+
<dim>200064</dim>
|
18 |
+
<dim>3072</dim>
|
19 |
+
</port>
|
20 |
+
</output>
|
21 |
+
</layer>
|
22 |
+
<layer id="2" name="self.weight" type="Convert" version="opset1">
|
23 |
+
<data destination_type="f32" />
|
24 |
+
<rt_info>
|
25 |
+
<attribute name="decompression" version="0" />
|
26 |
+
</rt_info>
|
27 |
+
<input>
|
28 |
+
<port id="0" precision="FP16">
|
29 |
+
<dim>200064</dim>
|
30 |
+
<dim>3072</dim>
|
31 |
+
</port>
|
32 |
+
</input>
|
33 |
+
<output>
|
34 |
+
<port id="1" precision="FP32">
|
35 |
+
<dim>200064</dim>
|
36 |
+
<dim>3072</dim>
|
37 |
+
</port>
|
38 |
+
</output>
|
39 |
+
</layer>
|
40 |
+
<layer id="3" name="aten::embedding/Convert" type="Convert" version="opset1">
|
41 |
+
<data destination_type="i32" />
|
42 |
+
<input>
|
43 |
+
<port id="0" precision="I64">
|
44 |
+
<dim>-1</dim>
|
45 |
+
<dim>-1</dim>
|
46 |
+
</port>
|
47 |
+
</input>
|
48 |
+
<output>
|
49 |
+
<port id="1" precision="I32">
|
50 |
+
<dim>-1</dim>
|
51 |
+
<dim>-1</dim>
|
52 |
+
</port>
|
53 |
+
</output>
|
54 |
+
</layer>
|
55 |
+
<layer id="4" name="aten::embedding/Constant" type="Const" version="opset1">
|
56 |
+
<data element_type="i32" shape="" offset="1229193216" size="4" />
|
57 |
+
<output>
|
58 |
+
<port id="0" precision="I32" />
|
59 |
+
</output>
|
60 |
+
</layer>
|
61 |
+
<layer id="5" name="aten::embedding/Gather" type="Gather" version="opset8">
|
62 |
+
<data batch_dims="0" />
|
63 |
+
<input>
|
64 |
+
<port id="0" precision="FP32">
|
65 |
+
<dim>200064</dim>
|
66 |
+
<dim>3072</dim>
|
67 |
+
</port>
|
68 |
+
<port id="1" precision="I32">
|
69 |
+
<dim>-1</dim>
|
70 |
+
<dim>-1</dim>
|
71 |
+
</port>
|
72 |
+
<port id="2" precision="I32" />
|
73 |
+
</input>
|
74 |
+
<output>
|
75 |
+
<port id="3" precision="FP32">
|
76 |
+
<dim>-1</dim>
|
77 |
+
<dim>-1</dim>
|
78 |
+
<dim>3072</dim>
|
79 |
+
</port>
|
80 |
+
</output>
|
81 |
+
</layer>
|
82 |
+
<layer id="6" name="Result_11" type="Result" version="opset1">
|
83 |
+
<input>
|
84 |
+
<port id="0" precision="FP32">
|
85 |
+
<dim>-1</dim>
|
86 |
+
<dim>-1</dim>
|
87 |
+
<dim>3072</dim>
|
88 |
+
</port>
|
89 |
+
</input>
|
90 |
+
</layer>
|
91 |
+
</layers>
|
92 |
+
<edges>
|
93 |
+
<edge from-layer="0" from-port="0" to-layer="3" to-port="0" />
|
94 |
+
<edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
|
95 |
+
<edge from-layer="2" from-port="1" to-layer="5" to-port="0" />
|
96 |
+
<edge from-layer="3" from-port="1" to-layer="5" to-port="1" />
|
97 |
+
<edge from-layer="4" from-port="0" to-layer="5" to-port="2" />
|
98 |
+
<edge from-layer="5" from-port="3" to-layer="6" to-port="0" />
|
99 |
+
</edges>
|
100 |
+
<rt_info>
|
101 |
+
<Runtime_version value="2025.1.0-18311-da00e90afb7" />
|
102 |
+
<conversion_parameters>
|
103 |
+
<framework value="pytorch" />
|
104 |
+
<is_python_object value="True" />
|
105 |
+
</conversion_parameters>
|
106 |
+
</rt_info>
|
107 |
+
</net>
|
openvino_vision_embeddings_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b70404777806200c0769a018ec95acf1e4fa7055dfbf03ff517bf13a8c30723c
|
3 |
+
size 400024908
|
openvino_vision_embeddings_model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
openvino_vision_projection_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f7e2f3f03b477a0a699a740ea365ef61c015142a03ceebb291a6d2ab9b2d4d7
|
3 |
+
size 25964544
|
openvino_vision_projection_model.xml
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="Model33240" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="input" type="Parameter" version="opset1">
|
5 |
+
<data shape="?,?,?" element_type="f32" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="FP32" names="input">
|
8 |
+
<dim>-1</dim>
|
9 |
+
<dim>-1</dim>
|
10 |
+
<dim>-1</dim>
|
11 |
+
</port>
|
12 |
+
</output>
|
13 |
+
</layer>
|
14 |
+
<layer id="1" name="self.0.weight_compressed" type="Const" version="opset1">
|
15 |
+
<data element_type="f16" shape="3072, 1152" offset="0" size="7077888" />
|
16 |
+
<output>
|
17 |
+
<port id="0" precision="FP16" names="self.0.weight">
|
18 |
+
<dim>3072</dim>
|
19 |
+
<dim>1152</dim>
|
20 |
+
</port>
|
21 |
+
</output>
|
22 |
+
</layer>
|
23 |
+
<layer id="2" name="self.0.weight" type="Convert" version="opset1">
|
24 |
+
<data destination_type="f32" />
|
25 |
+
<rt_info>
|
26 |
+
<attribute name="decompression" version="0" />
|
27 |
+
</rt_info>
|
28 |
+
<input>
|
29 |
+
<port id="0" precision="FP16">
|
30 |
+
<dim>3072</dim>
|
31 |
+
<dim>1152</dim>
|
32 |
+
</port>
|
33 |
+
</input>
|
34 |
+
<output>
|
35 |
+
<port id="1" precision="FP32">
|
36 |
+
<dim>3072</dim>
|
37 |
+
<dim>1152</dim>
|
38 |
+
</port>
|
39 |
+
</output>
|
40 |
+
</layer>
|
41 |
+
<layer id="3" name="__module.0/aten::linear/MatMul" type="MatMul" version="opset1">
|
42 |
+
<data transpose_a="false" transpose_b="true" />
|
