--- library_name: tf-keras tags: - gan - dcgan - huggan - tensorflow - unconditional-image-generation --- ## Model description Simple DCGAN implementation in TensorFlow to generate CryptoPunks. ## Generated samples Project repository: [CryptoGANs](https://github.com/dimitreOliveira/cryptogans). ## Usage You can play with the HuggingFace [space demo](https://huggingface.co/spaces/huggan/crypto-gan). Or try it yourself ```python import tensorflow as tf import matplotlib.pyplot as plt from huggingface_hub import from_pretrained_keras seed = 42 n_images = 36 codings_size = 100 generator = from_pretrained_keras("huggan/crypto-gan") def generate(generator, seed): noise = tf.random.normal(shape=[n_images, codings_size], seed=seed) generated_images = generator(noise, training=False) fig = plt.figure(figsize=(10, 10)) for i in range(generated_images.shape[0]): plt.subplot(6, 6, i+1) plt.imshow(generated_images[i, :, :, :]) plt.axis('off') plt.savefig("samples.png") generate(generator, seed) ``` ## Training data For training, I used the 10000 CryptoPunks images. ## Model Plot
View Model Plot ![Model Image](./model.png)