File size: 2,162 Bytes
e77c18c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
library_name: transformers
license: apache-2.0
language:
- en
- ja
base_model: Qwen/QwQ-32B-Preview
---

# KARAKURI LM 32B Thinking 2501 Experimental

## Model Details

### Model Description

- **Developed by:** [KARAKURI Inc.](https://about.karakuri.ai/)
- **Model type:** Causal Language Models
- **Languages**: Japanese
- **License:** Apache 2.0
- **Finetuned from model:** [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview)
- **Contact**: For questions and comments about the model, please email `[email protected]`
- **Demo**: https://lm.karakuri.cc/

## Usage

### Run the model

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "karakuri-ai/karakuri-lm-32b-thinking-2501-exp"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

messages = [
    {"role": "user", "content": "こんにちは。"}
]
input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt",
).to(model.device)
outputs = model.generate(input_ids, max_new_tokens=512)
tokenizer.decode(outputs[0][input_ids.shape[-1]:])
```

## Training Details

### Training Infrastructure

- **Hardware**: The model was trained on 16 nodes of an Amazon EC2 trn1.32xlarge instance.
- **Software**: We use code based on  [neuronx-nemo-megatron](https://github.com/aws-neuron/neuronx-nemo-megatron).

## Acknowledgments

This work was supported by the Ministry of Economy, Trade and Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO) through the [Generative AI Accelerator Challenge (GENIAC)](https://www.meti.go.jp/policy/mono_info_service/geniac/index.html).

## Citation

```
@misc{karakuri_lm_32b_thinking_2501_exp,
	author       = { {KARAKURI} {I}nc. },
	title        = { {KARAKURI} {LM} 32{B} {T}hinking 2501 {E}xperimental },
	year         = { 2025 },
	url          = { https://huggingface.co/karakuri-ai/karakuri-lm-32b-thinking-2501-exp },
	publisher    = { Hugging Face },
    journal      = { Hugging Face repository }
}
```