jonathanmutal commited on
Commit
8f54457
·
1 Parent(s): 85c6d49

Lunar Lander - first attempt

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 242.21 +/- 41.52
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f59f277aca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59f277ad30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59f277adc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59f277ae50>", "_build": "<function ActorCriticPolicy._build at 0x7f59f277aee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f59f277af70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59f2701040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f59f27010d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59f2701160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59f27011f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59f2701280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f59f2779420>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671966386355518352, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA3BXT4W7wg95RnrvlIkxLy3lp0+eDfDvgAAgD8AAIA/zUxTORxxsz87HKc8Tn/NvsTDbbmKaZe7AAAAAAAAAAAaJuI9tH6jP29ewz6KNwW/mIXKPXCD5z0AAAAAAAAAAKa9f75s/Ps8sr5vucZePjhTTo2+ea61OAAAAAAAAIA/JgzNvTzaiz/s4Zm+Re4dv5dkFb46Y+28AAAAAAAAAADQ67a+4bKoPbLVwj06O8C94RxLvHYl470AAAAAAAAAAACoJb6pBVu8ggAbvbd3k7vU47s9mlZwPAAAgD8AAIA/jbCkPaQQN7lhirS8WiVRvIobLju6Cic8AAAAAAAAAABmocM8AcKkP6vLVz5faxC/HjMmPNtvczwAAAAAAAAAAA3mST5OZ7i8cyVaOtJmurjb5ze+srubuQAAgD8AAIA/M92APW5Bzz5mu9685kTDviW6hTyOaTU9AAAAAAAAAABa0rY9Tyh7P2IHkT5PFPu+ZKucPdxfnj0AAAAAAAAAAB2ChT4Unsc70IzzvFCZrjzddZ490OOgvQAAgD8AAIA/zQhDvRNzrD7Dens9E16Yvt3jqjybNzs9AAAAAAAAAAAzqT4+JL2TP4X0zj509Ay/sJtJPrZJBj4AAAAAAAAAAI0UtL1mcX4/Es0pviBM+L7NTtS92vXgvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9Pi9TX+scECUhpRSlIwBbJRL6YwBdJRHQJiKKfQKKHh1fZQoaAZoCWgPQwhIpkOn54puQJSGlFKUaBVL3WgWR0CYimhKlHjIdX2UKGgGaAloD0MIsyWrIlywYkCUhpRSlGgVTegDaBZHQJiMAt9QXRB1fZQoaAZoCWgPQwhgrdo1IWhxQJSGlFKUaBVL5GgWR0CYjEbTtsvadX2UKGgGaAloD0MI9u/6zFk8bUCUhpRSlGgVTV4BaBZHQJiMjLr5ZbJ1fZQoaAZoCWgPQwgcti3K7IpuQJSGlFKUaBVL62gWR0CYjOs5n13/dX2UKGgGaAloD0MII9i4/l1LcUCUhpRSlGgVS9loFkdAmI4R8lXzUnV9lChoBmgJaA9DCNttF5rr13BAlIaUUpRoFU07AWgWR0CYjhznA6+4dX2UKGgGaAloD0MI8+hGWJQucUCUhpRSlGgVS/1oFkdAmI8ogRsdk3V9lChoBmgJaA9DCOv9Rjvul29AlIaUUpRoFUvbaBZHQJiPjzND+it1fZQoaAZoCWgPQwgepRKeUN9vQJSGlFKUaBVL62gWR0CYj8qaw2VFdX2UKGgGaAloD0MIS3LArqb6Y0CUhpRSlGgVTegDaBZHQJiQu8mKIi11fZQoaAZoCWgPQwjVXdkFA7FtQJSGlFKUaBVL52gWR0CYkWfI0ZWJdX2UKGgGaAloD0MIaCRCI9itY0CUhpRSlGgVTegDaBZHQJiTZjy4FzN1fZQoaAZoCWgPQwheS8gHvbttQJSGlFKUaBVL9WgWR0CYk+6dUbT+dX2UKGgGaAloD0MIAhJNoIgQcUCUhpRSlGgVS9VoFkdAmJT8yad+X3V9lChoBmgJaA9DCFcIq7FEyHFAlIaUUpRoFU1XAWgWR0CYlSBPbfxddX2UKGgGaAloD0MI3NlXHqS9SECUhpRSlGgVS7NoFkdAmJW5okAxSHV9lChoBmgJaA9DCMix9QwhHXFAlIaUUpRoFU1oAWgWR0CYlghrFfiQdX2UKGgGaAloD0MIww/Op86IcECUhpRSlGgVTRwBaBZHQJiWF+RYA811fZQoaAZoCWgPQwi+nxovXS5vQJSGlFKUaBVL2GgWR0CYlq83uNPydX2UKGgGaAloD0MIzLbT1khPcECUhpRSlGgVTQsBaBZHQJiW2hXbM5h1fZQoaAZoCWgPQwjH1ciutBNxQJSGlFKUaBVNYAFoFkdAmJc9qtYCAHV9lChoBmgJaA9DCJYi+Upg1HBAlIaUUpRoFUv7aBZHQJiZaKjzqbB1fZQoaAZoCWgPQwiw5gDBnPFxQJSGlFKUaBVNFQFoFkdAmJmSvX9R8HV9lChoBmgJaA9DCARUOILUVXBAlIaUUpRoFU1IAWgWR0CYmZuNPxhEdX2UKGgGaAloD0MIVd6OcNpEcECUhpRSlGgVS91oFkdAmJphhQWN3nV9lChoBmgJaA9DCJYmpaBbqG5AlIaUUpRoFUv7aBZHQJib4wWWQfZ1fZQoaAZoCWgPQwh6bMuAc0ZxQJSGlFKUaBVL2mgWR0CYm+kIomXxdX2UKGgGaAloD0MIrVCk+/l4cUCUhpRSlGgVS9BoFkdAmJwiYkVvdnV9lChoBmgJaA9DCN18I7onMHFAlIaUUpRoFUvWaBZHQJicpb8m8dx1fZQoaAZoCWgPQwi2MAvtnEpyQJSGlFKUaBVL/mgWR0CYnPDZlFtsdX2UKGgGaAloD0MIRl1r71MnbkCUhpRSlGgVS9poFkdAmJ1feYUnHHV9lChoBmgJaA9DCCJTPgQVkXFAlIaUUpRoFUvgaBZHQJids1FYuCh1fZQoaAZoCWgPQwhkP4ulSKJvQJSGlFKUaBVL5WgWR0CYnjV0tAcDdX2UKGgGaAloD0MIui2RCw43cUCUhpRSlGgVS8doFkdAmJ+EC3gDR3V9lChoBmgJaA9DCBb59UNsyV1AlIaUUpRoFU3oA2gWR0CYn8i2UjcEdX2UKGgGaAloD0MI+BqC43LdcECUhpRSlGgVS9toFkdAmKBGBBiTdXV9lChoBmgJaA9DCI0IxsGluG1AlIaUUpRoFUvyaBZHQJig35TIeYF1fZQoaAZoCWgPQwjfqYB7Xg9wQJSGlFKUaBVL42gWR0CYoTrT6SDAdX2UKGgGaAloD0MInuv7cFC3cECUhpRSlGgVS99oFkdAmKJpZ4fOlnV9lChoBmgJaA9DCEyqtpvgZUJAlIaUUpRoFUvIaBZHQJiiaXC0ngJ1fZQoaAZoCWgPQwjgLvt1J9FwQJSGlFKUaBVL5WgWR0CYopVOsT37dX2UKGgGaAloD0MIgNjSo+k3cUCUhpRSlGgVTQQBaBZHQJikkhnrY5F1fZQoaAZoCWgPQwiNl24SgwJhQJSGlFKUaBVN6ANoFkdAmKVhx95Qg3V9lChoBmgJaA9DCET9LmxNtm5AlIaUUpRoFU0BAWgWR0CYpenaWX1KdX2UKGgGaAloD0MIz0vFxjzabkCUhpRSlGgVS+1oFkdAmKalOTJQtXV9lChoBmgJaA9DCOCEQgQc9HFAlIaUUpRoFUv/aBZHQJioDHwPRRd1fZQoaAZoCWgPQwgQlrGhm+hvQJSGlFKUaBVL6WgWR0CYqAyVObiIdX2UKGgGaAloD0MIOGbZk8BVbECUhpRSlGgVTasDaBZHQJipuISDh991fZQoaAZoCWgPQwhvLCgMiitwQJSGlFKUaBVL5WgWR0CYqfFUQ04zdX2UKGgGaAloD0MIzok9tM8pcUCUhpRSlGgVTR0BaBZHQJirsxGlQ/J1fZQoaAZoCWgPQwixUdZvpuxtQJSGlFKUaBVL2WgWR0CYq77O3UhFdX2UKGgGaAloD0MIhWBVvbyhcECUhpRSlGgVTSIBaBZHQJir4wblzU91fZQoaAZoCWgPQwi5bHTOT8FGQJSGlFKUaBVLzGgWR0CYrXF4cFQmdX2UKGgGaAloD0MI9bpFYCzzb0CUhpRSlGgVS+loFkdAmK2VNtZV43V9lChoBmgJaA9DCIf8M4M4pnFAlIaUUpRoFU0BAWgWR0CYrc9uP3i8dX2UKGgGaAloD0MI5WN3gZILcECUhpRSlGgVS9hoFkdAmK80K/mDDnV9lChoBmgJaA9DCErvG1/7BHBAlIaUUpRoFUv+aBZHQJiwcxGlQ/J1fZQoaAZoCWgPQwhWnGotTItxQJSGlFKUaBVL+WgWR0CYsfUPQOWjdX2UKGgGaAloD0MIvcPt0LA5cECUhpRSlGgVS+VoFkdAmLNDye7L+3V9lChoBmgJaA9DCKTeUzmt03BAlIaUUpRoFUv4aBZHQJiz88vEjxF1fZQoaAZoCWgPQwh6xr5kY5ZiQJSGlFKUaBVN6ANoFkdAmLXMpb2US3V9lChoBmgJaA9DCH6LTpZa9XBAlIaUUpRoFUvtaBZHQJi17NgSey11fZQoaAZoCWgPQwjwhclUQXlwQJSGlFKUaBVL/mgWR0CYtiIyCWeIdX2UKGgGaAloD0MIVP1K5wOjcUCUhpRSlGgVTQYBaBZHQJi2jg75mAd1fZQoaAZoCWgPQwjxEpz6wEtvQJSGlFKUaBVL/GgWR0CYu2qLjxTbdX2UKGgGaAloD0MIsOO/QJCzb0CUhpRSlGgVS9ZoFkdAmLxAKfFrEnV9lChoBmgJaA9DCFw5e2c0x3BAlIaUUpRoFUv2aBZHQJi8v2zv7WN1fZQoaAZoCWgPQwh4eqUsQ55uQJSGlFKUaBVNUgFoFkdAmL04B3iaRnV9lChoBmgJaA9DCASOBBpsVl9AlIaUUpRoFU3oA2gWR0CYvbgZCOWCdX2UKGgGaAloD0MIJTyh118lcUCUhpRSlGgVTZ4BaBZHQJi+ubVjI7x1fZQoaAZoCWgPQwghdNAlHLJeQJSGlFKUaBVN6ANoFkdAmL879Q40dnV9lChoBmgJaA9DCEsFFVW/wV9AlIaUUpRoFU3oA2gWR0CYv6YnOSntdX2UKGgGaAloD0MIq+rld9rNcUCUhpRSlGgVS/doFkdAmL/TnJT2nXV9lChoBmgJaA9DCAPPvYeLWXBAlIaUUpRoFU0AAWgWR0CYv++YMOPOdX2UKGgGaAloD0MI7GtdasRKcUCUhpRSlGgVTQgBaBZHQJjAwsnRb8p1fZQoaAZoCWgPQwg/4IEBhKVjQJSGlFKUaBVN6ANoFkdAmMHKrJbMYHV9lChoBmgJaA9DCOVGkbVGKnFAlIaUUpRoFU1UAWgWR0CYwlZflZHNdX2UKGgGaAloD0MISYWxhSDMV0CUhpRSlGgVTegDaBZHQJjDZCa7Vax1fZQoaAZoCWgPQwjAzHfwE3tuQJSGlFKUaBVL4GgWR0CYw9QhwEQodX2UKGgGaAloD0MIG0zD8JFjb0CUhpRSlGgVS99oFkdAmMSB0Qsf73V9lChoBmgJaA9DCIY6rHCLBHBAlIaUUpRoFU0KAWgWR0CYxIqgRK6GdX2UKGgGaAloD0MIwvf+Bu27bUCUhpRSlGgVS+ZoFkdAmMUbpA2Q4nV9lChoBmgJaA9DCHKHTWTmhG9AlIaUUpRoFUvPaBZHQJjFK1/lQuV1fZQoaAZoCWgPQwiwdhTnaPdxQJSGlFKUaBVNHAFoFkdAmMYAjQiRn3V9lChoBmgJaA9DCCVZh6Mr03BAlIaUUpRoFUvgaBZHQJjGGUgSvkl1fZQoaAZoCWgPQwiT36KTZexwQJSGlFKUaBVL3WgWR0CYxqSzgMtsdX2UKGgGaAloD0MI/iyWIvnmb