import utils import hydra import torch import einops import numpy as np from workspaces import base from utils import get_split_idx from accelerate import Accelerator accelerator = Accelerator() OBS_ELEMENT_INDICES = { "agent_pos": np.arange(0, 2), "block_pos": np.arange(2, 4), "block_rot": np.arange(4, 5), } def calc_state_dist(a, b): result = {} for k, v in OBS_ELEMENT_INDICES.items(): idx = torch.Tensor(v).long() result[k] = ((a[idx] - b[idx]) ** 2).mean() result["total"] = ((a - b) ** 2).mean() return result def mean_dicts(dicts): result = {} for k in dicts[0].keys(): result[k] = np.mean([x[k] for x in dicts]) return result class PushTWorkspace(base.Workspace): def __init__(self, cfg, work_dir): super().__init__(cfg, work_dir) def _report_result_upon_completion(self, goal_idx=None): return { "max_coverage": max(self.env.coverage_arr), "final_coverage": self.env.coverage_arr[-1], } def run_offline_eval(self): train_idx, val_idx = get_split_idx( len(self.dataset), self.cfg.seed, train_fraction=self.cfg.train_fraction, ) embeddings = utils.inference.embed_trajectory_dataset( self.encoder, self.dataset ) embeddings = [ einops.rearrange(x, "T V E -> T (V E)") for x in embeddings ] # flatten views if self.accelerator.is_main_process: states = [] actions = [] for i in range(len(self.dataset)): T = self.dataset.get_seq_length(i) states.append(self.dataset.states[i, :T]) actions.append(self.dataset.actions[i, :T]) embd_state_linear_probe_results = ( utils.inference.linear_probe_with_trajectory_split( embeddings, states, train_idx, val_idx, ) ) # add prefix to keys embd_state_linear_probe_results = { f"embd_state_{k}": v for k, v in embd_state_linear_probe_results.items() } embd_action_linear_probe_results = ( utils.inference.linear_probe_with_trajectory_split( embeddings, actions, train_idx, val_idx, ) ) embd_action_linear_probe_results = { f"embd_action_{k}": v for k, v in embd_action_linear_probe_results.items() } state_dists = [] N = 200 rng = np.random.default_rng(self.cfg.seed) for i in range(N): query_traj_idx = rng.choice(len(self.dataset)) query_frame_idx = rng.choice( range(10, self.dataset.get_seq_length(query_traj_idx)) ) query_embedding = embeddings[query_traj_idx][query_frame_idx] query_frame_state = self.dataset.states[query_traj_idx, query_frame_idx] pool_embeddings = torch.cat( [x for i, x in enumerate(embeddings) if i != query_traj_idx] ) pool_states = torch.cat( [x for i, x in enumerate(states) if i != query_traj_idx] ) _, nn_idx = utils.inference.batch_knn( query_embedding.unsqueeze(0), pool_embeddings, metric=utils.inference.mse, k=1, batch_size=1, ) closest_frame_state = pool_states[nn_idx[0, 0]] state_dist = calc_state_dist(query_frame_state, closest_frame_state) state_dists.append(state_dist) mean_state_dist = mean_dicts(state_dists) return { **embd_state_linear_probe_results, **embd_action_linear_probe_results, **mean_state_dist, } else: return None