--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer metrics: - wer model-index: - name: w_large results: [] --- # w_large This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6144 - Wer: 69.9421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.7439 | 0.4548 | 1000 | 0.7228 | 107.9816 | | 0.6638 | 0.9095 | 2000 | 0.6496 | 82.4336 | | 0.413 | 1.3643 | 3000 | 0.6292 | 76.3384 | | 0.4303 | 1.8190 | 4000 | 0.6144 | 69.9421 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu118 - Datasets 3.0.0 - Tokenizers 0.19.1