hosseinbv commited on
Commit
d5a2362
·
verified ·
1 Parent(s): 4316428

Uploading /ephemeral/hossein/output/prog-y--tiny-llama-CDL-16

Browse files
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: TinyLlama/TinyLlama_v1.1
5
+ tags:
6
+ - llama-factory
7
+ - full
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: progressive-yoco-tiny-llama-CDL-16
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # progressive-yoco-tiny-llama-CDL-16
18
+
19
+ This model is a fine-tuned version of [/ephemeral/hossein/output/progressive-yoco-tiny-llama-CDL-17](https://huggingface.co//ephemeral/hossein/output/progressive-yoco-tiny-llama-CDL-17) on the reformatted_ultrachat_200k, the reformatted_MathInstruct and the small_slim_pajama datasets.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 2e-05
39
+ - train_batch_size: 42
40
+ - eval_batch_size: 1
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 8
44
+ - gradient_accumulation_steps: 6
45
+ - total_train_batch_size: 2016
46
+ - total_eval_batch_size: 8
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: cosine
49
+ - lr_scheduler_warmup_ratio: 0.005
50
+ - training_steps: 150
51
+
52
+ ### Training results
53
+
54
+
55
+
56
+ ### Framework versions
57
+
58
+ - Transformers 4.45.2
59
+ - Pytorch 2.5.1+cu124
60
+ - Datasets 3.1.0
61
+ - Tokenizers 0.20.3
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.19745502413339183,
3
+ "total_flos": 349677715193856.0,
4
+ "train_loss": 1.9421729667981467,
5
+ "train_runtime": 5209.8016,
6
+ "train_samples_per_second": 58.044,
7
+ "train_steps_per_second": 0.029
8
+ }
checkpoint-150/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/ephemeral/hossein/output/progressive-yoco-tiny-llama-CDL-17",
3
+ "architectures": [
4
+ "ProgressiveYocoLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "crossDecoder_start_idx": 5,
10
+ "eos_token_id": 2,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 2048,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 5632,
15
+ "max_position_embeddings": 2048,
16
+ "mlp_bias": false,
17
+ "model_type": "progressive_yoco_llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 22,
20
+ "num_key_value_heads": 4,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": null,
24
+ "rope_theta": 10000.0,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.45.2",
28
+ "use_cache": false,
29
+ "vocab_size": 32000
30
+ }
checkpoint-150/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "eos_token_id": 2,
4
+ "max_length": 2048,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.45.2"
7
+ }
checkpoint-150/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step150
checkpoint-150/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80623834a487bac356b6ec93fec2507ae5c5a7a8b6346c6eb768ed41ecb25c26
3
+ size 2191734544
checkpoint-150/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:575119a228f98110923ffa2dedcb50e3317251b26054355d015e0b2240d566f2
3
+ size 15984
checkpoint-150/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0728b56dab7abb5ef8a0d4bae3519c5767c97467bdd886d26bf19cc8599d0312
3
+ size 15984
checkpoint-150/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4e481d4ef1546694da7337f6bb6c658b866dcb79b85deeb477da0d27ebe851e
3
+ size 15984
checkpoint-150/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:353c60be37ea56fc992fca446598ceca5d1fd002aa3bd6dbb9ad740e6f47ebb3
3
+ size 15984
checkpoint-150/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9107fe964ba7205e354084b85210e5a5ea1c98cfd4d38adb9cd3926945dcae4
3
+ size 15984
checkpoint-150/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69d1bb1abee38b92e53f3f23549b642ce0f1edcdccf7b6129847ac61636e96d5
3
+ size 15984
checkpoint-150/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afd5516048e20f36959601574e29e40106085a7d3cdc7bf425ce5e84633490e6
3
+ size 15984
checkpoint-150/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e2c46927fc06939b4c976a01e4b95dec1f8b98ceaea86d31a5d756fc30ff006
3
+ size 15984
checkpoint-150/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3b70ad0cd9144ba90ee64e944e2b60fd1ed7029d14b16795ae00ff3af0741cb
3
+ size 1064
checkpoint-150/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-150/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-150/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-150/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ content }}{% elif message['role'] == 'assistant' %}{{ content }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
checkpoint-150/trainer_state.json ADDED
@@ -0,0 +1,1083 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.19745502413339183,
5
+ "eval_steps": 50,
6
+ "global_step": 150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0013163668275559457,
13
+ "grad_norm": 1.1889708603566411,
14
+ "learning_rate": 2e-05,
15
+ "loss": 1.819,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0026327336551118913,
20
+ "grad_norm": 1.2487402928615228,
21
+ "learning_rate": 1.999777729859618e-05,
22
+ "loss": 1.786,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.003949100482667837,
27
+ "grad_norm": 11.818568585279303,
28
+ "learning_rate": 1.9991110182465032e-05,
29
+ "loss": 2.1123,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.005265467310223783,
34
+ "grad_norm": 9.670771499171282,
35
+ "learning_rate": 1.9980001615408228e-05,
36
+ "loss": 2.1052,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.006581834137779728,
41
+ "grad_norm": 6.7296227669578945,
42
+ "learning_rate": 1.9964456535631287e-05,
43
+ "loss": 2.0417,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.007898200965335674,
48
+ "grad_norm": 2.9490730461911254,
49
+ "learning_rate": 1.9944481853548335e-05,
50
+ "loss": 1.9756,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.009214567792891619,
55
+ "grad_norm": 2.8814574350373383,
56
+ "learning_rate": 1.9920086448710162e-05,
57
+ "loss": 1.9305,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.010530934620447565,
62
+ "grad_norm": 2.360259343454192,
63
+ "learning_rate": 1.9891281165856876e-05,
64
+ "loss": 1.9001,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.01184730144800351,
69
+ "grad_norm": 1.6478415946047946,
70
+ "learning_rate": 1.9858078810097004e-05,
71
+ "loss": 1.9285,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.013163668275559455,
76
+ "grad_norm": 1.865513115308653,
77
+ "learning_rate": 1.98204941412151e-05,
78
+ "loss": 1.9158,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.014480035103115402,
83
+ "grad_norm": 1.2039798356530171,
84
+ "learning_rate": 1.9778543867110428e-05,
85
+ "loss": 1.9177,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.015796401930671347,
90
+ "grad_norm": 1.1202568182839863,
91
+ "learning_rate": 1.9732246636369605e-05,
92
+ "loss": 1.9124,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.017112768758227294,
97
+ "grad_norm": 0.9613691948096944,
98
+ "learning_rate": 1.968162302997659e-05,
99
+ "loss": 1.9048,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.018429135585783237,
104
+ "grad_norm": 0.893717907926126,
105
+ "learning_rate": 1.962669555216358e-05,
106
+ "loss": 1.8905,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.019745502413339184,
111
+ "grad_norm": 0.9042103319398382,
112
+ "learning_rate": 1.9567488620406984e-05,
113
+ "loss": 1.9179,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.02106186924089513,
118
+ "grad_norm": 0.8537257879688175,
119
+ "learning_rate": 1.9504028554572865e-05,
120
+ "loss": 1.8956,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.022378236068451074,
125
+ "grad_norm": 0.7723152246718353,
126
+ "learning_rate": 1.943634356521671e-05,
127
+ "loss": 1.9106,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.02369460289600702,
132
+ "grad_norm": 0.788599031919039,
133
+ "learning_rate": 1.9364463741042694e-05,
134
+ "loss": 1.8714,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.025010969723562967,
139
+ "grad_norm": 0.7138782811411121,
140
+ "learning_rate": 1.928842103552803e-05,
141
+ "loss": 1.8805,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.02632733655111891,
146
+ "grad_norm": 0.6526275706400243,
147
+ "learning_rate": 1.920824925271838e-05,
148
+ "loss": 1.8992,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.027643703378674857,
153
+ "grad_norm": 0.7018291273940191,
154
+ "learning_rate": 1.9123984032200586e-05,
155
+ "loss": 1.8774,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.028960070206230804,
160
+ "grad_norm": 0.7136424568096796,
161
+ "learning_rate": 1.9035662833259433e-05,
162
+ "loss": 1.8978,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.030276437033786747,
167
+ "grad_norm": 0.7147862026041938,
168
+ "learning_rate": 1.8943324918225495e-05,
169
+ "loss": 1.8965,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.031592803861342694,
174
+ "grad_norm": 0.7049064442746601,
175
+ "learning_rate": 1.8847011335021447e-05,
176
+ "loss": 1.8831,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.03290917068889864,
181
+ "grad_norm": 0.6689369768605253,
182
+ "learning_rate": 1.874676489891461e-05,
183
+ "loss": 1.8881,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.03422553751645459,
188
+ "grad_norm": 0.6425593648258924,
189
+ "learning_rate": 1.8642630173483832e-05,
190
+ "loss": 1.889,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.03554190434401053,
195
+ "grad_norm": 0.6931260970545167,
196
+ "learning_rate": 1.85346534508092e-05,
197
+ "loss": 1.8936,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.036858271171566474,
202
+ "grad_norm": 0.5855894301604793,
203
+ "learning_rate": 1.8422882730893323e-05,
204
+ "loss": 1.9131,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.03817463799912242,
209
+ "grad_norm": 0.6403065763687231,
210
+ "learning_rate": 1.8307367700323412e-05,
211
+ "loss": 1.9104,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.03949100482667837,
216
+ "grad_norm": 0.667165710149791,
217
+ "learning_rate": 1.8188159710183595e-05,
218
+ "loss": 1.8807,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.040807371654234315,
223
+ "grad_norm": 0.601710689560651,
224
+ "learning_rate": 1.8065311753227272e-05,
225
+ "loss": 1.9261,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.04212373848179026,
230
+ "grad_norm": 0.6543848114887616,
231
+ "learning_rate": 1.7938878440319722e-05,
232
+ "loss": 1.9178,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.0434401053093462,
237
+ "grad_norm": 0.7216887863002542,
238
+ "learning_rate": 1.7808915976161364e-05,
239
+ "loss": 1.9212,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.04475647213690215,
244
+ "grad_norm": 0.6605220221485377,
245
+ "learning_rate": 1.7675482134302503e-05,
246