43 |
+
<input>
|
44 |
+
<port id="0" precision="FP32">
|
45 |
+
<dim>-1</dim>
|
46 |
+
<dim>-1</dim>
|
47 |
+
<dim>-1</dim>
|
48 |
+
</port>
|
49 |
+
<port id="1" precision="FP32">
|
50 |
+
<dim>3072</dim>
|
51 |
+
<dim>1152</dim>
|
52 |
+
</port>
|
53 |
+
</input>
|
54 |
+
<output>
|
55 |
+
<port id="2" precision="FP32">
|
56 |
+
<dim>-1</dim>
|
57 |
+
<dim>-1</dim>
|
58 |
+
<dim>3072</dim>
|
59 |
+
</port>
|
60 |
+
</output>
|
61 |
+
</layer>
|
62 |
+
<layer id="4" name="Constant_5534472_compressed" type="Const" version="opset1">
|
63 |
+
<data element_type="f16" shape="1, 1, 3072" offset="7077888" size="6144" />
|
64 |
+
<output>
|
65 |
+
<port id="0" precision="FP16">
|
66 |
+
<dim>1</dim>
|
67 |
+
<dim>1</dim>
|
68 |
+
<dim>3072</dim>
|
69 |
+
</port>
|
70 |
+
</output>
|
71 |
+
</layer>
|
72 |
+
<layer id="5" name="Constant_5534472" type="Convert" version="opset1">
|
73 |
+
<data destination_type="f32" />
|
74 |
+
<rt_info>
|
75 |
+
<attribute name="decompression" version="0" />
|
76 |
+
</rt_info>
|
77 |
+
<input>
|
78 |
+
<port id="0" precision="FP16">
|
79 |
+
<dim>1</dim>
|
80 |
+
<dim>1</dim>
|
81 |
+
<dim>3072</dim>
|
82 |
+
</port>
|
83 |
+
</input>
|
84 |
+
<output>
|
85 |
+
<port id="1" precision="FP32">
|
86 |
+
<dim>1</dim>
|
87 |
+
<dim>1</dim>
|
88 |
+
<dim>3072</dim>
|
89 |
+
</port>
|
90 |
+
</output>
|
91 |
+
</layer>
|
92 |
+
<layer id="6" name="__module.0/aten::linear/Add" type="Add" version="opset1">
|
93 |
+
<data auto_broadcast="numpy" />
|
94 |
+
<input>
|
95 |
+
<port id="0" precision="FP32">
|
96 |
+
<dim>-1</dim>
|
97 |
+
<dim>-1</dim>
|
98 |
+
<dim>3072</dim>
|
99 |
+
</port>
|
100 |
+
<port id="1" precision="FP32">
|
101 |
+
<dim>1</dim>
|
102 |
+
<dim>1</dim>
|
103 |
+
<dim>3072</dim>
|
104 |
+
</port>
|
105 |
+
</input>
|
106 |
+
<output>
|
107 |
+
<port id="2" precision="FP32" names="10">
|
108 |
+
<dim>-1</dim>
|
109 |
+
<dim>-1</dim>
|
110 |
+
<dim>3072</dim>
|
111 |
+
</port>
|
112 |
+
</output>
|
113 |
+
</layer>
|
114 |
+
<layer id="7" name="__module.1/aten::gelu/Gelu" type="Gelu" version="opset7">
|
115 |
+
<data approximation_mode="ERF" />
|
116 |
+
<input>
|
117 |
+
<port id="0" precision="FP32">
|
118 |
+
<dim>-1</dim>
|
119 |
+
<dim>-1</dim>
|
120 |
+
<dim>3072</dim>
|
121 |
+
</port>
|
122 |
+
</input>
|
123 |
+
<output>
|
124 |
+
<port id="1" precision="FP32" names="12">
|
125 |
+
<dim>-1</dim>
|
126 |
+
<dim>-1</dim>
|
127 |
+
<dim>3072</dim>
|
128 |
+
</port>
|
129 |
+
</output>
|
130 |
+
</layer>
|
131 |
+
<layer id="8" name="self.2.weight_compressed" type="Const" version="opset1">
|
132 |
+
<data element_type="f16" shape="3072, 3072" offset="7084032" size="18874368" />
|
133 |
+
<output>
|
134 |
+
<port id="0" precision="FP16" names="self.2.weight">
|
135 |
+
<dim>3072</dim>
|
136 |
+
<dim>3072</dim>
|
137 |
+
</port>
|
138 |
+
</output>
|
139 |
+
</layer>
|
140 |
+
<layer id="9" name="self.2.weight" type="Convert" version="opset1">
|
141 |
+
<data destination_type="f32" />
|
142 |
+
<rt_info>
|
143 |
+
<attribute name="decompression" version="0" />
|
144 |
+
</rt_info>
|
145 |
+
<input>
|
146 |
+
<port id="0" precision="FP16">
|
147 |
+
<dim>3072</dim>
|
148 |
+
<dim>3072</dim>
|
149 |
+
</port>
|
150 |
+
</input>
|
151 |
+
<output>
|
152 |
+
<port id="1" precision="FP32">
|
153 |
+
<dim>3072</dim>
|
154 |
+
<dim>3072</dim>
|
155 |
+
</port>
|
156 |
+
</output>
|
157 |
+
</layer>
|
158 |
+
<layer id="10" name="__module.2/aten::linear/MatMul" type="MatMul" version="opset1">
|
159 |
+
<data transpose_a="false" transpose_b="true" />
|
160 |
+
<input>
|
161 |
+
<port id="0" precision="FP32">
|
162 |
+
<dim>-1</dim>
|
163 |
+
<dim>-1</dim>
|
164 |
+
<dim>3072</dim>
|
165 |
+
</port>
|
166 |
+
<port id="1" precision="FP32">
|
167 |
+
<dim>3072</dim>
|
168 |
+
<dim>3072</dim>
|
169 |
+
</port>
|
170 |
+
</input>
|
171 |
+
<output>
|
172 |
+
<port id="2" precision="FP32">
|
173 |
+
<dim>-1</dim>
|
174 |
+
<dim>-1</dim>
|
175 |
+
<dim>3072</dim>
|
176 |
+
</port>
|
177 |
+
</output>
|
178 |
+
</layer>
|
179 |
+
<layer id="11" name="Constant_5534473_compressed" type="Const" version="opset1">
|
180 |
+
<data element_type="f16" shape="1, 1, 3072" offset="25958400" size="6144" />
|
181 |
+
<output>
|
182 |
+
<port id="0" precision="FP16">
|
183 |
+
<dim>1</dim>
|
184 |
+
<dim>1</dim>
|
185 |
+
<dim>3072</dim>
|
186 |
+
</port>
|
187 |
+
</output>
|
188 |
+
</layer>
|
189 |
+
<layer id="12" name="Constant_5534473" type="Convert" version="opset1">
|
190 |
+
<data destination_type="f32" />
|
191 |
+
<rt_info>
|
192 |
+
<attribute name="decompression" version="0" />
|
193 |
+
</rt_info>
|
194 |
+
<input>
|
195 |
+
<port id="0" precision="FP16">
|
196 |
+
<dim>1</dim>
|
197 |
+
<dim>1</dim>
|
198 |
+
<dim>3072</dim>
|
199 |
+
</port>
|
200 |
+
</input>
|
201 |
+
