--- language: - es license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large Es - Javier Alonso results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: es split: test args: es metrics: - name: Wer type: wer value: 5.520113299724547 --- # Whisper Large Es - Javier Alonso This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1571 - Wer: 5.5201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.211 | 0.1 | 1000 | 0.2293 | 8.3896 | | 0.2227 | 0.2 | 2000 | 0.2215 | 8.2552 | | 0.1496 | 0.3 | 3000 | 0.2121 | 8.0362 | | 0.1851 | 0.4 | 4000 | 0.2018 | 7.5197 | | 0.1917 | 0.5 | 5000 | 0.1916 | 7.1098 | | 0.1857 | 0.6 | 6000 | 0.1817 | 6.5537 | | 0.1294 | 0.7 | 7000 | 0.1752 | 6.4062 | | 0.1358 | 0.8 | 8000 | 0.1670 | 5.9950 | | 0.1542 | 0.9 | 9000 | 0.1604 | 5.7858 | | 0.1554 | 1.0 | 10000 | 0.1571 | 5.5201 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2