+ "loss": 1.9019,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.046072838964458095,
251
+ "grad_norm": 0.5651946270062499,
252
+ "learning_rate": 1.753863623146066e-05,
253
+ "loss": 1.9065,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.04738920579201404,
258
+ "grad_norm": 0.6283354866608959,
259
+ "learning_rate": 1.7398439101151908e-05,
260
+ "loss": 1.8926,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.04870557261956999,
265
+ "grad_norm": 0.591339280937863,
266
+ "learning_rate": 1.7254953066647915e-05,
267
+ "loss": 1.898,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.050021939447125935,
272
+ "grad_norm": 0.566891433067587,
273
+ "learning_rate": 1.710824191327075e-05,
274
+ "loss": 1.9314,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.051338306274681875,
279
+ "grad_norm": 0.5036303737690743,
280
+ "learning_rate": 1.695837086003772e-05,
281
+ "loss": 1.908,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.05265467310223782,
286
+ "grad_norm": 0.5732998210738149,
287
+ "learning_rate": 1.680540653066891e-05,
288
+ "loss": 1.907,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.05397103992979377,
293
+ "grad_norm": 0.600054956243109,
294
+ "learning_rate": 1.6649416923970248e-05,
295
+ "loss": 1.908,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.055287406757349715,
300
+ "grad_norm": 0.5780718337975314,
301
+ "learning_rate": 1.649047138360529e-05,
302
+ "loss": 1.9006,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.05660377358490566,
307
+ "grad_norm": 0.5998379136280807,
308
+ "learning_rate": 1.632864056726917e-05,
309
+ "loss": 1.9023,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.05792014041246161,
314
+ "grad_norm": 0.630710242272472,
315
+ "learning_rate": 1.6163996415278423e-05,
316
+ "loss": 1.9284,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.05923650724001755,
321
+ "grad_norm": 0.5104566997273228,
322
+ "learning_rate": 1.5996612118590604e-05,
323
+ "loss": 1.9089,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.060552874067573495,
328
+ "grad_norm": 0.6521533677979531,
329
+ "learning_rate": 1.5826562086267956e-05,
330
+ "loss": 1.9285,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.06186924089512944,
335
+ "grad_norm": 0.5098826190359927,
336
+ "learning_rate": 1.565392191239959e-05,
337
+ "loss": 1.916,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.06318560772268539,
342
+ "grad_norm": 0.62515291794207,
343
+ "learning_rate": 1.5478768342496872e-05,
344
+ "loss": 1.9069,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.06450197455024133,
349
+ "grad_norm": 0.5918382830263713,
350
+ "learning_rate": 1.5301179239376936e-05,
351
+ "loss": 1.9224,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.06581834137779728,
356
+ "grad_norm": 0.6387295926323716,
357
+ "learning_rate": 1.512123354854955e-05,
358
+ "loss": 1.9022,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.06713470820535322,
363
+ "grad_norm": 0.5484211324952757,
364
+ "learning_rate": 1.4939011263122635e-05,
365
+ "loss": 1.9024,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.06845107503290918,
370
+ "grad_norm": 0.6838268591901047,
371
+ "learning_rate": 1.4754593388242117e-05,
372
+ "loss": 1.9133,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.06976744186046512,
377
+ "grad_norm": 0.49026244529365287,
378
+ "learning_rate": 1.4568061905081874e-05,
379
+ "loss": 1.9044,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.07108380868802106,
384
+ "grad_norm": 0.617101630668953,
385
+ "learning_rate": 1.4379499734399797e-05,
386
+ "loss": 1.9176,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.07240017551557701,
391
+ "grad_norm": 0.5185658207760714,
392
+ "learning_rate": 1.4188990699676186e-05,
393
+ "loss": 1.915,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.07371654234313295,
398
+ "grad_norm": 0.5509987613832577,
399
+ "learning_rate": 1.3996619489850822e-05,
400
+ "loss": 1.9282,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.0750329091706889,
405
+ "grad_norm": 0.5404326350759733,
406
+ "learning_rate": 1.3802471621675337e-05,
407
+ "loss": 1.9121,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.07634927599824484,
412
+ "grad_norm": 0.45194626257894893,
413
+ "learning_rate": 1.3606633401697557e-05,
414
+ "loss": 1.9348,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.0776656428258008,
419
+ "grad_norm": 0.44319095497602445,
420
+ "learning_rate": 1.340919188789477e-05,
421
+ "loss": 1.9162,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.07898200965335674,
426
+ "grad_norm": 0.45917008340300286,
427
+ "learning_rate": 1.3210234850972966e-05,
428
+ "loss": 1.9349,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.08029837648091268,
433
+ "grad_norm": 0.4397437065658123,
434
+ "learning_rate": 1.300985073534919e-05,
435
+ "loss": 1.9344,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.08161474330846863,
440
+ "grad_norm": 0.43586654360169025,
441
+ "learning_rate": 1.280812861983446e-05,
442
+ "loss": 1.9144,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.08293111013602457,
447
+ "grad_norm": 0.4334759261856198,
448
+ "learning_rate": 1.2605158178034656e-05,
449
+ "loss": 1.9202,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.08424747696358052,
454
+ "grad_norm": 0.41957147456515964,
455
+ "learning_rate": 1.2401029638486952e-05,
456
+ "loss": 1.8986,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.08556384379113646,
461
+ "grad_norm": 0.41703972877231255,
462
+ "learning_rate": 1.219583374454963e-05,
463
+ "loss": 1.9367,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.0868802106186924,
468
+ "grad_norm": 0.3885734477047593,
469
+ "learning_rate": 1.1989661714063e-05,
470
+ "loss": 1.9536,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.08819657744624836,
475
+ "grad_norm": 0.3629396674080558,
476
+ "learning_rate": 1.1782605198799371e-05,
477
+ "loss": 1.942,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.0895129442738043,
482
+ "grad_norm": 0.41851931328687847,
483
+ "learning_rate": 1.157475624372018e-05,
484
+ "loss": 1.9149,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.09082931110136025,
489
+ "grad_norm": 0.38254555542206087,
490
+ "learning_rate": 1.1366207246058269e-05,
491
+ "loss": 1.9258,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.09214567792891619,
496
+ "grad_norm": 0.3760396216126684,
497
+ "learning_rate": 1.1157050914243614e-05,
498
+ "loss": 1.9395,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.09346204475647214,
503
+ "grad_norm": 0.3802671210811049,
504
+ "learning_rate": 1.0947380226690686e-05,
505
+ "loss": 1.9354,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.09477841158402808,
510
+ "grad_norm": 0.346627059727759,
511
+ "learning_rate": 1.0737288390465792e-05,
512
+ "loss": 1.9259,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.09609477841158402,
517
+ "grad_norm": 0.3873365911679245,
518
+ "learning_rate": 1.0526868799852797e-05,
519
+ "loss": 1.9493,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.09741114523913998,
524
+ "grad_norm": 0.3805418724228647,
525
+ "learning_rate": 1.031621499483559e-05,
526
+ "loss": 1.9429,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.09872751206669592,
531
+ "grad_norm": 0.3477296159832507,
532
+ "learning_rate": 1.0105420619515798e-05,
533
+ "loss": 1.9348,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.10004387889425187,
538
+ "grad_norm": 0.36081350820036023,
539
+ "learning_rate": 9.894579380484206e-06,
540
+ "loss": 1.951,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.10136024572180781,
545
+ "grad_norm": 0.3603157658181124,
546
+ "learning_rate": 9.683785005164412e-06,
547
+ "loss": 1.9568,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.10267661254936375,
552
+ "grad_norm": 0.3344964866298326,
553
+ "learning_rate": 9.473131200147205e-06,
554
+ "loss": 1.9635,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.1039929793769197,
559
+ "grad_norm": 0.3577372410086672,
560
+ "learning_rate": 9.262711609534211e-06,
561
+ "loss": 1.9493,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.10530934620447564,
566
+ "grad_norm": 0.32166763062706677,
567
+ "learning_rate": 9.052619773309318e-06,
568
+ "loss": 1.9416,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.1066257130320316,
573
+ "grad_norm": 0.3642098555682263,
574
+ "learning_rate": 8.842949085756389e-06,
575
+ "loss": 1.9375,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.10794207985958754,
580
+ "grad_norm": 0.31313176156525635,
581
+ "learning_rate": 8.633792753941733e-06,
582
+ "loss": 1.9482,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.10925844668714349,
587
+ "grad_norm": 0.32357294734122866,
588
+ "learning_rate": 8.425243756279824e-06,
589
+ "loss": 1.9274,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.11057481351469943,
594
+ "grad_norm": 0.3149933190799516,
595
+ "learning_rate": 8.217394801200632e-06,
596
+ "loss": 1.9494,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.11189118034225537,
601
+ "grad_norm": 0.3145273258487357,
602
+ "learning_rate": 8.010338285937006e-06,
603
+ "loss": 1.9383,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.11320754716981132,
608
+ "grad_norm": 0.3293525045662984,
609
+ "learning_rate": 7.804166255450372e-06,
610
+ "loss": 1.9438,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.11452391399736726,
615
+ "grad_norm": 0.29338737195487413,
616
+ "learning_rate": 7.598970361513052e-06,
617
+ "loss": 1.9486,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.11584028082492322,
622
+ "grad_norm": 0.3103457426467627,
623
+ "learning_rate": 7.394841821965345e-06,
624
+ "loss": 1.9274,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.11715664765247916,
629
+ "grad_norm": 0.3143049571743679,
630
+ "learning_rate": 7.191871380165538e-06,
631
+ "loss": 1.9524,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.1184730144800351,
636
+ "grad_norm": 0.29504032042698036,
637
+ "learning_rate": 6.990149264650814e-06,
638
+ "loss": 1.9445,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.11978938130759105,
643
+ "grad_norm": 0.3210704673929567,
644
+ "learning_rate": 6.789765149027039e-06,
645
+ "loss": 1.9515,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.12110574813514699,
650
+ "grad_norm": 0.28621542114599363,
651
+ "learning_rate": 6.590808112105232e-06,
652
+ "loss": 1.969,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.12242211496270294,
657
+ "grad_norm": 0.2882677076447023,
658
+ "learning_rate": 6.3933665983024465e-06,
659
+ "loss": 1.954,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.12373848179025888,
664
+ "grad_norm": 0.287930909134049,
665
+ "learning_rate": 6.197528378324664e-06,