<output>
|
202 |
+
<port id="1" precision="FP32">
|
203 |
+
<dim>1</dim>
|
204 |
+
<dim>1</dim>
|
205 |
+
<dim>3072</dim>
|
206 |
+
</port>
|
207 |
+
</output>
|
208 |
+
</layer>
|
209 |
+
<layer id="13" name="__module.2/aten::linear/Add" type="Add" version="opset1">
|
210 |
+
<data auto_broadcast="numpy" />
|
211 |
+
<input>
|
212 |
+
<port id="0" precision="FP32">
|
213 |
+
<dim>-1</dim>
|
214 |
+
<dim>-1</dim>
|
215 |
+
<dim>3072</dim>
|
216 |
+
</port>
|
217 |
+
<port id="1" precision="FP32">
|
218 |
+
<dim>1</dim>
|
219 |
+
<dim>1</dim>
|
220 |
+
<dim>3072</dim>
|
221 |
+
</port>
|
222 |
+
</input>
|
223 |
+
<output>
|
224 |
+
<port id="2" precision="FP32">
|
225 |
+
<dim>-1</dim>
|
226 |
+
<dim>-1</dim>
|
227 |
+
<dim>3072</dim>
|
228 |
+
</port>
|
229 |
+
</output>
|
230 |
+
</layer>
|
231 |
+
<layer id="14" name="Result_5532741" type="Result" version="opset1">
|
232 |
+
<input>
|
233 |
+
<port id="0" precision="FP32">
|
234 |
+
<dim>-1</dim>
|
235 |
+
<dim>-1</dim>
|
236 |
+
<dim>3072</dim>
|
237 |
+
</port>
|
238 |
+
</input>
|
239 |
+
</layer>
|
240 |
+
</layers>
|
241 |
+
<edges>
|
242 |
+
<edge from-layer="0" from-port="0" to-layer="3" to-port="0" />
|
243 |
+
<edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
|
244 |
+
<edge from-layer="2" from-port="1" to-layer="3" to-port="1" />
|
245 |
+
<edge from-layer="3" from-port="2" to-layer="6" to-port="0" />
|
246 |
+
<edge from-layer="4" from-port="0" to-layer="5" to-port="0" />
|
247 |
+
<edge from-layer="5" from-port="1" to-layer="6" to-port="1" />
|
248 |
+
<edge from-layer="6" from-port="2" to-layer="7" to-port="0" />
|
249 |
+
<edge from-layer="7" from-port="1" to-layer="10" to-port="0" />
|
250 |
+
<edge from-layer="8" from-port="0" to-layer="9" to-port="0" />
|
251 |
+
<edge from-layer="9" from-port="1" to-layer="10" to-port="1" />
|
252 |
+
<edge from-layer="10" from-port="2" to-layer="13" to-port="0" />
|
253 |
+
<edge from-layer="11" from-port="0" to-layer="12" to-port="0" />
|
254 |
+
<edge from-layer="12" from-port="1" to-layer="13" to-port="1" />
|
255 |
+
<edge from-layer="13" from-port="2" to-layer="14" to-port="0" />
|
256 |
+
</edges>
|
257 |
+
<rt_info>
|
258 |
+
<Runtime_version value="2025.1.0-18311-da00e90afb7" />
|
259 |
+
<conversion_parameters>
|
260 |
+
<framework value="pytorch" />
|
261 |
+
<is_python_object value="True" />
|
262 |
+
</conversion_parameters>
|
263 |
+
</rt_info>
|
264 |
+
</net>
|
preprocessor_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_phi4mm.Phi4MMProcessor",
|
4 |
+
"AutoImageProcessor": "processing_phi4mm.Phi4MMImageProcessor",
|
5 |
+
"AutoFeatureExtractor": "processing_phi4mm.Phi4MMAudioFeatureExtractor"
|
6 |
+
},
|
7 |
+
"image_processor_type": "Phi4MMImageProcessor",
|
8 |
+
"processor_class": "Phi4MMProcessor",
|
9 |
+
"feature_extractor_type": "Phi4MMAudioFeatureExtractor",
|
10 |
+
"audio_compression_rate": 8,
|
11 |
+
"audio_downsample_rate": 1,
|
12 |
+
"audio_feat_stride": 1,
|
13 |
+
"dynamic_hd": 36
|
14 |
+
}
|
processing_phi4mm.py
ADDED
@@ -0,0 +1,733 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
Processor class for Phi4MM
|
17 |
+
"""
|
18 |
+
import re
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
import math
|
21 |
+
from enum import Enum
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import scipy
|
25 |
+
import torch
|
26 |
+
import torchvision
|
27 |
+
|
28 |
+
from transformers import AutoFeatureExtractor, AutoImageProcessor
|
29 |
+
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
30 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
31 |
+
from transformers.image_utils import (
|
32 |
+
ImageInput,
|
33 |
+
make_list_of_images,
|
34 |
+
valid_images,
|
35 |
+
)
|
36 |
+
from transformers.processing_utils import ProcessorMixin
|
37 |
+
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
|
38 |
+
from transformers.utils import TensorType, logging
|
39 |
+
from torch.nn.utils.rnn import pad_sequence
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__)
|
43 |
+
|
44 |
+
# Special tokens
|
45 |
+
_COMPATIBLE_IMAGE_SPECIAL_TOKEN_PATTERN = r'<\|image_\d+\|>' # For backward compatibility
|
46 |
+
_COMPATIBLE_AUDIO_SPECIAL_TOKEN_PATTERN = r'<\|audio_\d+\|>' # For backward compatibility
|
47 |
+
_IMAGE_SPECIAL_TOKEN = '<|endoftext10|>'
|
48 |
+
_AUDIO_SPECIAL_TOKEN = '<|endoftext11|>'
|
49 |
+
_IMAGE_SPECIAL_TOKEN_ID = 200010 # '<|endoftext10|>', or we can better name it (in `tokenizer_config.json`)
|
50 |
+
_AUDIO_SPECIAL_TOKEN_ID = 200011 # '<|endoftext11|>'
|
51 |
+
|
52 |
+
|
53 |
+
class InputMode(Enum):
|
54 |
+
LANGUAGE = 0
|
55 |
+
VISION = 1
|
56 |
+
SPEECH = 2
|
57 |
+
VISION_SPEECH = 3
|
58 |
+
|
59 |
+
|
60 |
+
class Phi4MMImageProcessor(BaseImageProcessor):
|
61 |
+
r"""
|
62 |
+
Constructs a Phi4MM image processor.
