--- language: protein tags: - protein datasets: - uniref-100 --- # RITA-M RITA is a family of autoregressive protein models, developed by a collaboration of [Lighton](https://lighton.ai/), the [OATML group](https://oatml.cs.ox.ac.uk/) at Oxford, and the [Debbie Marks Lab](https://www.deboramarkslab.com/) at Harvard. Model | #Params | d_model | layers | lm loss uniref-100 --- | --- | --- | --- | --- | [Small](https://huggingface.co/lightonai/RITA_s) | 85M | 768 | 12 | 2.31 [**Medium**](https://huggingface.co/lightonai/RITA_m) | 300M | 1024 | 24 | 2.01 [Large](https://huggingface.co/lightonai/RITA_l)| 680M | 1536 | 24 | 1.82 [XLarge](https://huggingface.co/lightonai/RITA_xl)| 1.2B | 2048 | 24 | 1.70 For full results see our preprint: https://arxiv.org/abs/2205.05789 ## Usage Instantiate a model like so: ``` python from transformers import AutoModel, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("lightonai/RITA_m, trust_remote_code=True") tokenizer = AutoTokenizer.from_pretrained("lightonai/RITA_m") ``` for generation we support pipelines: ``` python from transformers import pipeline rita_gen = pipeline('text-generation', model=model, tokenizer=tokenizer) sequences = rita_gen("MAB", max_length=20, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=2, eos_token_id=2) for seq in sequences: print(f"seq: {seq['generated_text'].replace(' ', '')}") ``` ## How to cite @article{hesslow2022rita, title={RITA: a Study on Scaling Up Generative Protein Sequence Models}, author={Hesslow, Daniel and Zanichelli, Niccol{\'o} and Notin, Pascal and Poli, Iacopo and Marks, Debora}, journal={arXiv preprint arXiv:2205.05789}, year={2022} }