666
+ "loss": 1.9313,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.12505484861781482,
671
+ "grad_norm": 0.31023728939120476,
672
+ "learning_rate": 6.003380510149179e-06,
673
+ "loss": 1.9602,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.12637121544537078,
678
+ "grad_norm": 0.2752773114898817,
679
+ "learning_rate": 5.8110093003238175e-06,
680
+ "loss": 1.9831,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.12768758227292673,
685
+ "grad_norm": 0.2972076509810327,
686
+ "learning_rate": 5.620500265600206e-06,
687
+ "loss": 1.9562,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.12900394910048266,
692
+ "grad_norm": 0.28344306622056237,
693
+ "learning_rate": 5.431938094918132e-06,
694
+ "loss": 1.9679,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.1303203159280386,
699
+ "grad_norm": 0.27862896188615965,
700
+ "learning_rate": 5.245406611757882e-06,
701
+ "loss": 1.9667,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.13163668275559456,
706
+ "grad_norm": 0.2775069903986726,
707
+ "learning_rate": 5.060988736877366e-06,
708
+ "loss": 1.9486,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.13295304958315052,
713
+ "grad_norm": 0.2750571862770337,
714
+ "learning_rate": 4.878766451450451e-06,
715
+ "loss": 1.9557,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.13426941641070644,
720
+ "grad_norm": 0.2680704001161532,
721
+ "learning_rate": 4.698820760623064e-06,
722
+ "loss": 1.9506,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.1355857832382624,
727
+ "grad_norm": 0.2782630531024094,
728
+ "learning_rate": 4.5212316575031325e-06,
729
+ "loss": 1.9639,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.13690215006581835,
734
+ "grad_norm": 0.25617683357697074,
735
+ "learning_rate": 4.346078087600411e-06,
736
+ "loss": 1.9683,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.13821851689337428,
741
+ "grad_norm": 0.2444943371569369,
742
+ "learning_rate": 4.173437913732048e-06,
743
+ "loss": 1.9659,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.13953488372093023,
748
+ "grad_norm": 0.2597397835336073,
749
+ "learning_rate": 4.003387881409397e-06,
750
+ "loss": 1.9704,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.14085125054848618,
755
+ "grad_norm": 0.26063366143876027,
756
+ "learning_rate": 3.836003584721577e-06,
757
+ "loss": 1.97,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.1421676173760421,
762
+ "grad_norm": 0.23235593032133328,
763
+ "learning_rate": 3.6713594327308343e-06,
764
+ "loss": 1.9554,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.14348398420359806,
769
+ "grad_norm": 0.22701215505987368,
770
+ "learning_rate": 3.509528616394716e-06,
771
+ "loss": 1.9737,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.14480035103115402,
776
+ "grad_norm": 0.24108913765275466,
777
+ "learning_rate": 3.3505830760297543e-06,
778
+ "loss": 1.9699,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.14611671785870997,
783
+ "grad_norm": 0.24405476026520742,
784
+ "learning_rate": 3.1945934693310897e-06,
785
+ "loss": 1.9767,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.1474330846862659,
790
+ "grad_norm": 0.23175867510438058,
791
+ "learning_rate": 3.0416291399622834e-06,
792
+ "loss": 2.0023,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.14874945151382185,
797
+ "grad_norm": 0.22596129228759587,
798
+ "learning_rate": 2.891758086729253e-06,
799
+ "loss": 1.955,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.1500658183413778,
804
+ "grad_norm": 0.24851949999567013,
805
+ "learning_rate": 2.7450469333520856e-06,
806
+ "loss": 1.9611,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.15138218516893373,
811
+ "grad_norm": 0.22293156665441605,
812
+ "learning_rate": 2.6015608988480956e-06,
813
+ "loss": 1.9658,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.15269855199648968,
818
+ "grad_norm": 0.21616202749444716,
819
+ "learning_rate": 2.4613637685393433e-06,
820
+ "loss": 1.9753,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.15401491882404564,
825
+ "grad_norm": 0.22185470586350384,
826
+ "learning_rate": 2.324517865697501e-06,
827
+ "loss": 1.9495,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.1553312856516016,
832
+ "grad_norm": 0.21722679538918865,
833
+ "learning_rate": 2.19108402383864e-06,
834
+ "loss": 1.9628,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.15664765247915752,
839
+ "grad_norm": 0.21205900012695214,
840
+ "learning_rate": 2.06112155968028e-06,
841
+ "loss": 1.9823,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.15796401930671347,
846
+ "grad_norm": 0.2182253662134732,
847
+ "learning_rate": 1.9346882467727323e-06,
848
+ "loss": 1.9875,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.15928038613426942,
853
+ "grad_norm": 0.22007111443224736,
854
+ "learning_rate": 1.811840289816409e-06,
855
+ "loss": 1.9805,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.16059675296182535,
860
+ "grad_norm": 0.20406970469647664,
861
+ "learning_rate": 1.6926322996765899e-06,
862
+ "loss": 1.9818,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.1619131197893813,
867
+ "grad_norm": 0.2024904864715853,
868
+ "learning_rate": 1.5771172691066793e-06,
869
+ "loss": 1.9859,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.16322948661693726,
874
+ "grad_norm": 0.20299971001174535,
875
+ "learning_rate": 1.4653465491908003e-06,
876
+ "loss": 2.0096,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.1645458534444932,
881
+ "grad_norm": 0.21516178859981677,
882
+ "learning_rate": 1.3573698265161683e-06,
883
+ "loss": 1.9654,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.16586222027204914,
888
+ "grad_norm": 0.20722629324747893,
889
+ "learning_rate": 1.2532351010853916e-06,
890
+ "loss": 1.9708,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.1671785870996051,
895
+ "grad_norm": 0.21213871178644442,
896
+ "learning_rate": 1.152988664978556e-06,
897
+ "loss": 1.9787,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.16849495392716105,
902
+ "grad_norm": 0.20023503307538396,
903
+ "learning_rate": 1.0566750817745076e-06,
904
+ "loss": 1.9858,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.16981132075471697,
909
+ "grad_norm": 0.1924700263570635,
910
+ "learning_rate": 9.6433716674057e-07,
911
+ "loss": 1.9781,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.17112768758227292,
916
+ "grad_norm": 0.20779051083187167,
917
+ "learning_rate": 8.760159677994174e-07,
918
+ "loss": 1.9827,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.17244405440982888,
923
+ "grad_norm": 0.20230044677950978,
924
+ "learning_rate": 7.91750747281621e-07,
925
+ "loss": 1.9741,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.1737604212373848,
930
+ "grad_norm": 0.19683020520485797,
931
+ "learning_rate": 7.115789644719728e-07,
932
+ "loss": 1.9949,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.17507678806494076,
937
+ "grad_norm": 0.19524340774257554,
938
+ "learning_rate": 6.355362589573078e-07,
939
+ "loss": 1.9762,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.1763931548924967,
944
+ "grad_norm": 0.20098123761556075,
945
+ "learning_rate": 5.636564347832907e-07,
946
+ "loss": 1.9818,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.17770952172005267,
951
+ "grad_norm": 0.18935262395702177,
952
+ "learning_rate": 4.95971445427137e-07,
953
+ "loss": 1.983,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.1790258885476086,
958
+ "grad_norm": 0.1906817912560046,
959
+ "learning_rate": 4.3251137959302023e-07,
960
+ "loss": 1.9708,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.18034225537516455,
965
+ "grad_norm": 0.19470612058115894,
966
+ "learning_rate": 3.733044478364234e-07,
967
+ "loss": 1.967,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.1816586222027205,
972
+ "grad_norm": 0.18636115957247928,
973
+ "learning_rate": 3.1837697002341293e-07,
974
+ "loss": 1.9791,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.18297498903027642,
979
+ "grad_norm": 0.18877431556550928,
980
+ "learning_rate": 2.677533636303964e-07,
981
+ "loss": 1.9694,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.18429135585783238,
986
+ "grad_norm": 0.1955087203028538,
987
+ "learning_rate": 2.214561328895748e-07,
988
+ "loss": 1.9741,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.18560772268538833,
993
+ "grad_norm": 0.196549286904382,
994
+ "learning_rate": 1.7950585878489856e-07,
995
+ "loss": 1.979,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.18692408951294429,
1000
+ "grad_norm": 0.19224460294869852,
1001
+ "learning_rate": 1.419211899029971e-07,
1002
+ "loss": 1.9707,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.1882404563405002,
1007
+ "grad_norm": 0.18853581462437616,
1008
+ "learning_rate": 1.0871883414312778e-07,
1009
+ "loss": 1.981,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.18955682316805617,
1014
+ "grad_norm": 0.1838928559361403,
1015
+ "learning_rate": 7.99135512898408e-08,
1016
+ "loss": 1.9731,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.19087318999561212,
1021
+ "grad_norm": 0.190162401461088,
1022
+ "learning_rate": 5.55181464516652e-08,
1023
+ "loss": 1.975,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.19218955682316805,
1028
+ "grad_norm": 0.19003523312950812,
1029
+ "learning_rate": 3.554346436871581e-08,
1030
+ "loss": 1.9704,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.193505923650724,
1035
+ "grad_norm": 0.19021539316010605,
1036
+ "learning_rate": 1.9998384591773945e-08,
1037
+ "loss": 1.979,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.19482229047827995,
1042
+ "grad_norm": 0.18754432655782285,
1043
+ "learning_rate": 8.889817534969425e-09,
1044
+ "loss": 1.9867,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.1961386573058359,
1049
+ "grad_norm": 0.1897467195961825,
1050
+ "learning_rate": 2.222701403818972e-09,
1051
+ "loss": 1.9756,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.19745502413339183,
1056
+ "grad_norm": 0.20302937860642753,
1057
+ "learning_rate": 0.0,
1058
+ "loss": 1.9877,
1059
+ "step": 150
1060
+ }
1061
+ ],
1062
+ "logging_steps": 1,
1063
+ "max_steps": 150,
1064
+ "num_input_tokens_seen": 0,
1065
+ "num_train_epochs": 1,
1066
+ "save_steps": 50,
1067
+ "stateful_callbacks": {
1068
+ "TrainerControl": {
1069
+ "args": {
1070
+ "should_epoch_stop": false,
1071
+ "should_evaluate": false,
1072
+ "should_log": false,
1073
+ "should_save": true,
1074
+ "should_training_stop": true
1075
+ },
1076
+ "attributes": {}
1077
+ }
1078
+ },
1079
+ "total_flos": 349677715193856.0,
1080
+ "train_batch_size": 42,
1081
+ "trial_name": null,
1082
+ "trial_params": null
1083
+ }