|
63 |
+
"""
|
64 |
+
model_input_names = ["input_image_embeds", "image_sizes", "image_attention_mask"]
|
65 |
+
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
dynamic_hd,
|
69 |
+
**kwargs,
|
70 |
+
) -> None:
|
71 |
+
super().__init__(**kwargs)
|
72 |
+
self.dynamic_hd = dynamic_hd
|
73 |
+
|
74 |
+
def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
|
75 |
+
best_ratio_diff = float('inf')
|
76 |
+
best_ratio = (1, 1)
|
77 |
+
area = width * height
|
78 |
+
for ratio in target_ratios:
|
79 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
80 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
81 |
+
if ratio_diff < best_ratio_diff:
|
82 |
+
best_ratio_diff = ratio_diff
|
83 |
+
best_ratio = ratio
|
84 |
+
elif ratio_diff == best_ratio_diff:
|
85 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
86 |
+
best_ratio = ratio
|
87 |
+
return best_ratio
|
88 |
+
|
89 |
+
def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=384, mask_size=27, use_thumbnail=True):
|
90 |
+
orig_width, orig_height = image.size
|
91 |
+
|
92 |
+
w_crop_num = math.ceil(orig_width/float(image_size))
|
93 |
+
h_crop_num = math.ceil(orig_height/float(image_size))
|
94 |
+
if w_crop_num * h_crop_num > max_num:
|
95 |
+
|
96 |
+
aspect_ratio = orig_width / orig_height
|
97 |
+
|
98 |
+
# calculate the existing image aspect ratio
|
99 |
+
target_ratios = set(
|
100 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
101 |
+
i * j <= max_num and i * j >= min_num)
|
102 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
103 |
+
|
104 |
+
# find the closest aspect ratio to the target
|
105 |
+
target_aspect_ratio = self.find_closest_aspect_ratio(
|
106 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
107 |
+
|
108 |
+
# calculate the target width and height
|
109 |
+
target_width = image_size * target_aspect_ratio[0]
|
110 |
+
target_height = image_size * target_aspect_ratio[1]
|
111 |
+
else:
|
112 |
+
target_width = image_size * w_crop_num
|
113 |
+
target_height = image_size * h_crop_num
|
114 |
+
target_aspect_ratio = (w_crop_num, h_crop_num)
|
115 |
+
|
116 |
+
# Calculate the ratio
|
117 |
+
ratio_width = target_width / orig_width
|
118 |
+
ratio_height = target_height / orig_height
|
119 |
+
if ratio_width < ratio_height:
|
120 |
+
new_size = (target_width, int(orig_height * ratio_width))
|
121 |
+
padding_width = 0
|
122 |
+
padding_height = target_height - int(orig_height * ratio_width)
|
123 |
+
else:
|
124 |
+
new_size = (int(orig_width * ratio_height), target_height)
|
125 |
+
padding_width = target_width - int(orig_width * ratio_height)
|
126 |
+
padding_height = 0
|
127 |
+
|
128 |
+
attention_mask = torch.ones((int(mask_size*target_aspect_ratio[1]), int(mask_size*target_aspect_ratio[0])))
|
129 |
+
if padding_width >= 14:
|
130 |
+
attention_mask[:, -math.floor(padding_width/14):] = 0
|
131 |
+
if padding_height >= 14:
|
132 |
+
attention_mask[-math.floor(padding_height/14):,:] = 0
|
133 |
+
assert attention_mask.sum() > 0
|
134 |
+
|
135 |
+
if min(new_size[1], target_height) < 10 or min(new_size[0], target_width) < 10:
|
136 |
+
raise ValueError(f'the aspect ratio is very extreme {new_size}')
|
137 |
+
|
138 |
+
image = torchvision.transforms.functional.resize(image, [new_size[1], new_size[0]],)
|
139 |
+
|
140 |
+
resized_img = torchvision.transforms.functional.pad(image, [0, 0, padding_width, padding_height], fill=[255,255,255])
|
141 |
+
|
142 |
+
return resized_img, attention_mask
|
143 |
+
|
144 |
+
def pad_to_max_num_crops(self, images, max_crops=5):
|
145 |
+
"""
|
146 |
+
images: B x 3 x H x W, B<=max_crops
|
147 |
+
"""
|
148 |
+
B, _, H, W = images.shape
|
149 |
+
if B < max_crops:
|
150 |
+
pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
|
151 |
+
images = torch.cat([images, pad], dim=0)
|
152 |
+
return images
|
153 |
+
|
154 |
+
def pad_mask_to_max_num_crops(self, masks, max_crops=5):
|
155 |
+
B, H, W = masks.shape
|
156 |
+
if B < max_crops:
|
157 |
+
pad = torch.ones(max_crops - B, H, W, dtype=masks.dtype, device=masks.device)
|
158 |
+
masks = torch.cat([masks, pad], dim=0)
|
159 |
+
return masks
|
160 |
+
|
161 |
+
def preprocess(
|
162 |
+
self,
|
163 |
+
images: ImageInput,
|
164 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
165 |
+
):
|
166 |
+
"""
|
167 |
+
Args:
|
168 |
+
images (`ImageInput`):
|
169 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
170 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
171 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
172 |
+
The type of tensors to return. Can be one of:
|
173 |
+
- Unset: Return a list of `np.ndarray`.
|
174 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
175 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
176 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
177 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
178 |
+
"""
|
179 |
+
images = make_list_of_images(images)
|
180 |
+
|
181 |
+
if not valid_images(images):
|
182 |
+
raise ValueError(
|
183 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
184 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
185 |
+
)
|
186 |
+
|
187 |
+
# Basic settings.
|
188 |
+
img_processor = torchvision.transforms.Compose([
|
189 |
+
torchvision.transforms.ToTensor(),
|
190 |
+
torchvision.transforms.Normalize(
|
191 |
+
(0.5, 0.5, 0.5),
|
192 |
+
(0.5, 0.5, 0.5)
|
193 |
+
),
|
194 |
+
])
|
195 |
+
dyhd_base_resolution = 448
|
196 |
+
|
197 |
+
# Dynamic HD
|
198 |
+
base_resolution = dyhd_base_resolution
|
199 |
+
images = [image.convert('RGB') for image in images]
|
200 |
+
# cover 384 and 448 resolution
|
201 |
+
mask_resolution = base_resolution // 14
|
202 |
+
elems, image_attention_masks = [], []
|
203 |
+
for im in images:
|
204 |
+
elem, attention_mask = self.dynamic_preprocess(im, max_num=self.dynamic_hd, image_size=base_resolution, mask_size=mask_resolution)
|
205 |
+
elems.append(elem)
|
206 |
+
image_attention_masks.append(attention_mask)
|
207 |
+
hd_images = [img_processor(im) for im in elems]
|
208 |
+
global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(base_resolution, base_resolution), mode='bicubic',).to(im.dtype) for im in hd_images]
|
209 |
+
shapes = [[im.size(1), im.size(2)] for im in hd_images]
|
210 |
+
mask_shapes = [[mask.size(0), mask.size(1)] for mask in image_attention_masks]
|
211 |
+
global_attention_mask = [torch.ones((1, mask_resolution, mask_resolution)) for _ in hd_images]
|
212 |
+
hd_images_reshape = [im.reshape(1, 3,
|
213 |
+
h//base_resolution,
|
214 |
+
base_resolution,
|
215 |
+
w//base_resolution,
|
216 |
+
base_resolution
|
217 |
+
).permute(0,2,4,1,3,5).reshape(-1, 3, base_resolution, base_resolution).contiguous() for im, (h, w) in zip(hd_images, shapes)]
|
218 |
+
attention_masks_reshape = [mask.reshape(1,
|
219 |
+
h//mask_resolution,
|
220 |
+
mask_resolution,
|
221 |
+
w//mask_resolution,
|
222 |
+
mask_resolution
|
223 |
+
).permute(0,1,3,2,4).reshape(-1, mask_resolution, mask_resolution).contiguous() for mask, (h, w) in zip(image_attention_masks, mask_shapes)]
|
224 |
+
downsample_attention_masks = [mask[:,0::2,0::2].reshape(1,
|
225 |
+
h//mask_resolution,
|
226 |
+
w//mask_resolution,
|
227 |
+
mask_resolution//2+mask_resolution%2,
|
228 |
+
mask_resolution//2+mask_resolution%2
|
229 |
+
).permute(0,1,3,2,4) for mask, (h,w) in zip(attention_masks_reshape, mask_shapes)]
|
230 |
+
downsample_attention_masks = [mask.reshape(mask.size(1)*mask.size(2), mask.size(3)*mask.size(4))for mask in downsample_attention_masks]
|
231 |
+
num_img_tokens = [256 + 1 + int(mask.sum().item()) + int(mask[:,0].sum().item()) + 16 for mask in downsample_attention_masks]
|
232 |
+
|
233 |
+
hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
|
234 |
+
hd_masks_reshape = [torch.cat([_global_mask] + [_mask], dim=0) for _global_mask, _mask in zip(global_attention_mask, attention_masks_reshape)]
|
235 |
+
max_crops = max([img.size(0) for img in hd_images_reshape])
|
236 |
+
image_transformed = [self.pad_to_max_num_crops(im, max_crops) for im in hd_images_reshape]
|
237 |
+
image_transformed = torch.stack(image_transformed, dim=0)
|
238 |
+
mask_transformed = [self.pad_mask_to_max_num_crops(mask, max_crops) for mask in hd_masks_reshape]
|
239 |
+
mask_transformed = torch.stack(mask_transformed, dim=0)
|
240 |
+
|
241 |
+
returned_input_image_embeds = image_transformed
|
242 |
+
returned_image_sizes = torch.tensor(shapes, dtype=torch.long)
|
243 |
+
returned_image_attention_mask = mask_transformed
|
244 |
+
returned_num_img_tokens = num_img_tokens
|
245 |
+
|
246 |
+
data = {
|
247 |
+
"input_image_embeds": returned_input_image_embeds,
|
248 |
+
"image_sizes": returned_image_sizes,
|
249 |
+
"image_attention_mask": returned_image_attention_mask,
|
250 |
+
"num_img_tokens": returned_num_img_tokens,
|
251 |
+
}
|
252 |
+
|
253 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
254 |
+
|
255 |
+
|
256 |
+
AudioInput = Tuple[Union[np.ndarray, torch.Tensor], int]
|
257 |
+
AudioInputs = List[AudioInput]
|
258 |
+
|
259 |
+
|
260 |
+
def speechlib_mel(sample_rate, n_fft, n_mels, fmin=None, fmax=None):
|
261 |
+
"""Create a Mel filter-bank the same as SpeechLib FbankFC.
