palomapiot
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -11,6 +11,22 @@ pipeline_tag: text-classification
|
|
11 |
tags:
|
12 |
- hate speech
|
13 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
## Citation
|
16 |
|
@@ -32,5 +48,21 @@ If you use this model, please cite the following reference:
|
|
32 |
}
|
33 |
```
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
## Acknowledgements
|
36 |
The authors thank the funding from the Horizon Europe research and innovation programme under the Marie Sk艂odowska-Curie Grant Agreement No. 101073351. The authors also thank the financial support supplied by the Conseller铆a de Cultura, Educaci贸n, Formaci贸n Profesional e Universidades (accreditation 2019-2022 ED431G/01, ED431B 2022/33) and the European Regional Development Fund, which acknowledges the CITIC Research Center in ICT of the University of A Coru帽a as a Research Center of the Galician University System and the project PID2022-137061OB-C21 (Ministerio de Ciencia e Innovaci贸n, Agencia Estatal de Investigaci贸n, Proyectos de Generaci贸n de Conocimiento; supported by the European Regional Development Fund). The authors also thank the funding of project PLEC2021-007662 (MCIN/AEI/10.13039/501100011033, Ministerio de Ciencia e Innovaci贸n, Agencia Estatal de Investigaci贸n, Plan de Recuperaci贸n, Transformaci贸n y Resiliencia, Uni贸n Europea-Next Generation EU).
|
|
|
11 |
tags:
|
12 |
- hate speech
|
13 |
---
|
14 |
+
# MetaHateBERT
|
15 |
+
|
16 |
+
## Model Description
|
17 |
+
|
18 |
+
This is a fine-tuned BERT model specifically designed to detect hate speech in text. The model is based on the `bert-base-uncased` architecture and has been fine-tuned on a custom dataset for the task of binary text classification, where the labels are `no hate` and `hate`.
|
19 |
+
|
20 |
+
## Intended Uses & Limitations
|
21 |
+
|
22 |
+
### Intended Uses
|
23 |
+
- **Hate Speech Detection**: This model is intended for detecting hate speech in social media comments, forums, and other text data sources.
|
24 |
+
- **Content Moderation**: Can be used by platforms to automatically flag potentially harmful content.
|
25 |
+
|
26 |
+
### Limitations
|
27 |
+
- **Biases**: The model may carry biases present in the training data.
|
28 |
+
- **False Positives/Negatives**: It's not perfect and may misclassify some instances.
|
29 |
+
- **Domain Specificity**: Performance may vary across different domains.
|
30 |
|
31 |
## Citation
|
32 |
|
|
|
48 |
}
|
49 |
```
|
50 |
|
51 |
+
## Usage
|
52 |
+
|
53 |
+
### Inference
|
54 |
+
|
55 |
+
To use this model, you can load it via the `transformers` library:
|
56 |
+
|
57 |
+
```python
|
58 |
+
from transformers import pipeline
|
59 |
+
|
60 |
+
# Load the model
|
61 |
+
classifier = pipeline("text-classification", model="irlab-udc/MetaHateBERT")
|
62 |
+
|
63 |
+
# Test the model
|
64 |
+
result = classifier("Your input text here")
|
65 |
+
print(result) # Should print the labels "no hate" or "hate"
|
66 |
+
|
67 |
## Acknowledgements
|
68 |
The authors thank the funding from the Horizon Europe research and innovation programme under the Marie Sk艂odowska-Curie Grant Agreement No. 101073351. The authors also thank the financial support supplied by the Conseller铆a de Cultura, Educaci贸n, Formaci贸n Profesional e Universidades (accreditation 2019-2022 ED431G/01, ED431B 2022/33) and the European Regional Development Fund, which acknowledges the CITIC Research Center in ICT of the University of A Coru帽a as a Research Center of the Galician University System and the project PID2022-137061OB-C21 (Ministerio de Ciencia e Innovaci贸n, Agencia Estatal de Investigaci贸n, Proyectos de Generaci贸n de Conocimiento; supported by the European Regional Development Fund). The authors also thank the funding of project PLEC2021-007662 (MCIN/AEI/10.13039/501100011033, Ministerio de Ciencia e Innovaci贸n, Agencia Estatal de Investigaci贸n, Plan de Recuperaci贸n, Transformaci贸n y Resiliencia, Uni贸n Europea-Next Generation EU).
|