checkpoint-150/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:740b7b8a2a5af5fe75fa4a3755ea7b3cb437cad50b07e933078a8d7b44af963f
3
+ size 7224
checkpoint-150/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"_name_or_path": "TinyLlama/TinyLlama_v1.1", "architectures": ["ProgressiveYocoLlamaForCausalLM"], "attention_bias": false, "attention_dropout": 0.0, "bos_token_id": 1, "crossDecoder_start_idx": 5, "eos_token_id": 2, "hidden_act": "silu", "hidden_size": 2048, "initializer_range": 0.02, "intermediate_size": 5632, "max_position_embeddings": 2048, "mlp_bias": false, "model_type": "progressive_yoco_llama", "num_attention_heads": 32, "num_hidden_layers": 22, "num_key_value_heads": 4, "pretraining_tp": 1, "rms_norm_eps": 1e-05, "rope_scaling": null, "rope_theta": 10000.0, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.45.2", "use_cache": false, "vocab_size": 32000}
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "eos_token_id": 2,
4
+ "max_length": 2048,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.45.2"
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80623834a487bac356b6ec93fec2507ae5c5a7a8b6346c6eb768ed41ecb25c26
3
+ size 2191734544
runs/Nov25_12-49-05_creative-turing-2/events.out.tfevents.1732539135.creative-turing-2.1351148.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75f595fe45c2bdf73e2de42115fa4aad2fdcb2c1d5f2fb6c979d31a8a7b3babd
3
+ size 36911
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ content }}{% elif message['role'] == 'assistant' %}{{ content }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.19745502413339183,
3
+ "total_flos": 349677715193856.0,
4
+ "train_loss": 1.9421729667981467,
5
+ "train_runtime": 5209.8016,
6
+ "train_samples_per_second": 58.044,
7
+ "train_steps_per_second": 0.029
8
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 150, "loss": 1.819, "lr": 2e-05, "epoch": 0.0013163668275559457, "percentage": 0.67, "elapsed_time": "0:00:37", "remaining_time": "1:33:47"}
2
+ {"current_steps": 2, "total_steps": 150, "loss": 1.786, "lr": 1.999777729859618e-05, "epoch": 0.0026327336551118913, "percentage": 1.33, "elapsed_time": "0:01:11", "remaining_time": "1:28:42"}
3
+ {"current_steps": 3, "total_steps": 150, "loss": 2.1123, "lr": 1.9991110182465032e-05, "epoch": 0.003949100482667837, "percentage": 2.0, "elapsed_time": "0:01:46", "remaining_time": "1:26:47"}
4
+ {"current_steps": 4, "total_steps": 150, "loss": 2.1052, "lr": 1.9980001615408228e-05, "epoch": 0.005265467310223783, "percentage": 2.67, "elapsed_time": "0:02:20", "remaining_time": "1:25:35"}
5
+ {"current_steps": 5, "total_steps": 150, "loss": 2.0417, "lr": 1.9964456535631287e-05, "epoch": 0.006581834137779728, "percentage": 3.33, "elapsed_time": "0:02:55", "remaining_time": "1:24:40"}
6
+ {"current_steps": 6, "total_steps": 150, "loss": 1.9756, "lr": 1.9944481853548335e-05, "epoch": 0.007898200965335674, "percentage": 4.0, "elapsed_time": "0:03:29", "remaining_time": "1:23:52"}
7
+ {"current_steps": 7, "total_steps": 150, "loss": 1.9305, "lr": 1.9920086448710162e-05, "epoch": 0.009214567792891619, "percentage": 4.67, "elapsed_time": "0:04:04", "remaining_time": "1:23:08"}
8
+ {"current_steps": 8, "total_steps": 150, "loss": 1.9001, "lr": 1.9891281165856876e-05, "epoch": 0.010530934620447565, "percentage": 5.33, "elapsed_time": "0:04:38", "remaining_time": "1:22:27"}
9
+ {"current_steps": 9, "total_steps": 150, "loss": 1.9285, "lr": 1.9858078810097004e-05, "epoch": 0.01184730144800351, "percentage": 6.0, "elapsed_time": "0:05:13", "remaining_time": "1:21:47"}
10
+ {"current_steps": 10, "total_steps": 150, "loss": 1.9158, "lr": 1.98204941412151e-05, "epoch": 0.013163668275559455, "percentage": 6.67, "elapsed_time": "0:05:47", "remaining_time": "1:21:09"}
11
+ {"current_steps": 11, "total_steps": 150, "loss": 1.9177, "lr": 1.9778543867110428e-05, "epoch": 0.014480035103115402, "percentage": 7.33, "elapsed_time": "0:06:22", "remaining_time": "1:20:31"}
12
+ {"current_steps": 12, "total_steps": 150, "loss": 1.9124, "lr": 1.9732246636369605e-05, "epoch": 0.015796401930671347, "percentage": 8.0, "elapsed_time": "0:06:56", "remaining_time": "1:19:54"}
13
+ {"current_steps": 13, "total_steps": 150, "loss": 1.9048, "lr": 1.968162302997659e-05, "epoch": 0.017112768758227294, "percentage": 8.67, "elapsed_time": "0:07:31", "remaining_time": "1:19:17"}
14
+ {"current_steps": 14, "total_steps": 150, "loss": 1.8905, "lr": 1.962669555216358e-05, "epoch": 0.018429135585783237, "percentage": 9.33, "elapsed_time": "0:08:05", "remaining_time": "1:18:40"}
15
+ {"current_steps": 15, "total_steps": 150, "loss": 1.9179, "lr": 1.9567488620406984e-05, "epoch": 0.019745502413339184, "percentage": 10.0, "elapsed_time": "0:08:40", "remaining_time": "1:18:04"}
16
+ {"current_steps": 16, "total_steps": 150, "loss": 1.8956, "lr": 1.9504028554572865e-05, "epoch": 0.02106186924089513, "percentage": 10.67, "elapsed_time": "0:09:15", "remaining_time": "1:17:28"}
17
+ {"current_steps": 17, "total_steps": 150, "loss": 1.9106, "lr": 1.943634356521671e-05, "epoch": 0.022378236068451074, "percentage": 11.33, "elapsed_time": "0:09:49", "remaining_time": "1:16:52"}
18
+ {"current_steps": 18, "total_steps": 150, "loss": 1.8714, "lr": 1.9364463741042694e-05, "epoch": 0.02369460289600702, "percentage": 12.0, "elapsed_time": "0:10:24", "remaining_time": "1:16:16"}
19
+ {"current_steps": 19, "total_steps": 150, "loss": 1.8805, "lr": 1.928842103552803e-05, "epoch": 0.025010969723562967, "percentage": 12.67, "elapsed_time": "0:10:58", "remaining_time": "1:15:41"}
20
+ {"current_steps": 20, "total_steps": 150, "loss": 1.8992, "lr": 1.920824925271838e-05, "epoch": 0.02632733655111891, "percentage": 13.33, "elapsed_time": "0:11:33", "remaining_time": "1:15:05"}
21
+ {"current_steps": 21, "total_steps": 150, "loss": 1.8774, "lr": 1.9123984032200586e-05, "epoch": 0.027643703378674857, "percentage": 14.0, "elapsed_time": "0:12:07", "remaining_time": "1:14:30"}
22
+ {"current_steps": 22, "total_steps": 150, "loss": 1.8978, "lr": 1.9035662833259433e-05, "epoch": 0.028960070206230804, "percentage": 14.67, "elapsed_time": "0:12:42", "remaining_time": "1:13:55"}
23
+ {"current_steps": 23, "total_steps": 150, "loss": 1.8965, "lr": 1.8943324918225495e-05, "epoch": 0.030276437033786747, "percentage": 15.33, "elapsed_time": "0:13:16", "remaining_time": "1:13:19"}
24
+ {"current_steps": 24, "total_steps": 150, "loss": 1.8831, "lr": 1.8847011335021447e-05, "epoch": 0.031592803861342694, "percentage": 16.0, "elapsed_time": "0:13:51", "remaining_time": "1:12:44"}
25
+ {"current_steps": 25, "total_steps": 150, "loss": 1.8881, "lr": 1.874676489891461e-05, "epoch": 0.03290917068889864, "percentage": 16.67, "elapsed_time": "0:14:25", "remaining_time": "1:12:09"}
26
+ {"current_steps": 26, "total_steps": 150, "loss": 1.889, "lr": 1.8642630173483832e-05, "epoch": 0.03422553751645459, "percentage": 17.33, "elapsed_time": "0:15:00", "remaining_time": "1:11:34"}
27
+ {"current_steps": 27, "total_steps": 150, "loss": 1.8936, "lr": 1.85346534508092e-05, "epoch": 0.03554190434401053, "percentage": 18.0, "elapsed_time": "0:15:34", "remaining_time": "1:10:59"}
28
+ {"current_steps": 28, "total_steps": 150, "loss": 1.9131, "lr": 1.8422882730893323e-05, "epoch": 0.036858271171566474, "percentage": 18.67, "elapsed_time": "0:16:09", "remaining_time": "1:10:24"}
29
+ {"current_steps": 29, "total_steps": 150, "loss": 1.9104, "lr": 1.8307367700323412e-05, "epoch": 0.03817463799912242, "percentage": 19.33, "elapsed_time": "0:16:44", "remaining_time": "1:09:49"}
30
+ {"current_steps": 30, "total_steps": 150, "loss": 1.8807, "lr": 1.8188159710183595e-05, "epoch": 0.03949100482667837, "percentage": 20.0, "elapsed_time": "0:17:18", "remaining_time": "1:09:14"}
31
+ {"current_steps": 31, "total_steps": 150, "loss": 1.9261, "lr": 1.8065311753227272e-05, "epoch": 0.040807371654234315, "percentage": 20.67, "elapsed_time": "0:17:53", "remaining_time": "1:08:39"}
32
+ {"current_steps": 32, "total_steps": 150, "loss": 1.9178, "lr": 1.7938878440319722e-05, "epoch": 0.04212373848179026, "percentage": 21.33, "elapsed_time": "0:18:27", "remaining_time": "1:08:04"}
33
+ {"current_steps": 33, "total_steps": 150, "loss": 1.9212, "lr": 1.7808915976161364e-05, "epoch": 0.0434401053093462, "percentage": 22.0, "elapsed_time": "0:19:02", "remaining_time": "1:07:29"}
34
+ {"current_steps": 34, "total_steps": 150, "loss": 1.9019, "lr": 1.7675482134302503e-05, "epoch": 0.04475647213690215, "percentage": 22.67, "elapsed_time": "0:19:36", "remaining_time": "1:06:54"}
35
+ {"current_steps": 35, "total_steps": 150, "loss": 1.9065, "lr": 1.753863623146066e-05, "epoch": 0.046072838964458095, "percentage": 23.33, "elapsed_time": "0:20:11", "remaining_time": "1:06:20"}
36
+ {"current_steps": 36, "total_steps": 150, "loss": 1.8926, "lr": 1.7398439101151908e-05, "epoch": 0.04738920579201404, "percentage": 24.0, "elapsed_time": "0:20:45", "remaining_time": "1:05:45"}
37
+ {"current_steps": 37, "total_steps": 150, "loss": 1.898, "lr": 1.7254953066647915e-05, "epoch": 0.04870557261956999, "percentage": 24.67, "elapsed_time": "0:21:20", "remaining_time": "1:05:10"}
38
+ {"current_steps": 38, "total_steps": 150, "loss": 1.9314, "lr": 1.710824191327075e-05, "epoch": 0.050021939447125935, "percentage": 25.33, "elapsed_time": "0:21:54", "remaining_time": "1:04:35"}
39
+ {"current_steps": 39, "total_steps": 150, "loss": 1.908, "lr": 1.695837086003772e-05, "epoch": 0.051338306274681875, "percentage": 26.0, "elapsed_time": "0:22:29", "remaining_time": "1:04:00"}
40
+ {"current_steps": 40, "total_steps": 150, "loss": 1.907, "lr": 1.680540653066891e-05, "epoch": 0.05265467310223782, "percentage": 26.67, "elapsed_time": "0:23:03", "remaining_time": "1:03:25"}
41
+ {"current_steps": 41, "total_steps": 150, "loss": 1.908, "lr": 1.6649416923970248e-05, "epoch": 0.05397103992979377, "percentage": 27.33, "elapsed_time": "0:23:38", "remaining_time": "1:02:51"}
42
+ {"current_steps": 42, "total_steps": 150, "loss": 1.9006, "lr": 1.649047138360529e-05, "epoch": 0.055287406757349715, "percentage": 28.0, "elapsed_time": "0:24:13", "remaining_time": "1:02:16"}
43
+ {"current_steps": 43, "total_steps": 150, "loss": 1.9023, "lr": 1.632864056726917e-05, "epoch": 0.05660377358490566, "percentage": 28.67, "elapsed_time": "0:24:47", "remaining_time": "1:01:41"}
44
+ {"current_steps": 44, "total_steps": 150, "loss": 1.9284, "lr": 1.6163996415278423e-05, "epoch": 0.05792014041246161, "percentage": 29.33, "elapsed_time": "0:25:22", "remaining_time": "1:01:06"}
45
+ {"current_steps": 45, "total_steps": 150, "loss": 1.9089, "lr": 1.5996612118590604e-05, "epoch": 0.05923650724001755, "percentage": 30.0, "elapsed_time": "0:25:56", "remaining_time": "1:00:32"}