|
262 |
+
|
263 |
+
Args:
|
264 |
+
sample_rate (int): Sample rate in Hz. number > 0 [scalar]
|
265 |
+
n_fft (int): FFT size. int > 0 [scalar]
|
266 |
+
n_mel (int): Mel filter size. int > 0 [scalar]
|
267 |
+
fmin (float): lowest frequency (in Hz). If None use 0.0.
|
268 |
+
float >= 0 [scalar]
|
269 |
+
fmax: highest frequency (in Hz). If None use sample_rate / 2.
|
270 |
+
float >= 0 [scalar]
|
271 |
+
|
272 |
+
Returns
|
273 |
+
out (numpy.ndarray): Mel transform matrix
|
274 |
+
[shape=(n_mels, 1 + n_fft/2)]
|
275 |
+
"""
|
276 |
+
|
277 |
+
bank_width = int(n_fft // 2 + 1)
|
278 |
+
if fmax is None:
|
279 |
+
fmax = sample_rate / 2
|
280 |
+
if fmin is None:
|
281 |
+
fmin = 0
|
282 |
+
assert fmin >= 0, "fmin cannot be negtive"
|
283 |
+
assert fmin < fmax <= sample_rate / 2, "fmax must be between (fmin, samplerate / 2]"
|
284 |
+
|
285 |
+
def mel(f):
|
286 |
+
return 1127.0 * np.log(1.0 + f / 700.0)
|
287 |
+
|
288 |
+
def bin2mel(fft_bin):
|
289 |
+
return 1127.0 * np.log(1.0 + fft_bin * sample_rate / (n_fft * 700.0))
|
290 |
+
|
291 |
+
def f2bin(f):
|
292 |
+
return int((f * n_fft / sample_rate) + 0.5)
|
293 |
+
|
294 |
+
# Spec 1: FFT bin range [f2bin(fmin) + 1, f2bin(fmax) - 1]
|
295 |
+
klo = f2bin(fmin) + 1
|
296 |
+
khi = f2bin(fmax)
|
297 |
+
|
298 |
+
khi = max(khi, klo)
|
299 |
+
|
300 |
+
# Spec 2: SpeechLib uses trianges in Mel space
|
301 |
+
mlo = mel(fmin)
|
302 |
+
mhi = mel(fmax)
|
303 |
+
m_centers = np.linspace(mlo, mhi, n_mels + 2)
|
304 |
+
ms = (mhi - mlo) / (n_mels + 1)
|
305 |
+
|
306 |
+
matrix = np.zeros((n_mels, bank_width), dtype=np.float32)
|
307 |
+
for m in range(0, n_mels):
|
308 |
+
left = m_centers[m]
|
309 |
+
center = m_centers[m + 1]
|
310 |
+
right = m_centers[m + 2]
|
311 |
+
for fft_bin in range(klo, khi):
|
312 |
+
mbin = bin2mel(fft_bin)
|
313 |
+
if left < mbin < right:
|
314 |
+
matrix[m, fft_bin] = 1.0 - abs(center - mbin) / ms
|
315 |
+
|
316 |
+
return matrix
|
317 |
+
|
318 |
+
|
319 |
+
class Phi4MMAudioFeatureExtractor(SequenceFeatureExtractor):
|
320 |
+
model_input_names = ["input_audio_embeds", "audio_embed_sizes", "audio_attention_mask"]
|
321 |
+
|
322 |
+
def __init__(self, audio_compression_rate, audio_downsample_rate, audio_feat_stride, **kwargs):
|
323 |
+
feature_size = 80
|
324 |
+
sampling_rate = 16000
|
325 |
+
padding_value = 0.0
|
326 |
+
super().__init__(feature_size, sampling_rate, padding_value, **kwargs)
|
327 |
+
|
328 |
+
self.compression_rate = audio_compression_rate
|
329 |
+
self.qformer_compression_rate = audio_downsample_rate
|
330 |
+
self.feat_stride = audio_feat_stride
|
331 |
+
|
332 |
+
self._eightk_method = "fillzero"
|
333 |
+
self._mel = speechlib_mel(16000, 512, 80, fmin=None, fmax=7690).T
|
334 |
+
|
335 |
+
self._hamming400 = np.hamming(400) # for 16k audio
|
336 |
+
self._hamming200 = np.hamming(200) # for 8k audio
|
337 |
+
|
338 |
+
def duration_to_frames(self, duration):
|
339 |
+
"""duration in s, estimated frames"""
|
340 |
+
frame_rate = 10
|
341 |
+
|
342 |
+
num_frames = duration * 1000 // frame_rate
|
343 |
+
return num_frames
|
344 |
+
|
345 |
+
def __call__(
|
346 |
+
self,
|
347 |
+
audios: List[AudioInput],
|
348 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
349 |
+
):
|
350 |
+
# Ref: https://github.com/huggingface/transformers/blob/v4.47.0/src/transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py#L161
|
351 |
+
returned_input_audio_embeds = []
|
352 |
+
returned_audio_embed_sizes = []
|
353 |
+
audio_frames_list = []
|
354 |
+
|
355 |
+
for audio_data, sample_rate in audios:
|
356 |
+
audio_embeds = self._extract_features(audio_data, sample_rate)
|
357 |
+
audio_frames = len(audio_embeds) * self.feat_stride
|
358 |
+
audio_embed_size = self._compute_audio_embed_size(audio_frames)
|
359 |
+
|
360 |
+
returned_input_audio_embeds.append(torch.tensor(audio_embeds))
|
361 |
+
returned_audio_embed_sizes.append(torch.tensor(audio_embed_size).long())
|
362 |
+
audio_frames_list.append(audio_frames)
|
363 |
+
|
364 |
+
returned_input_audio_embeds = pad_sequence(
|
365 |
+
returned_input_audio_embeds, batch_first=True
|
366 |
+
)
|
367 |
+
returned_audio_embed_sizes = torch.stack(returned_audio_embed_sizes, dim=0)
|
368 |
+
audio_frames = torch.tensor(audio_frames_list)
|
369 |
+
returned_audio_attention_mask = torch.arange(0, audio_frames.max()).unsqueeze(0) < audio_frames.unsqueeze(1) if len(audios) > 1 else None
|
370 |
+
|
371 |
+
data = {
|
372 |
+
"input_audio_embeds": returned_input_audio_embeds,
|
373 |
+
"audio_embed_sizes": returned_audio_embed_sizes,
|
374 |
+
}
|
375 |
+
if returned_audio_attention_mask is not None:
|
376 |
+
data["audio_attention_mask"] = returned_audio_attention_mask
|
377 |
+
|
378 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
379 |
+
|
380 |
+
def _extract_spectrogram(self, wav, fs):
|
381 |
+
"""Extract spectrogram features from waveform.
