File size: 10,768 Bytes
393d3de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import torch
import logging
import numpy as np
import torch.nn as nn
from typing import Callable, List
from accelerate import Accelerator
from sklearn.linear_model import LinearRegression
class eval_mode:
def __init__(self, *models, no_grad=False):
self.models = models
self.no_grad = no_grad
self.no_grad_context = torch.no_grad()
def __enter__(self):
self.prev_states = []
for model in self.models:
self.prev_states.append(model.training)
model.train(False)
if self.no_grad:
self.no_grad_context.__enter__()
def __exit__(self, *args):
if self.no_grad:
self.no_grad_context.__exit__(*args)
for model, state in zip(self.models, self.prev_states):
model.train(state)
return False
def embed_trajectory_dataset(
model,
dataset,
obs_only=True,
device=None,
embed_goal=False,
):
if type(model) is nn.parallel.DistributedDataParallel:
return embed_trajectory_dataset_ddp(
model,
dataset,
obs_only=obs_only,
device=device,
embed_goal=embed_goal,
)
else:
result = []
accelerator = Accelerator()
device = device or accelerator.device # result device
with eval_mode(model, no_grad=True):
for i in range(len(dataset)):
obs, *rest = dataset[i]
obs = obs.to(accelerator.device)
obs_enc = model(obs).to(device)
if obs_only:
result.append(obs_enc)
else:
if embed_goal:
# assuming goal comes last
goal = rest[-1]
rest = rest[:-1]
goal = goal.to(accelerator.device)
goal_enc = model(goal).to(device)
rest.append(goal_enc)
rest = [x.to(device) for x in rest]
result.append((obs_enc, *rest))
return result
def embed_trajectory_dataset_ddp(
model: nn.Module,
dataset,
obs_only=True,
device=None,
embed_goal=False,
):
assert type(model) is nn.parallel.DistributedDataParallel, "Model must be DDP"
embeddings = []
accelerator = Accelerator()
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=1,
num_workers=1,
shuffle=False,
pin_memory=True,
)
dataloader = accelerator.prepare(dataloader)
# get the max trajectory length, so that we can pad tensors for DDP gather
max_T = max(dataset.get_seq_length(i) for i in range(len(dataset)))
with eval_mode(model, no_grad=True):
for obs, *rest in dataloader:
obs = obs.to(accelerator.device) # obs shape 1 T V C H W
obs_enc = model(obs)
obs_enc = pad_to_length(obs_enc, max_T, dim=1)
obs_enc = accelerator.gather_for_metrics(obs_enc)
if obs_only:
embeddings.append(obs_enc)
else:
if embed_goal:
# assuming goal comes last
goal = rest[-1]
rest = rest[:-1]
goal = goal.to(accelerator.device)
goal_enc = model(goal)
rest.append(goal_enc)
rest = [x.to(accelerator.device) for x in rest]
rest = [pad_to_length(x, max_T, dim=1) for x in rest]
rest = [accelerator.gather_for_metrics(x) for x in rest]
embeddings.append((obs_enc, *rest))
device = device or accelerator.device
# unpad the tensors
result = []
if obs_only:
embeddings = torch.cat(embeddings, dim=0)
assert len(embeddings) == len(dataset)
else:
embeddings = [torch.cat(x, dim=0) for x in zip(*embeddings)]
assert len(embeddings[0]) == len(dataset)
for i in range(len(dataset)):
T = dataset.get_seq_length(i)
if obs_only:
result.append(embeddings[i, :T].to(device))
else:
result.append([x[i, :T].to(device) for x in embeddings])
return result
def pad_to_length(x: torch.Tensor, length: int, dim: int = 0):
"""
Pad tensor x to length along dim, adding zeros at the end.
"""
pad_size = length - x.shape[dim]
if pad_size <= 0:
return x
pad = torch.zeros(
*x.shape[:dim],
pad_size,
*x.shape[dim + 1 :],
device=x.device,
dtype=x.dtype,
)
return torch.cat([x, pad], dim=dim)
def repeat_start_to_length(x: torch.Tensor, length: int, dim: int = 0):
"""
Pad tensor x to length along dim, repeating the first value at the start.
"""
pad_size = length - x.shape[dim]
if pad_size <= 0:
return x
first_frame = x.index_select(dim, torch.tensor(0, device=x.device))
repeat_shape = [1] * len(x.shape)
repeat_shape[dim] = pad_size
pad = first_frame.repeat(*repeat_shape)
return torch.cat([pad, x], dim=dim)
def nn_lookup(
query: torch.Tensor,
pool: torch.Tensor,
metric: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
):
pairwise_query = query.repeat_interleave(len(pool), dim=0)
pairwise_pool = pool.repeat((len(query), 1))
dist = metric(pairwise_query, pairwise_pool)
nn_dist, nn_idx = dist.view(len(query), len(pool)).sort(dim=1)
return nn_dist, nn_idx
def batch_knn(
query: torch.Tensor,
pool: torch.Tensor,
metric: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
k: int,
batch_size: int,
):
"""
Return the k nearest neighbors of query in pool using metric.