46
+ {"current_steps": 46, "total_steps": 150, "loss": 1.9285, "lr": 1.5826562086267956e-05, "epoch": 0.060552874067573495, "percentage": 30.67, "elapsed_time": "0:26:31", "remaining_time": "0:59:57"}
47
+ {"current_steps": 47, "total_steps": 150, "loss": 1.916, "lr": 1.565392191239959e-05, "epoch": 0.06186924089512944, "percentage": 31.33, "elapsed_time": "0:27:05", "remaining_time": "0:59:22"}
48
+ {"current_steps": 48, "total_steps": 150, "loss": 1.9069, "lr": 1.5478768342496872e-05, "epoch": 0.06318560772268539, "percentage": 32.0, "elapsed_time": "0:27:40", "remaining_time": "0:58:48"}
49
+ {"current_steps": 49, "total_steps": 150, "loss": 1.9224, "lr": 1.5301179239376936e-05, "epoch": 0.06450197455024133, "percentage": 32.67, "elapsed_time": "0:28:14", "remaining_time": "0:58:13"}
50
+ {"current_steps": 50, "total_steps": 150, "loss": 1.9022, "lr": 1.512123354854955e-05, "epoch": 0.06581834137779728, "percentage": 33.33, "elapsed_time": "0:28:49", "remaining_time": "0:57:38"}
51
+ {"current_steps": 51, "total_steps": 150, "loss": 1.9024, "lr": 1.4939011263122635e-05, "epoch": 0.06713470820535322, "percentage": 34.0, "elapsed_time": "0:29:30", "remaining_time": "0:57:17"}
52
+ {"current_steps": 52, "total_steps": 150, "loss": 1.9133, "lr": 1.4754593388242117e-05, "epoch": 0.06845107503290918, "percentage": 34.67, "elapsed_time": "0:30:05", "remaining_time": "0:56:42"}
53
+ {"current_steps": 53, "total_steps": 150, "loss": 1.9044, "lr": 1.4568061905081874e-05, "epoch": 0.06976744186046512, "percentage": 35.33, "elapsed_time": "0:30:39", "remaining_time": "0:56:07"}
54
+ {"current_steps": 54, "total_steps": 150, "loss": 1.9176, "lr": 1.4379499734399797e-05, "epoch": 0.07108380868802106, "percentage": 36.0, "elapsed_time": "0:31:14", "remaining_time": "0:55:32"}
55
+ {"current_steps": 55, "total_steps": 150, "loss": 1.915, "lr": 1.4188990699676186e-05, "epoch": 0.07240017551557701, "percentage": 36.67, "elapsed_time": "0:31:48", "remaining_time": "0:54:57"}
56
+ {"current_steps": 56, "total_steps": 150, "loss": 1.9282, "lr": 1.3996619489850822e-05, "epoch": 0.07371654234313295, "percentage": 37.33, "elapsed_time": "0:32:23", "remaining_time": "0:54:22"}
57
+ {"current_steps": 57, "total_steps": 150, "loss": 1.9121, "lr": 1.3802471621675337e-05, "epoch": 0.0750329091706889, "percentage": 38.0, "elapsed_time": "0:32:57", "remaining_time": "0:53:47"}
58
+ {"current_steps": 58, "total_steps": 150, "loss": 1.9348, "lr": 1.3606633401697557e-05, "epoch": 0.07634927599824484, "percentage": 38.67, "elapsed_time": "0:33:32", "remaining_time": "0:53:12"}
59
+ {"current_steps": 59, "total_steps": 150, "loss": 1.9162, "lr": 1.340919188789477e-05, "epoch": 0.0776656428258008, "percentage": 39.33, "elapsed_time": "0:34:07", "remaining_time": "0:52:37"}
60
+ {"current_steps": 60, "total_steps": 150, "loss": 1.9349, "lr": 1.3210234850972966e-05, "epoch": 0.07898200965335674, "percentage": 40.0, "elapsed_time": "0:34:41", "remaining_time": "0:52:02"}
61
+ {"current_steps": 61, "total_steps": 150, "loss": 1.9344, "lr": 1.300985073534919e-05, "epoch": 0.08029837648091268, "percentage": 40.67, "elapsed_time": "0:35:16", "remaining_time": "0:51:27"}
62
+ {"current_steps": 62, "total_steps": 150, "loss": 1.9144, "lr": 1.280812861983446e-05, "epoch": 0.08161474330846863, "percentage": 41.33, "elapsed_time": "0:35:50", "remaining_time": "0:50:52"}
63
+ {"current_steps": 63, "total_steps": 150, "loss": 1.9202, "lr": 1.2605158178034656e-05, "epoch": 0.08293111013602457, "percentage": 42.0, "elapsed_time": "0:36:25", "remaining_time": "0:50:17"}
64
+ {"current_steps": 64, "total_steps": 150, "loss": 1.8986, "lr": 1.2401029638486952e-05, "epoch": 0.08424747696358052, "percentage": 42.67, "elapsed_time": "0:36:59", "remaining_time": "0:49:43"}
65
+ {"current_steps": 65, "total_steps": 150, "loss": 1.9367, "lr": 1.219583374454963e-05, "epoch": 0.08556384379113646, "percentage": 43.33, "elapsed_time": "0:37:34", "remaining_time": "0:49:08"}
66
+ {"current_steps": 66, "total_steps": 150, "loss": 1.9536, "lr": 1.1989661714063e-05, "epoch": 0.0868802106186924, "percentage": 44.0, "elapsed_time": "0:38:09", "remaining_time": "0:48:33"}
67
+ {"current_steps": 67, "total_steps": 150, "loss": 1.942, "lr": 1.1782605198799371e-05, "epoch": 0.08819657744624836, "percentage": 44.67, "elapsed_time": "0:38:43", "remaining_time": "0:47:58"}
68
+ {"current_steps": 68, "total_steps": 150, "loss": 1.9149, "lr": 1.157475624372018e-05, "epoch": 0.0895129442738043, "percentage": 45.33, "elapsed_time": "0:39:18", "remaining_time": "0:47:23"}
69
+ {"current_steps": 69, "total_steps": 150, "loss": 1.9258, "lr": 1.1366207246058269e-05, "epoch": 0.09082931110136025, "percentage": 46.0, "elapsed_time": "0:39:52", "remaining_time": "0:46:48"}
70
+ {"current_steps": 70, "total_steps": 150, "loss": 1.9395, "lr": 1.1157050914243614e-05, "epoch": 0.09214567792891619, "percentage": 46.67, "elapsed_time": "0:40:27", "remaining_time": "0:46:13"}
71
+ {"current_steps": 71, "total_steps": 150, "loss": 1.9354, "lr": 1.0947380226690686e-05, "epoch": 0.09346204475647214, "percentage": 47.33, "elapsed_time": "0:41:01", "remaining_time": "0:45:39"}
72
+ {"current_steps": 72, "total_steps": 150, "loss": 1.9259, "lr": 1.0737288390465792e-05, "epoch": 0.09477841158402808, "percentage": 48.0, "elapsed_time": "0:41:36", "remaining_time": "0:45:04"}
73
+ {"current_steps": 73, "total_steps": 150, "loss": 1.9493, "lr": 1.0526868799852797e-05, "epoch": 0.09609477841158402, "percentage": 48.67, "elapsed_time": "0:42:10", "remaining_time": "0:44:29"}
74
+ {"current_steps": 74, "total_steps": 150, "loss": 1.9429, "lr": 1.031621499483559e-05, "epoch": 0.09741114523913998, "percentage": 49.33, "elapsed_time": "0:42:45", "remaining_time": "0:43:54"}
75
+ {"current_steps": 75, "total_steps": 150, "loss": 1.9348, "lr": 1.0105420619515798e-05, "epoch": 0.09872751206669592, "percentage": 50.0, "elapsed_time": "0:43:19", "remaining_time": "0:43:19"}
76
+ {"current_steps": 76, "total_steps": 150, "loss": 1.951, "lr": 9.894579380484206e-06, "epoch": 0.10004387889425187, "percentage": 50.67, "elapsed_time": "0:43:54", "remaining_time": "0:42:45"}
77
+ {"current_steps": 77, "total_steps": 150, "loss": 1.9568, "lr": 9.683785005164412e-06, "epoch": 0.10136024572180781, "percentage": 51.33, "elapsed_time": "0:44:29", "remaining_time": "0:42:10"}
78
+ {"current_steps": 78, "total_steps": 150, "loss": 1.9635, "lr": 9.473131200147205e-06, "epoch": 0.10267661254936375, "percentage": 52.0, "elapsed_time": "0:45:03", "remaining_time": "0:41:35"}
79
+ {"current_steps": 79, "total_steps": 150, "loss": 1.9493, "lr": 9.262711609534211e-06, "epoch": 0.1039929793769197, "percentage": 52.67, "elapsed_time": "0:45:38", "remaining_time": "0:41:00"}
80
+ {"current_steps": 80, "total_steps": 150, "loss": 1.9416, "lr": 9.052619773309318e-06, "epoch": 0.10530934620447564, "percentage": 53.33, "elapsed_time": "0:46:12", "remaining_time": "0:40:26"}
81
+ {"current_steps": 81, "total_steps": 150, "loss": 1.9375, "lr": 8.842949085756389e-06, "epoch": 0.1066257130320316, "percentage": 54.0, "elapsed_time": "0:46:47", "remaining_time": "0:39:51"}
82
+ {"current_steps": 82, "total_steps": 150, "loss": 1.9482, "lr": 8.633792753941733e-06, "epoch": 0.10794207985958754, "percentage": 54.67, "elapsed_time": "0:47:21", "remaining_time": "0:39:16"}
83
+ {"current_steps": 83, "total_steps": 150, "loss": 1.9274, "lr": 8.425243756279824e-06, "epoch": 0.10925844668714349, "percentage": 55.33, "elapsed_time": "0:47:56", "remaining_time": "0:38:41"}
84
+ {"current_steps": 84, "total_steps": 150, "loss": 1.9494, "lr": 8.217394801200632e-06, "epoch": 0.11057481351469943, "percentage": 56.0, "elapsed_time": "0:48:30", "remaining_time": "0:38:07"}
85
+ {"current_steps": 85, "total_steps": 150, "loss": 1.9383, "lr": 8.010338285937006e-06, "epoch": 0.11189118034225537, "percentage": 56.67, "elapsed_time": "0:49:05", "remaining_time": "0:37:32"}
86
+ {"current_steps": 86, "total_steps": 150, "loss": 1.9438, "lr": 7.804166255450372e-06, "epoch": 0.11320754716981132, "percentage": 57.33, "elapsed_time": "0:49:39", "remaining_time": "0:36:57"}
87
+ {"current_steps": 87, "total_steps": 150, "loss": 1.9486, "lr": 7.598970361513052e-06, "epoch": 0.11452391399736726, "percentage": 58.0, "elapsed_time": "0:50:14", "remaining_time": "0:36:22"}
88
+ {"current_steps": 88, "total_steps": 150, "loss": 1.9274, "lr": 7.394841821965345e-06, "epoch": 0.11584028082492322, "percentage": 58.67, "elapsed_time": "0:50:48", "remaining_time": "0:35:48"}
89
+ {"current_steps": 89, "total_steps": 150, "loss": 1.9524, "lr": 7.191871380165538e-06, "epoch": 0.11715664765247916, "percentage": 59.33, "elapsed_time": "0:51:23", "remaining_time": "0:35:13"}
90
+ {"current_steps": 90, "total_steps": 150, "loss": 1.9445, "lr": 6.990149264650814e-06, "epoch": 0.1184730144800351, "percentage": 60.0, "elapsed_time": "0:51:58", "remaining_time": "0:34:38"}
91
+ {"current_steps": 91, "total_steps": 150, "loss": 1.9515, "lr": 6.789765149027039e-06, "epoch": 0.11978938130759105, "percentage": 60.67, "elapsed_time": "0:52:32", "remaining_time": "0:34:03"}
92
+ {"current_steps": 92, "total_steps": 150, "loss": 1.969, "lr": 6.590808112105232e-06, "epoch": 0.12110574813514699, "percentage": 61.33, "elapsed_time": "0:53:07", "remaining_time": "0:33:29"}
93
+ {"current_steps": 93, "total_steps": 150, "loss": 1.954, "lr": 6.3933665983024465e-06, "epoch": 0.12242211496270294, "percentage": 62.0, "elapsed_time": "0:53:41", "remaining_time": "0:32:54"}
94
+ {"current_steps": 94, "total_steps": 150, "loss": 1.9313, "lr": 6.197528378324664e-06, "epoch": 0.12373848179025888, "percentage": 62.67, "elapsed_time": "0:54:16", "remaining_time": "0:32:19"}
95
+ {"current_steps": 95, "total_steps": 150, "loss": 1.9602, "lr": 6.003380510149179e-06, "epoch": 0.12505484861781482, "percentage": 63.33, "elapsed_time": "0:54:50", "remaining_time": "0:31:45"}
96
+ {"current_steps": 96, "total_steps": 150, "loss": 1.9831, "lr": 5.8110093003238175e-06, "epoch": 0.12637121544537078, "percentage": 64.0, "elapsed_time": "0:55:25", "remaining_time": "0:31:10"}
97
+ {"current_steps": 97, "total_steps": 150, "loss": 1.9562, "lr": 5.620500265600206e-06, "epoch": 0.12768758227292673, "percentage": 64.67, "elapsed_time": "0:55:59", "remaining_time": "0:30:35"}
98
+ {"current_steps": 98, "total_steps": 150, "loss": 1.9679, "lr": 5.431938094918132e-06, "epoch": 0.12900394910048266, "percentage": 65.33, "elapsed_time": "0:56:34", "remaining_time": "0:30:01"}
99
+ {"current_steps": 99, "total_steps": 150, "loss": 1.9667, "lr": 5.245406611757882e-06, "epoch": 0.1303203159280386, "percentage": 66.0, "elapsed_time": "0:57:08", "remaining_time": "0:29:26"}
