Ihor commited on
Commit
4b20e1d
·
verified ·
1 Parent(s): 89fbba6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -3
README.md CHANGED
@@ -1,3 +1,95 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - MoritzLaurer/synthetic_zeroshot_mixtral_v0.1
5
+ language:
6
+ - en
7
+ metrics:
8
+ - f1
9
+ pipeline_tag: zero-shot-classification
10
+ tags:
11
+ - text classification
12
+ - zero-shot
13
+ - small language models
14
+ - RAG
15
+ - sentiment analysis
16
+ ---
17
+
18
+ # ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification
19
+
20
+ This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path.
21
+
22
+ It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines.
23
+
24
+ The model was trained on synthetic data and can be used in commercial applications.
25
+
26
+ ### How to use:
27
+ First of all, you need to install GLiClass library:
28
+ ```bash
29
+ pip install gliclass
30
+ ```
31
+
32
+ Than you need to initialize a model and a pipeline:
33
+ ```python
34
+ from gliclass import GLiClassModel, ZeroShotClassificationPipeline
35
+ from transformers import AutoTokenizer
36
+
37
+ model = GLiClassModel.from_pretrained("knowledgator/gliclass-large-v1.0")
38
+ tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-large-v1.0")
39
+
40
+ pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0')
41
+
42
+ text = "One day I will see the world!"
43
+ labels = ["travel", "dreams", "sport", "science", "politics"]
44
+ results = pipeline(text, labels, threshold=0.5)[0] #because we have one text
45
+
46
+ for result in results:
47
+ print(result["label"], "=>", result["score"])
48
+ ```
49
+
50
+ ### Benchmarks:
51
+ Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting.
52
+ | Model | IMDB | AG_NEWS | Emotions |
53
+ |-----------------------------|------|---------|----------|
54
+ | [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 |
55
+ | [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 |
56
+ | [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 |
57
+ | [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 |
58
+ | [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 |
59
+ | [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 |
60
+ | SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 |
61
+
62
+ Below you can find a comparison with other GLiClass models:
63
+ | Dataset | gliclass-small-v1.0-lw | gliclass-base-v1.0-lw | gliclass-large-v1.0-lw | gliclass-small-v1.0 | gliclass-base-v1.0 | gliclass-large-v1.0 |
64
+ |----------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------|---------------------|
65
+ | CR | 0.8886 | 0.9097 | 0.9226 | 0.8824 | 0.8942 | 0.9219 |
66
+ | sst2 | 0.8392 | 0.8987 | 0.9247 | 0.8518 | 0.8979 | 0.9269 |
67
+ | sst5 | 0.2865 | 0.3779 | 0.2891 | 0.2424 | 0.2789 | 0.3900 |
68
+ | 20_news_groups | 0.4572 | 0.3953 | 0.4083 | 0.3366 | 0.3576 | 0.3863 |
69
+ | spam | 0.5118 | 0.5126 | 0.3642 | 0.4089 | 0.4938 | 0.3661 |
70
+ | rotten_tomatoes | 0.8015 | 0.8429 | 0.8807 | 0.7987 | 0.8508 | 0.8808 |
71
+ | massive | 0.3180 | 0.4635 | 0.5606 | 0.2546 | 0.1893 | 0.4376 |
72
+ | banking | 0.1768 | 0.4396 | 0.3317 | 0.1374 | 0.2077 | 0.2847 |
73
+ | yahoo_topics | 0.4686 | 0.4784 | 0.4760 | 0.4477 | 0.4516 | 0.4921 |
74
+ | financial_phrasebank | 0.8665 | 0.8880 | 0.9044 | 0.8901 | 0.8955 | 0.8735 |
75
+ | imdb | 0.9048 | 0.9351 | 0.9429 | 0.8982 | 0.9238 | 0.9333 |
76
+ | ag_news | 0.7252 | 0.6985 | 0.7559 | 0.7242 | 0.6848 | 0.7503 |
77
+ | dair_emotion | 0.4012 | 0.3516 | 0.3951 | 0.3450 | 0.2357 | 0.4013 |
78
+ | capsotu | 0.3794 | 0.4643 | 0.4749 | 0.3432 | 0.4375 | 0.4644 |
79
+ |Average:|0.5732|0.6183|0.6165|0.5401|0.5571|0.6078|
80
+
81
+ Here you can see how the performance of the model grows providing more examples:
82
+ | Model | Num Examples | sst5 | spam | massive | banking | ag news | dair emotion | capsotu | Average |
83
+ |-----------------------------|--------------|--------|---------|---------|---------|---------|--------------|---------|-------------|
84
+ | gliclass-small-v1.0-lw | 0 | 0.2865 | 0.5118 | 0.318 | 0.1768 | 0.7252 | 0.4012 | 0.3794 | 0.3998428571|
85
+ | gliclass-base-v1.0-lw | 0 | 0.3779 | 0.5126 | 0.4635 | 0.4396 | 0.6985 | 0.3516 | 0.4643 | 0.4725714286|
86
+ | gliclass-large-v1.0-lw | 0 | 0.2891 | 0.3642 | 0.5606 | 0.3317 | 0.7559 | 0.3951 | 0.4749 | 0.4530714286|
87
+ | gliclass-small-v1.0 | 0 | 0.2424 | 0.4089 | 0.2546 | 0.1374 | 0.7242 | 0.345 | 0.3432 | 0.3508142857|
88
+ | gliclass-base-v1.0 | 0 | 0.2789 | 0.4938 | 0.1893 | 0.2077 | 0.6848 | 0.2357 | 0.4375 | 0.3611 |
89
+ | gliclass-large-v1.0 | 0 | 0.39 | 0.3661 | 0.4376 | 0.2847 | 0.7503 | 0.4013 | 0.4644 | 0.4420571429|
90
+ | gliclass-small-v1.0-lw | 8 | 0.2709 | 0.84026 | 0.62 | 0.6883 | 0.7786 | 0.449 | 0.4918 | 0.5912657143|
91
+ | gliclass-base-v1.0-lw | 8 | 0.4275 | 0.8836 | 0.729 | 0.7667 | 0.7968 | 0.3866 | 0.4858 | 0.6394285714|
92
+ | gliclass-large-v1.0-lw | 8 | 0.3345 | 0.8997 | 0.7658 | 0.848 | 0.84843 | 0.5219 | 0.508 | 0.67519 |
93
+ | gliclass-small-v1.0 | 8 | 0.3042 | 0.5683 | 0.6332 | 0.7072 | 0.759 | 0.4509 | 0.4434 | 0.5523142857|
94
+ | gliclass-base-v1.0 | 8 | 0.3387 | 0.7361 | 0.7059 | 0.7456 | 0.7896 | 0.4323 | 0.4802 | 0.6040571429|
95
+ | gliclass-large-v1.0 | 8 | 0.4365 | 0.9018 | 0.77 | 0.8533 | 0.8509 | 0.5061 | 0.4935 | 0.6874428571|