File size: 6,022 Bytes
77aca48 80e7c6a 77aca48 2e35d39 77aca48 239e33c 2e35d39 77aca48 8077524 bf7eccd 8077524 77aca48 80e7c6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- ifable/gemma-2-Ifable-9B
- jsgreenawalt/gemma-2-9B-it-advanced-v2.1
model-index:
- name: Gemma-2-Ataraxy-v2-9B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 21.36
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 39.8
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.83
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.3
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.88
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 35.79
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
name: Open LLM Leaderboard
---
# Gemma 2 Ataraxy v2 9B
Finally, after much testing, a sucessor to the first Gemma 2 Ataraxy 9B. Same kind of recipe, using the same principles, same concept as the last Ataraxy but using better models this time.

## About
In this merge, we stuck to using models that used preference optimized training (because, while very expensive to train, these are bar none the best performing Gemma finetunes in all my tests), or trained on the amazing gutenberg dataset just like the last one. You can read why jondurbin/gutenberg-dpo-v0.1 is such a good dataset here: https://huggingface.co/lemon07r/Gemma-2-Ataraxy-9B#why-gutenberg.
This time we use the very good advanced 2.1 merge (a merge using the three best preference optimized models), and a new gutenberg model trained on the dataset in the style of SimPO. Both models alone were already better than the original Ataraxy at writing, and general use, which was a pretty high bar to clear. Merging good models, does not always mean a good resulting model. In fact, when the parent models are really good, usually the child model is not as good. This one however, has surprisingly done quite well in my testing thus far and should be a significant upgrade to the last Ataraxy.
## GGUF / EXL2 Quants
Bartowski quants (imatrix): https://huggingface.co/bartowski/Gemma-2-Ataraxy-v2-9B-GGUF
Mradermacher quants (static): https://huggingface.co/mradermacher/Gemma-2-Ataraxy-v2-9B-GGUF
Mradermacher quants (imatrix): https://huggingface.co/mradermacher/Gemma-2-Ataraxy-v2-9B-i1-GGUF
Bartowski and mradermacher use different calibration data for their imatrix quants I believe, and the static quant of course uses none. Pick your poison.
More coming soon.
## Format
Use Gemma 2 format.
## Benchmarks and Leaderboard Rankings
Coming soon.
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
The following models were included in the merge:
* [ifable/gemma-2-Ifable-9B](https://huggingface.co/ifable/gemma-2-Ifable-9B)
* [jsgreenawalt/gemma-2-9B-it-advanced-v2.1](https://huggingface.co/jsgreenawalt/gemma-2-9B-it-advanced-v2.1)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model: ifable/gemma-2-Ifable-9B
dtype: bfloat16
merge_method: slerp
parameters:
t:
- filter: self_attn
value: [0.0, 0.5, 0.3, 0.7, 1.0]
- filter: mlp
value: [1.0, 0.5, 0.7, 0.3, 0.0]
- value: 0.5
slices:
- sources:
- layer_range: [0, 42]
model: jsgreenawalt/gemma-2-9B-it-advanced-v2.1
- layer_range: [0, 42]
model: ifable/gemma-2-Ifable-9B
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lemon07r__Gemma-2-Ataraxy-v2-9B)
| Metric |Value|
|-------------------|----:|
|Avg. |19.16|
|IFEval (0-Shot) |21.36|
|BBH (3-Shot) |39.80|
|MATH Lvl 5 (4-Shot)| 0.83|
|GPQA (0-shot) |12.30|
|MuSR (0-shot) | 4.88|
|MMLU-PRO (5-shot) |35.79|
|