100
+ {"current_steps": 100, "total_steps": 150, "loss": 1.9486, "lr": 5.060988736877366e-06, "epoch": 0.13163668275559456, "percentage": 66.67, "elapsed_time": "0:57:43", "remaining_time": "0:28:51"}
101
+ {"current_steps": 101, "total_steps": 150, "loss": 1.9557, "lr": 4.878766451450451e-06, "epoch": 0.13295304958315052, "percentage": 67.33, "elapsed_time": "0:58:26", "remaining_time": "0:28:21"}
102
+ {"current_steps": 102, "total_steps": 150, "loss": 1.9506, "lr": 4.698820760623064e-06, "epoch": 0.13426941641070644, "percentage": 68.0, "elapsed_time": "0:59:01", "remaining_time": "0:27:46"}
103
+ {"current_steps": 103, "total_steps": 150, "loss": 1.9639, "lr": 4.5212316575031325e-06, "epoch": 0.1355857832382624, "percentage": 68.67, "elapsed_time": "0:59:35", "remaining_time": "0:27:11"}
104
+ {"current_steps": 104, "total_steps": 150, "loss": 1.9683, "lr": 4.346078087600411e-06, "epoch": 0.13690215006581835, "percentage": 69.33, "elapsed_time": "1:00:10", "remaining_time": "0:26:36"}
105
+ {"current_steps": 105, "total_steps": 150, "loss": 1.9659, "lr": 4.173437913732048e-06, "epoch": 0.13821851689337428, "percentage": 70.0, "elapsed_time": "1:00:44", "remaining_time": "0:26:02"}
106
+ {"current_steps": 106, "total_steps": 150, "loss": 1.9704, "lr": 4.003387881409397e-06, "epoch": 0.13953488372093023, "percentage": 70.67, "elapsed_time": "1:01:19", "remaining_time": "0:25:27"}
107
+ {"current_steps": 107, "total_steps": 150, "loss": 1.97, "lr": 3.836003584721577e-06, "epoch": 0.14085125054848618, "percentage": 71.33, "elapsed_time": "1:01:54", "remaining_time": "0:24:52"}
108
+ {"current_steps": 108, "total_steps": 150, "loss": 1.9554, "lr": 3.6713594327308343e-06, "epoch": 0.1421676173760421, "percentage": 72.0, "elapsed_time": "1:02:28", "remaining_time": "0:24:17"}
109
+ {"current_steps": 109, "total_steps": 150, "loss": 1.9737, "lr": 3.509528616394716e-06, "epoch": 0.14348398420359806, "percentage": 72.67, "elapsed_time": "1:03:03", "remaining_time": "0:23:43"}
110
+ {"current_steps": 110, "total_steps": 150, "loss": 1.9699, "lr": 3.3505830760297543e-06, "epoch": 0.14480035103115402, "percentage": 73.33, "elapsed_time": "1:03:37", "remaining_time": "0:23:08"}
111
+ {"current_steps": 111, "total_steps": 150, "loss": 1.9767, "lr": 3.1945934693310897e-06, "epoch": 0.14611671785870997, "percentage": 74.0, "elapsed_time": "1:04:12", "remaining_time": "0:22:33"}
112
+ {"current_steps": 112, "total_steps": 150, "loss": 2.0023, "lr": 3.0416291399622834e-06, "epoch": 0.1474330846862659, "percentage": 74.67, "elapsed_time": "1:04:46", "remaining_time": "0:21:58"}
113
+ {"current_steps": 113, "total_steps": 150, "loss": 1.955, "lr": 2.891758086729253e-06, "epoch": 0.14874945151382185, "percentage": 75.33, "elapsed_time": "1:05:21", "remaining_time": "0:21:23"}
114
+ {"current_steps": 114, "total_steps": 150, "loss": 1.9611, "lr": 2.7450469333520856e-06, "epoch": 0.1500658183413778, "percentage": 76.0, "elapsed_time": "1:05:55", "remaining_time": "0:20:49"}
115
+ {"current_steps": 115, "total_steps": 150, "loss": 1.9658, "lr": 2.6015608988480956e-06, "epoch": 0.15138218516893373, "percentage": 76.67, "elapsed_time": "1:06:30", "remaining_time": "0:20:14"}
116
+ {"current_steps": 116, "total_steps": 150, "loss": 1.9753, "lr": 2.4613637685393433e-06, "epoch": 0.15269855199648968, "percentage": 77.33, "elapsed_time": "1:07:04", "remaining_time": "0:19:39"}
117
+ {"current_steps": 117, "total_steps": 150, "loss": 1.9495, "lr": 2.324517865697501e-06, "epoch": 0.15401491882404564, "percentage": 78.0, "elapsed_time": "1:07:39", "remaining_time": "0:19:04"}
118
+ {"current_steps": 118, "total_steps": 150, "loss": 1.9628, "lr": 2.19108402383864e-06, "epoch": 0.1553312856516016, "percentage": 78.67, "elapsed_time": "1:08:14", "remaining_time": "0:18:30"}
119
+ {"current_steps": 119, "total_steps": 150, "loss": 1.9823, "lr": 2.06112155968028e-06, "epoch": 0.15664765247915752, "percentage": 79.33, "elapsed_time": "1:08:48", "remaining_time": "0:17:55"}
120
+ {"current_steps": 120, "total_steps": 150, "loss": 1.9875, "lr": 1.9346882467727323e-06, "epoch": 0.15796401930671347, "percentage": 80.0, "elapsed_time": "1:09:23", "remaining_time": "0:17:20"}
121
+ {"current_steps": 121, "total_steps": 150, "loss": 1.9805, "lr": 1.811840289816409e-06, "epoch": 0.15928038613426942, "percentage": 80.67, "elapsed_time": "1:09:57", "remaining_time": "0:16:46"}
122
+ {"current_steps": 122, "total_steps": 150, "loss": 1.9818, "lr": 1.6926322996765899e-06, "epoch": 0.16059675296182535, "percentage": 81.33, "elapsed_time": "1:10:32", "remaining_time": "0:16:11"}
123
+ {"current_steps": 123, "total_steps": 150, "loss": 1.9859, "lr": 1.5771172691066793e-06, "epoch": 0.1619131197893813, "percentage": 82.0, "elapsed_time": "1:11:06", "remaining_time": "0:15:36"}
124
+ {"current_steps": 124, "total_steps": 150, "loss": 2.0096, "lr": 1.4653465491908003e-06, "epoch": 0.16322948661693726, "percentage": 82.67, "elapsed_time": "1:11:41", "remaining_time": "0:15:01"}
125
+ {"current_steps": 125, "total_steps": 150, "loss": 1.9654, "lr": 1.3573698265161683e-06, "epoch": 0.1645458534444932, "percentage": 83.33, "elapsed_time": "1:12:15", "remaining_time": "0:14:27"}
126
+ {"current_steps": 126, "total_steps": 150, "loss": 1.9708, "lr": 1.2532351010853916e-06, "epoch": 0.16586222027204914, "percentage": 84.0, "elapsed_time": "1:12:50", "remaining_time": "0:13:52"}
127
+ {"current_steps": 127, "total_steps": 150, "loss": 1.9787, "lr": 1.152988664978556e-06, "epoch": 0.1671785870996051, "percentage": 84.67, "elapsed_time": "1:13:24", "remaining_time": "0:13:17"}
128
+ {"current_steps": 128, "total_steps": 150, "loss": 1.9858, "lr": 1.0566750817745076e-06, "epoch": 0.16849495392716105, "percentage": 85.33, "elapsed_time": "1:13:59", "remaining_time": "0:12:43"}
129
+ {"current_steps": 129, "total_steps": 150, "loss": 1.9781, "lr": 9.6433716674057e-07, "epoch": 0.16981132075471697, "percentage": 86.0, "elapsed_time": "1:14:33", "remaining_time": "0:12:08"}
130
+ {"current_steps": 130, "total_steps": 150, "loss": 1.9827, "lr": 8.760159677994174e-07, "epoch": 0.17112768758227292, "percentage": 86.67, "elapsed_time": "1:15:08", "remaining_time": "0:11:33"}
131
+ {"current_steps": 131, "total_steps": 150, "loss": 1.9741, "lr": 7.91750747281621e-07, "epoch": 0.17244405440982888, "percentage": 87.33, "elapsed_time": "1:15:42", "remaining_time": "0:10:58"}
132
+ {"current_steps": 132, "total_steps": 150, "loss": 1.9949, "lr": 7.115789644719728e-07, "epoch": 0.1737604212373848, "percentage": 88.0, "elapsed_time": "1:16:17", "remaining_time": "0:10:24"}
133
+ {"current_steps": 133, "total_steps": 150, "loss": 1.9762, "lr": 6.355362589573078e-07, "epoch": 0.17507678806494076, "percentage": 88.67, "elapsed_time": "1:16:51", "remaining_time": "0:09:49"}
134
+ {"current_steps": 134, "total_steps": 150, "loss": 1.9818, "lr": 5.636564347832907e-07, "epoch": 0.1763931548924967, "percentage": 89.33, "elapsed_time": "1:17:26", "remaining_time": "0:09:14"}
135
+ {"current_steps": 135, "total_steps": 150, "loss": 1.983, "lr": 4.95971445427137e-07, "epoch": 0.17770952172005267, "percentage": 90.0, "elapsed_time": "1:18:01", "remaining_time": "0:08:40"}
136
+ {"current_steps": 136, "total_steps": 150, "loss": 1.9708, "lr": 4.3251137959302023e-07, "epoch": 0.1790258885476086, "percentage": 90.67, "elapsed_time": "1:18:35", "remaining_time": "0:08:05"}
137
+ {"current_steps": 137, "total_steps": 150, "loss": 1.967, "lr": 3.733044478364234e-07, "epoch": 0.18034225537516455, "percentage": 91.33, "elapsed_time": "1:19:10", "remaining_time": "0:07:30"}
138
+ {"current_steps": 138, "total_steps": 150, "loss": 1.9791, "lr": 3.1837697002341293e-07, "epoch": 0.1816586222027205, "percentage": 92.0, "elapsed_time": "1:19:44", "remaining_time": "0:06:56"}
139
+ {"current_steps": 139, "total_steps": 150, "loss": 1.9694, "lr": 2.677533636303964e-07, "epoch": 0.18297498903027642, "percentage": 92.67, "elapsed_time": "1:20:19", "remaining_time": "0:06:21"}
140
+ {"current_steps": 140, "total_steps": 150, "loss": 1.9741, "lr": 2.214561328895748e-07, "epoch": 0.18429135585783238, "percentage": 93.33, "elapsed_time": "1:20:53", "remaining_time": "0:05:46"}
141
+ {"current_steps": 141, "total_steps": 150, "loss": 1.979, "lr": 1.7950585878489856e-07, "epoch": 0.18560772268538833, "percentage": 94.0, "elapsed_time": "1:21:28", "remaining_time": "0:05:12"}
142
+ {"current_steps": 142, "total_steps": 150, "loss": 1.9707, "lr": 1.419211899029971e-07, "epoch": 0.18692408951294429, "percentage": 94.67, "elapsed_time": "1:22:02", "remaining_time": "0:04:37"}
143
+ {"current_steps": 143, "total_steps": 150, "loss": 1.981, "lr": 1.0871883414312778e-07, "epoch": 0.1882404563405002, "percentage": 95.33, "elapsed_time": "1:22:37", "remaining_time": "0:04:02"}
144
+ {"current_steps": 144, "total_steps": 150, "loss": 1.9731, "lr": 7.99135512898408e-08, "epoch": 0.18955682316805617, "percentage": 96.0, "elapsed_time": "1:23:12", "remaining_time": "0:03:28"}
145
+ {"current_steps": 145, "total_steps": 150, "loss": 1.975, "lr": 5.55181464516652e-08, "epoch": 0.19087318999561212, "percentage": 96.67, "elapsed_time": "1:23:46", "remaining_time": "0:02:53"}
146
+ {"current_steps": 146, "total_steps": 150, "loss": 1.9704, "lr": 3.554346436871581e-08, "epoch": 0.19218955682316805, "percentage": 97.33, "elapsed_time": "1:24:21", "remaining_time": "0:02:18"}
147
+ {"current_steps": 147, "total_steps": 150, "loss": 1.979, "lr": 1.9998384591773945e-08, "epoch": 0.193505923650724, "percentage": 98.0, "elapsed_time": "1:24:55", "remaining_time": "0:01:43"}
148
+ {"current_steps": 148, "total_steps": 150, "loss": 1.9867, "lr": 8.889817534969425e-09, "epoch": 0.19482229047827995, "percentage": 98.67, "elapsed_time": "1:25:30", "remaining_time": "0:01:09"}
149
+ {"current_steps": 149, "total_steps": 150, "loss": 1.9756, "lr": 2.222701403818972e-09, "epoch": 0.1961386573058359, "percentage": 99.33, "elapsed_time": "1:26:04", "remaining_time": "0:00:34"}
150
+ {"current_steps": 150, "total_steps": 150, "loss": 1.9877, "lr": 0.0, "epoch": 0.19745502413339183, "percentage": 100.0, "elapsed_time": "1:26:39", "remaining_time": "0:00:00"}
151
+ {"current_steps": 150, "total_steps": 150, "epoch": 0.19745502413339183, "percentage": 100.0, "elapsed_time": "1:26:49", "remaining_time": "0:00:00"}
trainer_state.json ADDED
@@ -0,0 +1,1092 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.19745502413339183,
5
+ "eval_steps": 50,
6
+ "global_step": 150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0013163668275559457,
13
+ "grad_norm": 1.1889708603566411,
14
+ "learning_rate": 2e-05,
15