|
382 |
+
Args:
|
383 |
+
wav (1D array): waveform of the input
|
384 |
+
fs (int): sampling rate of the waveform, 16000 or 8000.
|
385 |
+
If fs=8000, the waveform will be resampled to 16000Hz.
|
386 |
+
Output:
|
387 |
+
log_fbank (2D array): a TxD matrix of log Mel filterbank features.
|
388 |
+
D=80, and T is the number of frames.
|
389 |
+
"""
|
390 |
+
if wav.ndim > 1:
|
391 |
+
wav = np.squeeze(wav)
|
392 |
+
|
393 |
+
# by default, we extract the mean if stereo
|
394 |
+
if len(wav.shape) == 2:
|
395 |
+
wav = wav.mean(1)
|
396 |
+
|
397 |
+
# Resample to 16000 or 8000 if needed
|
398 |
+
if fs > 16000:
|
399 |
+
wav = scipy.signal.resample_poly(wav, 1, fs // 16000)
|
400 |
+
fs = 16000
|
401 |
+
elif 8000 < fs < 16000:
|
402 |
+
wav = scipy.signal.resample_poly(wav, 1, fs // 8000)
|
403 |
+
fs = 8000
|
404 |
+
elif fs < 8000:
|
405 |
+
raise RuntimeError(f"Unsupported sample rate {fs}")
|
406 |
+
|
407 |
+
if fs == 8000:
|
408 |
+
if self._eightk_method == "resample":
|
409 |
+
# Input audio is 8 kHz. Convert to 16 kHz before feature
|
410 |
+
# extraction
|
411 |
+
wav = scipy.signal.resample_poly(wav, 2, 1)
|
412 |
+
fs = 16000
|
413 |
+
# Do nothing here for fillzero method
|
414 |
+
elif fs != 16000:
|
415 |
+
# Input audio is not a supported sample rate.
|
416 |
+
raise RuntimeError(f"Input data using an unsupported sample rate: {fs}")
|
417 |
+
|
418 |
+
preemphasis = 0.97
|
419 |
+
|
420 |
+
if fs == 8000:
|
421 |
+
n_fft = 256
|
422 |
+
win_length = 200
|
423 |
+
hop_length = 80
|
424 |
+
fft_window = self._hamming200
|
425 |
+
elif fs == 16000:
|
426 |
+
n_fft = 512
|
427 |
+
win_length = 400
|
428 |
+
hop_length = 160
|
429 |
+
fft_window = self._hamming400
|
430 |
+
|
431 |
+
# Spec 1: SpeechLib cut remaining sample insufficient for a hop
|
432 |
+
n_batch = (wav.shape[0] - win_length) // hop_length + 1
|
433 |
+
# Here we don't use stride_tricks since the input array may not satisfy
|
434 |
+
# memory layout requirement and we need writeable output
|
435 |
+
# Here we only use list of views before copy to desination
|
436 |
+
# so it is more efficient than broadcasting
|
437 |
+
y_frames = np.array(
|
438 |
+
[wav[_stride : _stride + win_length] for _stride in range(0, hop_length * n_batch, hop_length)],
|
439 |
+
dtype=np.float32,
|
440 |
+
)
|
441 |
+
|
442 |
+
# Spec 2: SpeechLib applies preemphasis within each batch
|
443 |
+
y_frames_prev = np.roll(y_frames, 1, axis=1)
|
444 |
+
y_frames_prev[:, 0] = y_frames_prev[:, 1]
|
445 |
+
y_frames = (y_frames - preemphasis * y_frames_prev) * 32768
|
446 |
+
|
447 |
+
S = np.fft.rfft(fft_window * y_frames, n=n_fft, axis=1).astype(np.complex64)
|
448 |
+
|
449 |
+
if fs == 8000:
|
450 |
+
# Need to pad the output to look like 16 kHz data but with zeros in
|
451 |
+
# the 4 to 8 kHz bins.
|
452 |
+
frames, bins = S.shape
|
453 |
+
padarray = np.zeros((frames, bins))
|
454 |
+
S = np.concatenate((S[:, 0:-1], padarray), axis=1) # Nyquist bin gets set to zero
|
455 |
+
|
456 |
+
spec = np.abs(S).astype(np.float32)
|
457 |
+
return spec
|
458 |
+
|
459 |
+
def _extract_features(self, wav, fs):
|
460 |
+
"""Extract log filterbank features from waveform.
|
461 |
+
Args:
|
462 |
+
wav (1D array): waveform of the input
|
463 |
+
fs (int): sampling rate of the waveform, 16000 or 8000.
|
464 |
+
If fs=8000, the waveform will be resampled to 16000Hz.
|
465 |
+
Output:
|
466 |
+
log_fbank (2D array): a TxD matrix of log Mel filterbank features.
|
467 |
+
D=80, and T is the number of frames.
|
468 |
+
"""
|
469 |
+
spec = self._extract_spectrogram(wav, fs)
|
470 |
+
spec_power = spec**2
|
471 |
+
|
472 |
+
fbank_power = np.clip(spec_power.dot(self._mel), 1.0, None)
|
473 |
+
log_fbank = np.log(fbank_power).astype(np.float32)
|
474 |
+
|
475 |
+
return log_fbank
|
476 |
+
|
477 |
+
def _compute_audio_embed_size(self, audio_frames):
|
478 |
+
integer = audio_frames // self.compression_rate
|
479 |
+
remainder = audio_frames % self.compression_rate
|
480 |
+
|
481 |
+
result = integer if remainder == 0 else integer + 1
|
482 |
+
|
483 |
+
integer = result // self.qformer_compression_rate
|
484 |
+
remainder = result % self.qformer_compression_rate
|
485 |
+
result = integer if remainder == 0 else integer + 1 # qformer compression
|
486 |
+
|
487 |
+
return result
|
488 |
+
|
489 |
+
|
490 |
+
class Phi4MMProcessor(ProcessorMixin):
|
491 |
+
r"""
|
492 |
+
Constructs a Phi4MM processor which raps an image processor, a audio processor, and a GPT tokenizer into a single processor.