Input:
query: Tensor[N, D] of query points
pool: Tensor[M, D] of pool points
metric: Callable[[Tensor[N, D], Tensor[M, D]], Tensor[N, M]] distance function
k: int number of neighbors to return
batch_size: int batch size for computation. Batched over query.
Output: (distances, indices)
distances: Tensor[N, k] of distances to the k nearest neighbors
indices: Tensor[N, k] of indices of the k nearest neighbors
"""
nn_dists = []
nn_idxs = []
for i in range(0, len(query), batch_size):
batch = query[i : i + batch_size].to(pool.device)
nn_dist, nn_idx = nn_lookup(batch, pool, metric)
nn_dists.append(nn_dist[:, :k])
nn_idxs.append(nn_idx[:, :k])
return torch.cat(nn_dists), torch.cat(nn_idxs)
def linear_probe_with_trajectory_split(
X: torch.Tensor,
y: torch.Tensor,
train_idx: List[int],
val_idx: List[int],
):
X_train = torch.cat([X[i] for i in train_idx]).cpu().numpy()
y_train = torch.cat([y[i] for i in train_idx]).cpu().numpy()
X_val = torch.cat([X[i] for i in val_idx]).cpu().numpy()
y_val = torch.cat([y[i] for i in val_idx]).cpu().numpy()
X_all = torch.cat(X).cpu().numpy()
y_all = torch.cat(y).cpu().numpy()
m = LinearRegression()
# all -> train
m.fit(X_all, y_all)
linear_probe_mse_train_all = np.mean((m.predict(X_train) - y_train) ** 2).item()
# all -> val
linear_probe_mse_val_all = np.mean((m.predict(X_val) - y_val) ** 2).item()
return {
"linear_probe_mse_train_all": linear_probe_mse_train_all,
"linear_probe_mse_val_all": linear_probe_mse_val_all,
}
def mse(a: torch.Tensor, b: torch.Tensor):
return ((a - b) ** 2).mean(dim=1)
def mahalanobis(a, b, VI):
u = a - b
v = u @ VI # (V^{-1} @ (a - b).T).T
return (u * v).sum(dim=-1).sqrt() # sqrt of dot product for each row
class OLS:
"""
OLS in torch
NOTE: discrepancy with sklearn's LinearRegression when ill-conditioned; reverting to sklearn for now
"""
def __init__(self, bias=True, fallback_to_cpu=True):
self.bias = bias
self.w = None
self.fallback_to_cpu = fallback_to_cpu
def fit(self, X: torch.Tensor, y: torch.Tensor):
"""
Fit the model
"""
if self.bias:
X = torch.cat([X, torch.ones(X.shape[0], 1, device=X.device)], dim=1)
self.w = torch.linalg.lstsq(X, y).solution
if torch.isnan(self.w).any():
cond = torch.linalg.cond(X)
rank = torch.linalg.matrix_rank(X)
msg = f"NaNs in OLS solution. Input shape: {X.shape}, cond: {cond}, rank: {rank}"
if not self.fallback_to_cpu:
raise ValueError(msg)
logging.warn(f"{msg}; Falling back to CPU with gelss driver.")
self.w = torch.linalg.lstsq(X.cpu(), y.cpu(), driver="gelss").solution
self.w = self.w.to(X.device)
return self
def predict(self, X: torch.Tensor):
"""
Predict the output
"""
if self.w is None:
raise ValueError("Model not fitted")
if self.bias:
X = torch.cat([X, torch.ones(X.shape[0], 1, device=X.device)], dim=1)
return X @ self.w
class SGDClassifier:
def __init__(self, lr=1e-4, max_iter=1000, tol=1e-3, batch_size=2048):
self.lr = lr
self.max_iter = max_iter
self.tol = tol
self.batch_size = batch_size
def fit(self, X: torch.Tensor, y: torch.Tensor):
n_samples, input_dim = X.shape
n_classes = y.max().item() + 1
self.linear = nn.Linear(input_dim, n_classes).to(X.device)
optimizer = torch.optim.AdamW(
self.linear.parameters(), lr=self.lr, weight_decay=0.0
)
criterion = nn.CrossEntropyLoss()
for j in range(self.max_iter):
total_loss = 0
n_batches = 0
indices = torch.randperm(n_samples).to(X.device)
for i in range(0, n_samples, self.batch_size):
batch_indices = indices[i : i + self.batch_size]
batch_X, batch_y = X[batch_indices], y[batch_indices]
optimizer.zero_grad()
logits = self.linear(batch_X)
loss = criterion(logits, batch_y)
loss.backward()
optimizer.step()
total_loss += loss.item()
n_batches += 1
avg_loss = total_loss / n_batches
if avg_loss < self.tol:
break
if j + 1 < self.max_iter:
logging.info(f"Converged at epoch {j+1}.")
else:
logging.info(f"Max iter reached. Final loss {avg_loss}")
return self
def predict(self, X: torch.Tensor):
with torch.no_grad():
return torch.argmax(self.linear(X), dim=1)
def score(self, X: torch.Tensor, y: torch.Tensor):
return (self.predict(X) == y).float().mean().item()
|