|
import torch |
|
import einops |
|
import pickle |
|
from pathlib import Path |
|
from typing import Optional |
|
from datasets.core import TrajectoryDataset |
|
|
|
|
|
class PushTDataset(TrajectoryDataset): |
|
def __init__( |
|
self, |
|
data_directory, |
|
subset_fraction: Optional[float] = None, |
|
relative=False, |
|
): |
|
self.data_directory = Path(data_directory) |
|
self.relative = relative |
|
self.states = torch.load(self.data_directory / "states.pth") |
|
if relative: |
|
self.actions = torch.load(self.data_directory / "rel_actions.pth") |
|
else: |
|
self.actions = torch.load(self.data_directory / "abs_actions.pth") |
|
with open(self.data_directory / "seq_lengths.pkl", "rb") as f: |
|
self.seq_lengths = pickle.load(f) |
|
|
|
self.subset_fraction = subset_fraction |
|
if self.subset_fraction: |
|
assert self.subset_fraction > 0 and self.subset_fraction <= 1 |
|
n = int(len(self.states) * self.subset_fraction) |
|
else: |
|
n = len(self.states) |
|
self.states = self.states[:n] |
|
self.actions = self.actions[:n] |
|
self.seq_lengths = self.seq_lengths[:n] |
|
|
|
for i in range(n): |
|
T = self.seq_lengths[i] |
|
self.actions[i, T:] = 0 |
|
|
|
def get_seq_length(self, idx): |
|
return self.seq_lengths[idx] |
|
|
|
def get_all_actions(self): |
|
result = [] |
|
for i in range(len(self.seq_lengths)): |
|
T = self.seq_lengths[i] |
|
result.append(self.actions[i, :T, :]) |
|
return torch.cat(result, dim=0) |
|
|
|
def get_frames(self, idx, frames): |
|
vid_dir = self.data_directory / "obses" |
|
obs = torch.load(str(vid_dir / f"episode_{idx:03d}.pth")) |
|
obs = obs[frames] |
|
obs = einops.rearrange(obs, "T H W C -> T 1 C H W") / 255.0 |
|
act = self.actions[idx, frames] |
|
mask = torch.ones(len(act)).bool() |
|
return obs, act, mask |
|
|
|
def __getitem__(self, idx): |
|
return self.get_frames(idx, range(self.get_seq_length(idx))) |
|
|
|
def __len__(self): |
|
return len(self.seq_lengths) |
|
|