File size: 1,347 Bytes
88670dd f15a53d 12363a3 4e78f19 b02cd1b 88670dd 4e78f19 88670dd 4e78f19 88670dd 4e78f19 88670dd 72e0ae1 4e78f19 88670dd 4e78f19 88670dd 4e78f19 88670dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
library_name: tf-keras
tags:
- gan
- dcgan
- huggan
- tensorflow
- unconditional-image-generation
---
## Model description
Simple DCGAN implementation in TensorFlow to generate CryptoPunks.
## Generated samples
<img src="https://github.com/dimitreOliveira/cryptogans/raw/main/assets/gen_samples.png" width="350" height="350">
Project repository: [CryptoGANs](https://github.com/dimitreOliveira/cryptogans).
## Usage
You can play with the HuggingFace [space demo](https://huggingface.co/spaces/huggan/crypto-gan).
Or try it yourself
```python
import tensorflow as tf
import matplotlib.pyplot as plt
from huggingface_hub import from_pretrained_keras
seed = 42
n_images = 36
codings_size = 100
generator = from_pretrained_keras("huggan/crypto-gan")
def generate(generator, seed):
noise = tf.random.normal(shape=[n_images, codings_size], seed=seed)
generated_images = generator(noise, training=False)
fig = plt.figure(figsize=(10, 10))
for i in range(generated_images.shape[0]):
plt.subplot(6, 6, i+1)
plt.imshow(generated_images[i, :, :, :])
plt.axis('off')
plt.savefig("samples.png")
generate(generator, seed)
```
## Training data
For training, I used the 10000 CryptoPunks images.
## Model Plot
<details>
<summary>View Model Plot</summary>
![Model Image](./model.png)
</details> |