+ "loss": 1.819,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0026327336551118913,
20
+ "grad_norm": 1.2487402928615228,
21
+ "learning_rate": 1.999777729859618e-05,
22
+ "loss": 1.786,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.003949100482667837,
27
+ "grad_norm": 11.818568585279303,
28
+ "learning_rate": 1.9991110182465032e-05,
29
+ "loss": 2.1123,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.005265467310223783,
34
+ "grad_norm": 9.670771499171282,
35
+ "learning_rate": 1.9980001615408228e-05,
36
+ "loss": 2.1052,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.006581834137779728,
41
+ "grad_norm": 6.7296227669578945,
42
+ "learning_rate": 1.9964456535631287e-05,
43
+ "loss": 2.0417,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.007898200965335674,
48
+ "grad_norm": 2.9490730461911254,
49
+ "learning_rate": 1.9944481853548335e-05,
50
+ "loss": 1.9756,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.009214567792891619,
55
+ "grad_norm": 2.8814574350373383,
56
+ "learning_rate": 1.9920086448710162e-05,
57
+ "loss": 1.9305,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.010530934620447565,
62
+ "grad_norm": 2.360259343454192,
63
+ "learning_rate": 1.9891281165856876e-05,
64
+ "loss": 1.9001,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.01184730144800351,
69
+ "grad_norm": 1.6478415946047946,
70
+ "learning_rate": 1.9858078810097004e-05,
71
+ "loss": 1.9285,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.013163668275559455,
76
+ "grad_norm": 1.865513115308653,
77
+ "learning_rate": 1.98204941412151e-05,
78
+ "loss": 1.9158,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.014480035103115402,
83
+ "grad_norm": 1.2039798356530171,
84
+ "learning_rate": 1.9778543867110428e-05,
85
+ "loss": 1.9177,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.015796401930671347,
90
+ "grad_norm": 1.1202568182839863,
91
+ "learning_rate": 1.9732246636369605e-05,
92
+ "loss": 1.9124,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.017112768758227294,
97
+ "grad_norm": 0.9613691948096944,
98
+ "learning_rate": 1.968162302997659e-05,
99
+ "loss": 1.9048,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.018429135585783237,
104
+ "grad_norm": 0.893717907926126,
105
+ "learning_rate": 1.962669555216358e-05,
106
+ "loss": 1.8905,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.019745502413339184,
111
+ "grad_norm": 0.9042103319398382,
112
+ "learning_rate": 1.9567488620406984e-05,
113
+ "loss": 1.9179,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.02106186924089513,
118
+ "grad_norm": 0.8537257879688175,
119
+ "learning_rate": 1.9504028554572865e-05,
120
+ "loss": 1.8956,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.022378236068451074,
125
+ "grad_norm": 0.7723152246718353,
126
+ "learning_rate": 1.943634356521671e-05,
127
+ "loss": 1.9106,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.02369460289600702,
132
+ "grad_norm": 0.788599031919039,
133
+ "learning_rate": 1.9364463741042694e-05,
134
+ "loss": 1.8714,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.025010969723562967,
139
+ "grad_norm": 0.7138782811411121,
140
+ "learning_rate": 1.928842103552803e-05,
141
+ "loss": 1.8805,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.02632733655111891,
146
+ "grad_norm": 0.6526275706400243,
147
+ "learning_rate": 1.920824925271838e-05,
148
+ "loss": 1.8992,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.027643703378674857,
153
+ "grad_norm": 0.7018291273940191,
154
+ "learning_rate": 1.9123984032200586e-05,
155
+ "loss": 1.8774,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.028960070206230804,
160
+ "grad_norm": 0.7136424568096796,
161
+ "learning_rate": 1.9035662833259433e-05,
162
+ "loss": 1.8978,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.030276437033786747,
167
+ "grad_norm": 0.7147862026041938,
168
+ "learning_rate": 1.8943324918225495e-05,
169
+ "loss": 1.8965,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.031592803861342694,
174
+ "grad_norm": 0.7049064442746601,
175
+ "learning_rate": 1.8847011335021447e-05,
176
+ "loss": 1.8831,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.03290917068889864,
181
+ "grad_norm": 0.6689369768605253,
182
+ "learning_rate": 1.874676489891461e-05,
183
+ "loss": 1.8881,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.03422553751645459,
188
+ "grad_norm": 0.6425593648258924,
189
+ "learning_rate": 1.8642630173483832e-05,
190
+ "loss": 1.889,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.03554190434401053,
195
+ "grad_norm": 0.6931260970545167,
196
+ "learning_rate": 1.85346534508092e-05,
197
+ "loss": 1.8936,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.036858271171566474,
202
+ "grad_norm": 0.5855894301604793,
203
+ "learning_rate": 1.8422882730893323e-05,
204
+ "loss": 1.9131,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.03817463799912242,
209
+ "grad_norm": 0.6403065763687231,
210
+ "learning_rate": 1.8307367700323412e-05,
211
+ "loss": 1.9104,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.03949100482667837,
216
+ "grad_norm": 0.667165710149791,
217
+ "learning_rate": 1.8188159710183595e-05,
218
+ "loss": 1.8807,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.040807371654234315,
223
+ "grad_norm": 0.601710689560651,
224
+ "learning_rate": 1.8065311753227272e-05,
225
+ "loss": 1.9261,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.04212373848179026,
230
+ "grad_norm": 0.6543848114887616,
231
+ "learning_rate": 1.7938878440319722e-05,
232
+ "loss": 1.9178,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.0434401053093462,
237
+ "grad_norm": 0.7216887863002542,
238
+ "learning_rate": 1.7808915976161364e-05,
239
+ "loss": 1.9212,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.04475647213690215,
244
+ "grad_norm": 0.6605220221485377,
245
+ "learning_rate": 1.7675482134302503e-05,
246
+ "loss": 1.9019,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.046072838964458095,
251
+ "grad_norm": 0.5651946270062499,
252
+ "learning_rate": 1.753863623146066e-05,
253
+ "loss": 1.9065,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.04738920579201404,
258
+ "grad_norm": 0.6283354866608959,
259
+ "learning_rate": 1.7398439101151908e-05,
260
+ "loss": 1.8926,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.04870557261956999,
265
+ "grad_norm": 0.591339280937863,
266
+ "learning_rate": 1.7254953066647915e-05,
267
+ "loss": 1.898,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.050021939447125935,
272
+ "grad_norm": 0.566891433067587,
273
+ "learning_rate": 1.710824191327075e-05,
274
+ "loss": 1.9314,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.051338306274681875,
279
+ "grad_norm": 0.5036303737690743,
280
+ "learning_rate": 1.695837086003772e-05,
281
+ "loss": 1.908,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.05265467310223782,
286
+ "grad_norm": 0.5732998210738149,
287
+ "learning_rate": 1.680540653066891e-05,
288
+ "loss": 1.907,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.05397103992979377,
293
+ "grad_norm": 0.600054956243109,
294
+ "learning_rate": 1.6649416923970248e-05,
295
+ "loss": 1.908,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.055287406757349715,
300
+ "grad_norm": 0.5780718337975314,
301
+ "learning_rate": 1.649047138360529e-05,
302
+ "loss": 1.9006,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.05660377358490566,
307
+ "grad_norm": 0.5998379136280807,
308
+ "learning_rate": 1.632864056726917e-05,
309
+ "loss": 1.9023,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.05792014041246161,
314
+ "grad_norm": 0.630710242272472,
315
+ "learning_rate": 1.6163996415278423e-05,
316
+ "loss": 1.9284,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.05923650724001755,
321
+ "grad_norm": 0.5104566997273228,
322
+ "learning_rate": 1.5996612118590604e-05,
323
+ "loss": 1.9089,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.060552874067573495,
328
+ "grad_norm": 0.6521533677979531,
329
+ "learning_rate": 1.5826562086267956e-05,
330
+ "loss": 1.9285,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.06186924089512944,
335
+ "grad_norm": 0.5098826190359927,
336
+ "learning_rate": 1.565392191239959e-05,
337
+ "loss": 1.916,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.06318560772268539,
342
+ "grad_norm": 0.62515291794207,
343
+ "learning_rate": 1.5478768342496872e-05,
344
+ "loss": 1.9069,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.06450197455024133,
349
+ "grad_norm": 0.5918382830263713,
350
+ "learning_rate": 1.5301179239376936e-05,
351
+ "loss": 1.9224,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.06581834137779728,
356
+ "grad_norm": 0.6387295926323716,
357
+ "learning_rate": 1.512123354854955e-05,
358
+ "loss": 1.9022,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.06713470820535322,
363
+ "grad_norm": 0.5484211324952757,
364
+ "learning_rate": 1.4939011263122635e-05,
365
+ "loss": 1.9024,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.06845107503290918,
370
+ "grad_norm": 0.6838268591901047,
371
+ "learning_rate": 1.4754593388242117e-05,
372
+ "loss": 1.9133,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.06976744186046512,
377
+ "grad_norm": 0.49026244529365287,
378
+ "learning_rate": 1.4568061905081874e-05,
379
+ "loss": 1.9044,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.07108380868802106,
384
+ "grad_norm": 0.617101630668953,
385
+ "learning_rate": 1.4379499734399797e-05,
386
+ "loss": 1.9176,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.07240017551557701,
391
+ "grad_norm": 0.5185658207760714,
392
+ "learning_rate": 1.4188990699676186e-05,
393
+ "loss": 1.915,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.07371654234313295,
398
+ "grad_norm": 0.5509987613832577,
399
+ "learning_rate": 1.3996619489850822e-05,
400
+ "loss": 1.9282,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.0750329091706889,
405
+ "grad_norm": 0.5404326350759733,
406
+ "learning_rate": 1.3802471621675337e-05,
407
+ "loss": 1.9121,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.07634927599824484,
412
+ "grad_norm": 0.45194626257894893,
413
+ "learning_rate": 1.3606633401697557e-05,
414
+ "loss": 1.9348,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.0776656428258008,
419
+ "grad_norm": 0.44319095497602445,
420
+ "learning_rate": 1.340919188789477e-05,
421
+ "loss": 1.9162,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.07898200965335674,
426
+ "grad_norm": 0.45917008340300286,
427
+ "learning_rate": 1.3210234850972966e-05,
428
+ "loss": 1.9349,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.08029837648091268,
433
+ "grad_norm": 0.4397437065658123,
434
+ "learning_rate": 1.300985073534919e-05,
435