|
493 |
+
|
494 |
+
[`Phi4MMProcessor`] offers all the functionalities of [`Phi4MMImageProcessor`] and [`GPT2Tokenizer`]. See the
|
495 |
+
[`~Phi4MMProcessor.__call__`] and [`~Phi4MMProcessor.decode`] for more information.
|
496 |
+
|
497 |
+
Args:
|
498 |
+
image_processor ([`Phi4MMImageProcessor`], *optional*):
|
499 |
+
The image processor is a required input.
|
500 |
+
tokenizer ([`GPT2Tokenizer`], *optional*):
|
501 |
+
The tokenizer is a required input.
|
502 |
+
"""
|
503 |
+
|
504 |
+
attributes = ["image_processor", "audio_processor", "tokenizer"]
|
505 |
+
tokenizer_class = "GPT2TokenizerFast"
|
506 |
+
image_processor_class = "AutoImageProcessor" # Phi4MMImageProcessor will be registered later
|
507 |
+
audio_processor_class = "AutoFeatureExtractor" # Phi4MMAudioFeatureExtractor will be registered later
|
508 |
+
|
509 |
+
def __init__(self, image_processor, audio_processor, tokenizer):
|
510 |
+
self.image_processor = image_processor
|
511 |
+
self.audio_processor = audio_processor
|
512 |
+
self.tokenizer = tokenizer
|
513 |
+
|
514 |
+
def __call__(
|
515 |
+
self,
|
516 |
+
text: Union[TextInput, List[TextInput]],
|
517 |
+
images: Optional[ImageInput] = None,
|
518 |
+
audios: Optional[AudioInputs] = None,
|
519 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
520 |
+
truncation: Optional[Union[bool, str, TruncationStrategy]] = None,
|
521 |
+
max_length=None,
|
522 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
523 |
+
) -> BatchFeature:
|
524 |
+
"""
|
525 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forards the `text`
|
526 |
+
and `kwargs` arguments to GPT2Tokenizer's [`~GPT2Tokenizer.__call__`] if `text` is not `None` to encode
|
527 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
528 |
+
Phi4MMImageProcessor's [`~Phi4MMImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
529 |
+
of the above two methods for more information.
|
530 |
+
|
531 |
+
Args:
|
532 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
533 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
534 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
535 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
536 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
537 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
538 |
+
tensor. Both channels-first and channels-last formats are supported.
|
539 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
540 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
541 |
+
index) among:
|
542 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
543 |
+
sequence if provided).
|
544 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
545 |
+
acceptable input length for the model if that argument is not provided.
|
546 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
547 |
+
lengths).
|
548 |
+
max_length (`int`, *optional*):
|
549 |
+
Maximum length of the returned list and optionally padding length (see above).
|
550 |
+
truncation (`bool`, *optional*):
|
551 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
552 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
553 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
554 |
+
|
555 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
556 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
557 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
558 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
559 |
+
|
560 |
+
Returns:
|
561 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
562 |
+
|
563 |
+
- **input_ids** -- List of token ids to be fed to a model.
|
564 |
+
- **input_image_embeds** -- Pixel values to be fed to a model.
|
565 |
+
- **image_sizes** -- List of tuples specifying the size of each image in `input_image_embeds`.
|
566 |
+
- **image_attention_mask** -- List of attention masks for each image in `input_image_embeds`.
|
567 |
+
- **input_audio_embeds** -- Audio embeddings to be fed to a model.
|
568 |
+
- **audio_embed_sizes** -- List of integers specifying the size of each audio in `input_audio_embeds`.
|
569 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model.
|
570 |
+
"""
|
571 |
+
image_inputs = self.image_processor(images, return_tensors=return_tensors) if images is not None else {}
|
572 |
+
audio_inputs = self.audio_processor(audios, return_tensors=return_tensors) if audios is not None else {}
|
573 |
+
inputs = self._convert_images_audios_text_to_inputs(
|
574 |
+
image_inputs,
|
575 |
+
audio_inputs,
|
576 |
+
text,
|
577 |
+
padding=padding,
|
578 |
+
truncation=truncation,
|
579 |
+
max_length=max_length,
|
580 |
+
return_tensors=return_tensors,
|
581 |
+
)
|
582 |
+
|
583 |
+
# idenfity the input mode
|
584 |
+
if len(image_inputs) > 0 and len(audio_inputs) > 0:
|
585 |
+
input_mode = InputMode.VISION_SPEECH
|
586 |
+
elif len(image_inputs) > 0:
|
587 |
+
input_mode = InputMode.VISION
|
588 |
+
elif len(audio_inputs) > 0:
|
589 |
+
input_mode = InputMode.SPEECH
|
590 |
+
else:
|
591 |
+
input_mode = InputMode.LANGUAGE
|
592 |
+
inputs["input_mode"] = torch.tensor([input_mode.value], dtype=torch.long)
|
593 |
+
|
594 |
+
return inputs
|
595 |
+
|
596 |
+
@property
|
597 |
+
def special_image_token_id(self):
|
598 |
+
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
|
599 |
+
|
600 |
+
def get_special_image_token_id(self):
|
601 |
+
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
|
602 |
+
|
603 |
+
@property
|
604 |
+
def chat_template(self):
|
605 |
+
return self.tokenizer.chat_template
|
606 |
+
|
607 |
+
def _convert_images_audios_text_to_inputs(
|
608 |
+
self, images, audios, text, padding=False, truncation=None, max_length=None, return_tensors=None
|
609 |
+
):
|
610 |
+
# prepare image id to image input ids
|
611 |
+
if len(images) > 0:
|
612 |
+
input_image_embeds = images["input_image_embeds"]
|
613 |
+
image_sizes = images["image_sizes"]
|
614 |
+
image_attention_mask = images["image_attention_mask"]
|
615 |
+
num_img_tokens = images['num_img_tokens']
|
616 |
+
else:
|
617 |
+
input_image_embeds = torch.tensor([])
|
618 |
+
image_sizes = torch.tensor([])
|
619 |
+
image_attention_mask = torch.tensor([])
|
620 |
+
num_img_tokens = []
|
621 |
+
|
622 |
+
# prepare audio id to audio input ids
|
623 |
+
if len(audios) > 0:
|
624 |
+
input_audio_embeds = audios["input_audio_embeds"]
|
625 |
+
audio_embed_sizes = audios["audio_embed_sizes"]
|
626 |
+
audio_attention_mask = audios.get("audio_attention_mask", None)
|
627 |
+
else:
|
628 |
+
input_audio_embeds = torch.tensor([])
|
629 |
+
audio_embed_sizes = torch.tensor([])
|
630 |
+
audio_attention_mask = None
|
631 |
+
|
632 |
+
# Replace certain special tokens for compatibility
|
633 |
+
# Ref: https://stackoverflow.com/questions/11475885/python-replace-regex
|
634 |
+
if isinstance(text, str):
|
635 |
+
text = [text]
|
636 |
+
assert isinstance(text, list)
|
637 |
+
processed_text = [re.sub(_COMPATIBLE_IMAGE_SPECIAL_TOKEN_PATTERN, _IMAGE_SPECIAL_TOKEN, t) for t in text]
|
638 |
+
processed_text = [re.sub(_COMPATIBLE_AUDIO_SPECIAL_TOKEN_PATTERN, _AUDIO_SPECIAL_TOKEN, t) for t in processed_text]
|
639 |
+
|
640 |
+
input_ids_list = [self.tokenizer(t).input_ids for t in processed_text]
|
641 |
+
|
642 |
+
img_cnt, audio_cnt = 0, 0 # only needed for later assertion
|
643 |
+
image_token_count_iter = iter(num_img_tokens)
|
644 |
+
audio_embed_size_iter = iter(audio_embed_sizes.tolist())
|
645 |
+
new_input_ids_list = []
|
646 |
+
for input_ids in input_ids_list:
|
647 |
+
i = 0
|
648 |
+
while i < len(input_ids):
|
649 |
+
token_id = input_ids[i]
|
650 |
+
if token_id == _AUDIO_SPECIAL_TOKEN_ID:
|
651 |
+
token_count = next(audio_embed_size_iter)
|
652 |
+
audio_cnt += 1
|
653 |
+
elif token_id == _IMAGE_SPECIAL_TOKEN_ID:
|
654 |
+
token_count = next(image_token_count_iter)
|
655 |
+
img_cnt += 1
|
656 |
+
else:
|
657 |
+
i += 1
|
658 |
+
continue
|
659 |
+
tokens = [token_id] * token_count
|
660 |
+
input_ids = input_ids[:i] + tokens + input_ids[i + 1:]
|
661 |
+
i += token_count
|
662 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
663 |
+
new_input_ids_list.append(input_ids)
|
664 |
+
lengths = torch.tensor([len(input_ids) for input_ids in new_input_ids_list])
|
665 |
+
max_len = lengths.max()
|
666 |
+
input_ids = input_ids.new_full((len(new_input_ids_list), max_len), self.tokenizer.pad_token_id)
|
667 |
+
# batched inference requires left padding
|
668 |
+
for i in range(len(new_input_ids_list)):
|
669 |
+
input_ids[i, max_len - len(new_input_ids_list[i]):] = new_input_ids_list[i]