0CUhpRSlGgVS+NoFkdAmMa+avzOHHV9lChoBmgJaA9DCAIQd/WqqnBAlIaUUpRoFUvqaBZHQJjGzbfxc3V1fZQoaAZoCWgPQwjj/E0oBA5xQJSGlFKUaBVL7GgWR0CYx9kcCHRDdX2UKGgGaAloD0MIQ8pPqv2xbkCUhpRSlGgVS+RoFkdAmMi3TAnDznV9lChoBmgJaA9DCB+BP/w8E3FAlIaUUpRoFUvUaBZHQJjJy0/nnuB1fZQoaAZoCWgPQwi6L2e2a+FwQJSGlFKUaBVL32gWR0CYy1CzC1qndX2UKGgGaAloD0MIuoYZGs8UbUCUhpRSlGgVS+hoFkdAmMusvM8oyHV9lChoBmgJaA9DCA3gLZCgom9AlIaUUpRoFUvXaBZHQJjL0CLdepp1fZQoaAZoCWgPQwhbXyS0Zc5vQJSGlFKUaBVNNQFoFkdAmMvjtkWhy3V9lChoBmgJaA9DCNI6qpogQ11AlIaUUpRoFU3oA2gWR0CYy+6KLsKLdX2UKGgGaAloD0MIRKZ8CCqQcECUhpRSlGgVS+5oFkdAmMxp/CqIanV9lChoBmgJaA9DCOtvCcC/5HBAlIaUUpRoFUvFaBZHQJjMsXYUWVN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
first_model_example.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94074fae017b0dbac6fd80cf61ea267b831c71b98c66428894813cce27d5a3d4
3
+ size 147133
first_model_example/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
first_model_example/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f59f277aca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59f277ad30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59f277adc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59f277ae50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f59f277aee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f59f277af70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59f2701040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f59f27010d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59f2701160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59f27011f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59f2701280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f59f2779420>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671966386355518352,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA3BXT4W7wg95RnrvlIkxLy3lp0+eDfDvgAAgD8AAIA/zUxTORxxsz87HKc8Tn/NvsTDbbmKaZe7AAAAAAAAAAAaJuI9tH6jP29ewz6KNwW/mIXKPXCD5z0AAAAAAAAAAKa9f75s/Ps8sr5vucZePjhTTo2+ea61OAAAAAAAAIA/JgzNvTzaiz/s4Zm+Re4dv5dkFb46Y+28AAAAAAAAAADQ67a+4bKoPbLVwj06O8C94RxLvHYl470AAAAAAAAAAACoJb6pBVu8ggAbvbd3k7vU47s9mlZwPAAAgD8AAIA/jbCkPaQQN7lhirS8WiVRvIobLju6Cic8AAAAAAAAAABmocM8AcKkP6vLVz5faxC/HjMmPNtvczwAAAAAAAAAAA3mST5OZ7i8cyVaOtJmurjb5ze+srubuQAAgD8AAIA/M92APW5Bzz5mu9685kTDviW6hTyOaTU9AAAAAAAAAABa0rY9Tyh7P2IHkT5PFPu+ZKucPdxfnj0AAAAAAAAAAB2ChT4Unsc70IzzvFCZrjzddZ490OOgvQAAgD8AAIA/zQhDvRNzrD7Dens9E16Yvt3jqjybNzs9AAAAAAAAAAAzqT4+JL2TP4X0zj509Ay/sJtJPrZJBj4AAAAAAAAAAI0UtL1mcX4/Es0pviBM+L7NTtS92vXgvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVQRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9Pi9TX+scECUhpRSlIwBbJRL6YwBdJRHQJiKKfQKKHh1fZQoaAZoCWgPQwhIpkOn54puQJSGlFKUaBVL3WgWR0CYimhKlHjIdX2UKGgGaAloD0MIsyWrIlywYkCUhpRSlGgVTegDaBZHQJiMAt9QXRB1fZQoaAZoCWgPQwhgrdo1IWhxQJSGlFKUaBVL5GgWR0CYjEbTtsvadX2UKGgGaAloD0MI9u/6zFk8bUCUhpRSlGgVTV4BaBZHQJiMjLr5ZbJ1fZQoaAZoCWgPQwgcti3K7IpuQJSGlFKUaBVL62gWR0CYjOs5n13/dX2UKGgGaAloD0MII9i4/l1LcUCUhpRSlGgVS9loFkdAmI4R8lXzUnV9lChoBmgJaA9DCNttF5rr13BAlIaUUpRoFU07AWgWR0CYjhznA6+4dX2UKGgGaAloD0MI8+hGWJQucUCUhpRSlGgVS/1oFkdAmI8ogRsdk3V9lChoBmgJaA9DCOv9Rjvul29AlIaUUpRoFUvbaBZHQJiPjzND+it1fZQoaAZoCWgPQwgepRKeUN9vQJSGlFKUaBVL62gWR0CYj8qaw2VFdX2UKGgGaAloD0MIS3LArqb6Y0CUhpRSlGgVTegDaBZHQJiQu8mKIi11fZQoaAZoCWgPQwjVXdkFA7FtQJSGlFKUaBVL52gWR0CYkWfI0ZWJdX2UKGgGaAloD0MIaCRCI9itY0CUhpRSlGgVTegDaBZHQJiTZjy4FzN1fZQoaAZoCWgPQwheS8gHvbttQJSGlFKUaBVL9WgWR0CYk+6dUbT+dX2UKGgGaAloD0MIAhJNoIgQcUCUhpRSlGgVS9VoFkdAmJT8yad+X3V9lChoBmgJaA9DCFcIq7FEyHFAlIaUUpRoFU1XAWgWR0CYlSBPbfxddX2UKGgGaAloD0MI3NlXHqS9SECUhpRSlGgVS7NoFkdAmJW5okAxSHV9lChoBmgJaA9DCMix9QwhHXFAlIaUUpRoFU1oAWgWR0CYlghrFfiQdX2UKGgGaAloD0MIww/Op86IcECUhpRSlGgVTRwBaBZHQJiWF+RYA811fZQoaAZoCWgPQwi+nxovXS5vQJSGlFKUaBVL2GgWR0CYlq83uNPydX2UKGgGaAloD0MIzLbT1khPcECUhpRSlGgVTQsBaBZHQJiW2hXbM5h1fZQoaAZoCWgPQwjH1ciutBNxQJSGlFKUaBVNYAFoFkdAmJc9qtYCAHV9lChoBmgJaA9DCJYi+Upg1HBAlIaUUpRoFUv7aBZHQJiZaKjzqbB1fZQoaAZoCWgPQwiw5gDBnPFxQJSGlFKUaBVNFQFoFkdAmJmSvX9R8HV9lChoBmgJaA9DCARUOILUVXBAlIaUUpRoFU1IAWgWR0CYmZuNPxhEdX2UKGgGaAloD0MIVd6OcNpEcECUhpRSlGgVS91oFkdAmJphhQWN3nV9lChoBmgJaA9DCJYmpaBbqG5AlIaUUpRoFUv7aBZHQJib4wWWQfZ1fZQoaAZoCWgPQwh6bMuAc0ZxQJSGlFKUaBVL2mgWR0CYm+kIomXxdX2UKGgGaAloD0MIrVCk+/l4cUCUhpRSlGgVS9BoFkdAmJwiYkVvdnV9lChoBmgJaA9DCN18I7onMHFAlIaUUpRoFUvWaBZHQJicpb8m8dx1fZQoaAZoCWgPQwi2MAvtnEpyQJSGlFKUaBVL/mgWR0CYnPDZlFtsdX2UKGgGaAloD0MIRl1r71MnbkCUhpRSlGgVS9poFkdAmJ1feYUnHHV9lChoBmgJaA9DCCJTPgQVkXFAlIaUUpRoFUvgaBZHQJids1FYuCh1fZQoaAZoCWgPQwhkP4ulSKJvQJSGlFKUaBVL5WgWR0CYnjV0tAcDdX2UKGgGaAloD0MIui2RCw43cUCUhpRSlGgVS8doFkdAmJ+EC3gDR3V9lChoBmgJaA9DCBb59UNsyV1AlIaUUpRoFU3oA2gWR0CYn8i2UjcEdX2UKGgGaAloD0MI+BqC43LdcECUhpRSlGgVS9toFkdAmKBGBBiTdXV9lChoBmgJaA9DCI0IxsGluG1AlIaUUpRoFUvyaBZHQJig35TIeYF1fZQoaAZoCWgPQwjfqYB7Xg9wQJSGlFKUaBVL42gWR0CYoTrT6SDAdX2UKGgGaAloD0MInuv7cFC3cECUhpRSlGgVS99oFkdAmKJpZ4fOlnV9lChoBmgJaA9DCEyqtpvgZUJAlIaUUpRoFUvIaBZHQJiiaXC0ngJ1fZQoaAZoCWgPQwjgLvt1J9FwQJSGlFKUaBVL5WgWR0CYopVOsT37dX2UKGgGaAloD0MIgNjSo+k3cUCUhpRSlGgVTQQBaBZHQJikkhnrY5F1fZQoaAZoCWgPQwiNl24SgwJhQJSGlFKUaBVN6ANoFkdAmKVhx95Qg3V9lChoBmgJaA9DCET9LmxNtm5AlIaUUpRoFU0BAWgWR0CYpenaWX1KdX2UKGgGaAloD0MIz0vFxjzabkCUhpRSlGgVS+1oFkdAmKalOTJQtXV9lChoBmgJaA9DCOCEQgQc9HFAlIaUUpRoFUv/aBZHQJioDHwPRRd1fZQoaAZoCWgPQwgQlrGhm+hvQJSGlFKUaBVL6WgWR0CYqAyVObiIdX2UKGgGaAloD0MIOGbZk8BVbECUhpRSlGgVTasDaBZHQJipuISDh991fZQoaAZoCWgPQwhvLCgMiitwQJSGlFKUaBVL5WgWR0CYqfFUQ04zdX2UKGgGaAloD0MIzok9tM8pcUCUhpRSlGgVTR0BaBZHQJirsxGlQ/J1fZQoaAZoCWgPQwixUdZvpuxtQJSGlFKUaBVL2WgWR0CYq77O3UhFdX2UKGgGaAloD0MIhWBVvbyhcECUhpRSlGgVTSIBaBZHQJir4wblzU91fZQoaAZoCWgPQwi5bHTOT8FGQJSGlFKUaBVLzGgWR0CYrXF4cFQmdX2UKGgGaAloD0MI9bpFYCzzb0CUhpRSlGgVS+loFkdAmK2VNtZV43V9lChoBmgJaA9DCIf8M4M4pnFAlIaUUpRoFU0BAWgWR0CYrc9uP3i8dX2UKGgGaAloD0MI5WN3gZILcECUhpRSlGgVS9hoFkdAmK80K/mDDnV9lChoBmgJaA9DCErvG1/7BHBAlIaUUpRoFUv+aBZHQJiwcxGlQ/J1fZQoaAZoCWgPQwhWnGotTItxQJSGlFKUaBVL+WgWR0CYsfUPQOWjdX2UKGgGaAloD0MIvcPt0LA5cECUhpRSlGgVS+VoFkdAmLNDye7L+3V9lChoBmgJaA9DCKTeUzmt03BAlIaUUpRoFUv4aBZHQJiz88vEjxF1fZQoaAZoCWgPQwh6xr5kY5ZiQJSGlFKUaBVN6ANoFkdAmLXMpb2US3V9lChoBmgJaA9DCH6LTpZa9XBAlIaUUpRoFUvtaBZHQJi17NgSey11fZQoaAZoCWgPQwjwhclUQXlwQJSGlFKUaBVL/mgWR0CYtiIyCWeIdX2UKGgGaAloD0MIVP1K5wOjcUCUhpRSlGgVTQYBaBZHQJi2jg75mAd1fZQoaAZoCWgPQwjxEpz6wEtvQJSGlFKUaBVL/GgWR0CYu2qLjxTbdX2UKGgGaAloD0MIsOO/QJCzb0CUhpRSlGgVS9ZoFkdAmLxAKfFrEnV9lChoBmgJaA9DCFw5e2c0x3BAlIaUUpRoFUv2aBZHQJi8v2zv7WN1fZQoaAZoCWgPQwh4eqUsQ55uQJSGlFKUaBVNUgFoFkdAmL04B3iaRnV9lChoBmgJaA9DCASOBBpsVl9AlIaUUpRoFU3oA2gWR0CYvbgZCOWCdX2UKGgGaAloD0MIJTyh118lcUCUhpRSlGgVTZ4BaBZHQJi+ubVjI7x1fZQoaAZoCWgPQwghdNAlHLJeQJSGlFKUaBVN6ANoFkdAmL879Q40dnV9lChoBmgJaA9DCEsFFVW/wV9AlIaUUpRoFU3oA2gWR0CYv6YnOSntdX2UKGgGaAloD0MIq+rld9rNcUCUhpRSlGgVS/doFkdAmL/TnJT2nXV9lChoBmgJaA9DCAPPvYeLWXBAlIaUUpRoFU0AAWgWR0CYv++YMOPOdX2UKGgGaAloD0MI7GtdasRKcUCUhpRSlGgVTQgBaBZHQJjAwsnRb8p1fZQoaAZoCWgPQwg/4IEBhKVjQJSGlFKUaBVN6ANoFkdAmMHKrJbMYHV9lChoBmgJaA9DCOVGkbVGKnFAlIaUUpRoFU1UAWgWR0CYwlZflZHNdX2UKGgGaAloD0MISYWxhSDMV0CUhpRSlGgVTegDaBZHQJjDZCa7Vax1fZQoaAZoCWgPQwjAzHfwE3tuQJSGlFKUaBVL4GgWR0CYw9QhwEQodX2UKGgGaAloD0MIG0zD8JFjb0CUhpRSlGgVS99oFkdAmMSB0Qsf73V9lChoBmgJaA9DCIY6rHCLBHBAlIaUUpRoFU0KAWgWR0CYxIqgRK6GdX2UKGgGaAloD0MIwvf+Bu27bUCUhpRSlGgVS+ZoFkdAmMUbpA2Q4nV9lChoBmgJaA9DCHKHTWTmhG9AlIaUUpRoFUvPaBZHQJjFK1/lQuV1fZQoaAZoCWgPQwiwdhTnaPdxQJSGlFKUaBVNHAFoFkdAmMYAjQiRn3V9lChoBmgJaA9DCCVZh6Mr03BAlIaUUpRoFUvgaBZHQJjGGUgSvkl1fZQoaAZoCWgPQwiT36KTZexwQJSGlFKUaBVL3WgWR0CYxqSzgMtsdX2UKGgGaAloD0MI/iyWIvnmb0CUhpRSlGgVS+NoFkdAmMa+avzOHHV9lChoBmgJaA9DCAIQd/WqqnBAlIaUUpRoFUvqaBZHQJjGzbfxc3V1fZQoaAZoCWgPQwjj/E0oBA5xQJSGlFKUaBVL7GgWR0CYx9kcCHRDdX2UKGgGaAloD0MIQ8pPqv2xbkCUhpRSlGgVS+RoFkdAmMi3TAnDznV9lChoBmgJaA9DCB+BP/w8E3FAlIaUUpRoFUvUaBZHQJjJy0/nnuB1fZQoaAZoCWgPQwi6L2e2a+FwQJSGlFKUaBVL32gWR0CYy1CzC1qndX2UKGgGaAloD0MIuoYZGs8UbUCUhpRSlGgVS+hoFkdAmMusvM8oyHV9lChoBmgJaA9DCA3gLZCgom9AlIaUUpRoFUvXaBZHQJjL0CLdepp1fZQoaAZoCWgPQwhbXyS0Zc5vQJSGlFKUaBVNNQFoFkdAmMvjtkWhy3V9lChoBmgJaA9DCNI6qpogQ11AlIaUUpRoFU3oA2gWR0CYy+6KLsKLdX2UKGgGaAloD0MIRKZ8CCqQcECUhpRSlGgVS+5oFkdAmMxp/CqIanV9lChoBmgJaA9DCOtvCcC/5HBAlIaUUpRoFUvFaBZHQJjMsXYUWVN1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 310,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
first_model_example/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:374281bacb9d435b5cce0ec71505994a53d3ab97903dc848fa5c82bddb3a7d35
3
+ size 87929
first_model_example/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3030db7ce78af78e6201c99ab6672ef76625ab28e05f3c97d9d789dc11043b44
3
+ size 43201
first_model_example/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
first_model_example/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (153 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 242.20549844068984, "std_reward": 41.5195046386979, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-25T11:34:00.012551"}