--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer metrics: - wer model-index: - name: w_large results: [] --- # w_large This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7156 - Wer: 66.4973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.7439 | 0.4548 | 1000 | 0.7228 | 107.9816 | | 0.6638 | 0.9095 | 2000 | 0.6496 | 82.4336 | | 0.413 | 1.3643 | 3000 | 0.6292 | 76.3384 | | 0.4303 | 1.8190 | 4000 | 0.6144 | 69.9421 | | 0.3339 | 2.2738 | 5000 | 0.6557 | 71.5521 | | 0.3224 | 2.7285 | 6000 | 0.6553 | 63.5360 | | 0.1991 | 3.1833 | 7000 | 0.7058 | 64.2753 | | 0.1752 | 3.6380 | 8000 | 0.7156 | 66.4973 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu118 - Datasets 3.0.0 - Tokenizers 0.19.1