|
670 |
+
|
671 |
+
# If the below assertion fails, it might be that input pure-text
|
672 |
+
# messages contain image/audio special tokens literally
|
673 |
+
# (<|endoftext10|>, <|endoftext11|>).
|
674 |
+
assert (
|
675 |
+
img_cnt == len(num_img_tokens)
|
676 |
+
), (
|
677 |
+
f"Number of image tokens in prompt_token_ids ({img_cnt}) "
|
678 |
+
f"does not match number of images ({len(num_img_tokens)})"
|
679 |
+
)
|
680 |
+
assert (
|
681 |
+
audio_cnt == len(audio_embed_sizes)
|
682 |
+
), (
|
683 |
+
f"Number of audio tokens in prompt_token_ids ({audio_cnt}) "
|
684 |
+
f"does not match number of audios ({len(audio_embed_sizes)})"
|
685 |
+
)
|
686 |
+
|
687 |
+
# prepare attention mask
|
688 |
+
seq_range = torch.arange(max_len - 1, -1, -1)
|
689 |
+
attention_mask = seq_range.unsqueeze(0) < lengths.unsqueeze(1)
|
690 |
+
|
691 |
+
# prepare batch feature
|
692 |
+
data = {
|
693 |
+
"input_ids": input_ids,
|
694 |
+
"input_image_embeds": input_image_embeds,
|
695 |
+
"image_sizes": image_sizes,
|
696 |
+
"image_attention_mask": image_attention_mask,
|
697 |
+
"input_audio_embeds": input_audio_embeds,
|
698 |
+
"audio_embed_sizes": audio_embed_sizes,
|
699 |
+
"audio_attention_mask": audio_attention_mask,
|
700 |
+
"attention_mask": attention_mask,
|
701 |
+
}
|
702 |
+
|
703 |
+
return BatchFeature(
|
704 |
+
data=data
|
705 |
+
)
|
706 |
+
|
707 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
708 |
+
def batch_decode(self, *args, **kwargs):
|
709 |
+
"""
|
710 |
+
This method forwards all its arguments to GPT2Tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
711 |
+
refer to the docstring of this method for more information.
|
712 |
+
"""
|
713 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
714 |
+
|
715 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
716 |
+
def decode(self, *args, **kwargs):
|
717 |
+
"""
|
718 |
+
This method forwards all its arguments to GPT2Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
719 |
+
the docstring of this method for more information.
|
720 |
+
"""
|
721 |
+
return self.tokenizer.decode(*args, **kwargs)
|
722 |
+
|
723 |
+
@property
|
724 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
725 |
+
def model_input_names(self):
|
726 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
727 |
+
image_processor_input_names = self.image_processor.model_input_names
|
728 |
+
audio_processor_input_names = self.audio_processor.model_input_names
|
729 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + audio_processor_input_names))
|
730 |
+
|
731 |
+
|
732 |
+
AutoImageProcessor.register("Phi4MMImageProcessor", Phi4MMImageProcessor)
|
733 |
+
AutoFeatureExtractor.register("Phi4MMAudioFeatureExtractor", Phi4MMAudioFeatureExtractor)
|
processor_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_phi4mm.Phi4MMProcessor"
|
4 |
+
},
|
5 |
+
"processor_class": "Phi4MMProcessor"
|
6 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c1b9f641d4f8b7247b8d5007dd3b6a9f6a87cb5123134fe0d326f14d10c0585
|
3 |
+
size 15524479
|
tokenizer_config.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"199999": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"200010": {
|
13 |
+
"content": "<|endoftext10|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"200011": {
|
21 |
+
"content": "<|endoftext11|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"200018": {
|
29 |
+
"content": "<|endofprompt|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"200019": {
|
37 |
+
"content": "<|assistant|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": true,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"200020": {
|
45 |
+
"content": "<|end|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": true,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"200021": {
|
53 |
+
"content": "<|user|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": true,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"200022": {
|
61 |
+
"content": "<|system|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": true,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"200023": {
|
69 |
+
"content": "<|tool|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": true,
|
73 |
+
"single_word": false,
|
74 |
+
"special": false
|
75 |
+
},
|
76 |
+
"200024": {
|
77 |
+
"content": "<|/tool|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": true,
|
81 |
+
"single_word": false,
|
82 |
+
"special": false
|
83 |
+
},
|
84 |
+
"200025": {
|
85 |
+
"content": "<|tool_call|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": true,
|
89 |
+
"single_word": false,
|
90 |
+
"special": false
|
91 |
+
},
|
92 |
+
"200026": {
|
93 |
+
"content": "<|/tool_call|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": true,
|
97 |
+
"single_word": false,
|
98 |
+
"special": false
|
99 |
+
},
|
100 |
+
"200027": {
|
101 |
+
"content": "<|tool_response|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": true,
|
105 |
+
"single_word": false,
|
106 |
+
"special": false
|
107 |
+
},
|
108 |
+
"200028": {
|
109 |
+
"content": "<|tag|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": true,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
}
|
116 |
+
},
|
117 |
+
"bos_token": "<|endoftext|>",
|
118 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}",
|
119 |
+
"clean_up_tokenization_spaces": false,
|
120 |
+
"eos_token": "<|endoftext|>",
|
121 |
+
"extra_special_tokens": {},
|
122 |
+
"model_max_length": 131072,
|
123 |
+
"pad_token": "<|endoftext|>",
|
124 |
+
"tokenizer_class": "GPT2Tokenizer",
|
125 |
+
"unk_token": "<|endoftext|>"
|
126 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|