+ "loss": 1.9344,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.08161474330846863,
440
+ "grad_norm": 0.43586654360169025,
441
+ "learning_rate": 1.280812861983446e-05,
442
+ "loss": 1.9144,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.08293111013602457,
447
+ "grad_norm": 0.4334759261856198,
448
+ "learning_rate": 1.2605158178034656e-05,
449
+ "loss": 1.9202,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.08424747696358052,
454
+ "grad_norm": 0.41957147456515964,
455
+ "learning_rate": 1.2401029638486952e-05,
456
+ "loss": 1.8986,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.08556384379113646,
461
+ "grad_norm": 0.41703972877231255,
462
+ "learning_rate": 1.219583374454963e-05,
463
+ "loss": 1.9367,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.0868802106186924,
468
+ "grad_norm": 0.3885734477047593,
469
+ "learning_rate": 1.1989661714063e-05,
470
+ "loss": 1.9536,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.08819657744624836,
475
+ "grad_norm": 0.3629396674080558,
476
+ "learning_rate": 1.1782605198799371e-05,
477
+ "loss": 1.942,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.0895129442738043,
482
+ "grad_norm": 0.41851931328687847,
483
+ "learning_rate": 1.157475624372018e-05,
484
+ "loss": 1.9149,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.09082931110136025,
489
+ "grad_norm": 0.38254555542206087,
490
+ "learning_rate": 1.1366207246058269e-05,
491
+ "loss": 1.9258,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.09214567792891619,
496
+ "grad_norm": 0.3760396216126684,
497
+ "learning_rate": 1.1157050914243614e-05,
498
+ "loss": 1.9395,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.09346204475647214,
503
+ "grad_norm": 0.3802671210811049,
504
+ "learning_rate": 1.0947380226690686e-05,
505
+ "loss": 1.9354,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.09477841158402808,
510
+ "grad_norm": 0.346627059727759,
511
+ "learning_rate": 1.0737288390465792e-05,
512
+ "loss": 1.9259,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.09609477841158402,
517
+ "grad_norm": 0.3873365911679245,
518
+ "learning_rate": 1.0526868799852797e-05,
519
+ "loss": 1.9493,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.09741114523913998,
524
+ "grad_norm": 0.3805418724228647,
525
+ "learning_rate": 1.031621499483559e-05,
526
+ "loss": 1.9429,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.09872751206669592,
531
+ "grad_norm": 0.3477296159832507,
532
+ "learning_rate": 1.0105420619515798e-05,
533
+ "loss": 1.9348,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.10004387889425187,
538
+ "grad_norm": 0.36081350820036023,
539
+ "learning_rate": 9.894579380484206e-06,
540
+ "loss": 1.951,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.10136024572180781,
545
+ "grad_norm": 0.3603157658181124,
546
+ "learning_rate": 9.683785005164412e-06,
547
+ "loss": 1.9568,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.10267661254936375,
552
+ "grad_norm": 0.3344964866298326,
553
+ "learning_rate": 9.473131200147205e-06,
554
+ "loss": 1.9635,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.1039929793769197,
559
+ "grad_norm": 0.3577372410086672,
560
+ "learning_rate": 9.262711609534211e-06,
561
+ "loss": 1.9493,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.10530934620447564,
566
+ "grad_norm": 0.32166763062706677,
567
+ "learning_rate": 9.052619773309318e-06,
568
+ "loss": 1.9416,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.1066257130320316,
573
+ "grad_norm": 0.3642098555682263,
574
+ "learning_rate": 8.842949085756389e-06,
575
+ "loss": 1.9375,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.10794207985958754,
580
+ "grad_norm": 0.31313176156525635,
581
+ "learning_rate": 8.633792753941733e-06,
582
+ "loss": 1.9482,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.10925844668714349,
587
+ "grad_norm": 0.32357294734122866,
588
+ "learning_rate": 8.425243756279824e-06,
589
+ "loss": 1.9274,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.11057481351469943,
594
+ "grad_norm": 0.3149933190799516,
595
+ "learning_rate": 8.217394801200632e-06,
596
+ "loss": 1.9494,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.11189118034225537,
601
+ "grad_norm": 0.3145273258487357,
602
+ "learning_rate": 8.010338285937006e-06,
603
+ "loss": 1.9383,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.11320754716981132,
608
+ "grad_norm": 0.3293525045662984,
609
+ "learning_rate": 7.804166255450372e-06,
610
+ "loss": 1.9438,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.11452391399736726,
615
+ "grad_norm": 0.29338737195487413,
616
+ "learning_rate": 7.598970361513052e-06,
617
+ "loss": 1.9486,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.11584028082492322,
622
+ "grad_norm": 0.3103457426467627,
623
+ "learning_rate": 7.394841821965345e-06,
624
+ "loss": 1.9274,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.11715664765247916,
629
+ "grad_norm": 0.3143049571743679,
630
+ "learning_rate": 7.191871380165538e-06,
631
+ "loss": 1.9524,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.1184730144800351,
636
+ "grad_norm": 0.29504032042698036,
637
+ "learning_rate": 6.990149264650814e-06,
638
+ "loss": 1.9445,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.11978938130759105,
643
+ "grad_norm": 0.3210704673929567,
644
+ "learning_rate": 6.789765149027039e-06,
645
+ "loss": 1.9515,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.12110574813514699,
650
+ "grad_norm": 0.28621542114599363,
651
+ "learning_rate": 6.590808112105232e-06,
652
+ "loss": 1.969,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.12242211496270294,
657
+ "grad_norm": 0.2882677076447023,
658
+ "learning_rate": 6.3933665983024465e-06,
659
+ "loss": 1.954,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.12373848179025888,
664
+ "grad_norm": 0.287930909134049,
665
+ "learning_rate": 6.197528378324664e-06,
666
+ "loss": 1.9313,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.12505484861781482,
671
+ "grad_norm": 0.31023728939120476,
672
+ "learning_rate": 6.003380510149179e-06,
673
+ "loss": 1.9602,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.12637121544537078,
678
+ "grad_norm": 0.2752773114898817,
679
+ "learning_rate": 5.8110093003238175e-06,
680
+ "loss": 1.9831,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.12768758227292673,
685
+ "grad_norm": 0.2972076509810327,
686
+ "learning_rate": 5.620500265600206e-06,
687
+ "loss": 1.9562,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.12900394910048266,
692
+ "grad_norm": 0.28344306622056237,
693
+ "learning_rate": 5.431938094918132e-06,
694
+ "loss": 1.9679,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.1303203159280386,
699
+ "grad_norm": 0.27862896188615965,
700
+ "learning_rate": 5.245406611757882e-06,
701
+ "loss": 1.9667,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.13163668275559456,
706
+ "grad_norm": 0.2775069903986726,
707
+ "learning_rate": 5.060988736877366e-06,
708
+ "loss": 1.9486,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.13295304958315052,
713
+ "grad_norm": 0.2750571862770337,
714
+ "learning_rate": 4.878766451450451e-06,
715
+ "loss": 1.9557,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.13426941641070644,
720
+ "grad_norm": 0.2680704001161532,
721
+ "learning_rate": 4.698820760623064e-06,
722
+ "loss": 1.9506,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.1355857832382624,
727
+ "grad_norm": 0.2782630531024094,
728
+ "learning_rate": 4.5212316575031325e-06,
729
+ "loss": 1.9639,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.13690215006581835,
734
+ "grad_norm": 0.25617683357697074,
735
+ "learning_rate": 4.346078087600411e-06,
736
+ "loss": 1.9683,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.13821851689337428,
741
+ "grad_norm": 0.2444943371569369,
742
+ "learning_rate": 4.173437913732048e-06,
743
+ "loss": 1.9659,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.13953488372093023,
748
+ "grad_norm": 0.2597397835336073,
749
+ "learning_rate": 4.003387881409397e-06,
750
+ "loss": 1.9704,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.14085125054848618,
755
+ "grad_norm": 0.26063366143876027,
756
+ "learning_rate": 3.836003584721577e-06,
757
+ "loss": 1.97,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.1421676173760421,
762
+ "grad_norm": 0.23235593032133328,
763
+ "learning_rate": 3.6713594327308343e-06,
764
+ "loss": 1.9554,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.14348398420359806,
769
+ "grad_norm": 0.22701215505987368,
770
+ "learning_rate": 3.509528616394716e-06,
771
+ "loss": 1.9737,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.14480035103115402,
776
+ "grad_norm": 0.24108913765275466,
777
+ "learning_rate": 3.3505830760297543e-06,
778
+ "loss": 1.9699,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.14611671785870997,
783
+ "grad_norm": 0.24405476026520742,
784
+ "learning_rate": 3.1945934693310897e-06,
785
+ "loss": 1.9767,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.1474330846862659,
790
+ "grad_norm": 0.23175867510438058,
791
+ "learning_rate": 3.0416291399622834e-06,
792
+ "loss": 2.0023,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.14874945151382185,
797
+ "grad_norm": 0.22596129228759587,
798
+ "learning_rate": 2.891758086729253e-06,
799
+ "loss": 1.955,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.1500658183413778,
804
+ "grad_norm": 0.24851949999567013,
805
+ "learning_rate": 2.7450469333520856e-06,
806
+ "loss": 1.9611,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.15138218516893373,
811
+ "grad_norm": 0.22293156665441605,
812
+ "learning_rate": 2.6015608988480956e-06,
813
+ "loss": 1.9658,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.15269855199648968,
818
+ "grad_norm": 0.21616202749444716,
819
+ "learning_rate": 2.4613637685393433e-06,
820
+ "loss": 1.9753,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.15401491882404564,
825
+ "grad_norm": 0.22185470586350384,
826
+ "learning_rate": 2.324517865697501e-06,
827
+ "loss": 1.9495,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.1553312856516016,
832
+ "grad_norm": 0.21722679538918865,
833
+ "learning_rate": 2.19108402383864e-06,
834
+ "loss": 1.9628,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.15664765247915752,
839
+ "grad_norm": 0.21205900012695214,
840
+ "learning_rate": 2.06112155968028e-06,
841
+ "loss": 1.9823,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.15796401930671347,
846
+ "grad_norm": 0.2182253662134732,
847
+ "learning_rate": 1.9346882467727323e-06,
848
+ "loss": 1.9875,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.15928038613426942,
853
+ "grad_norm": 0.22007111443224736,
854
+ "learning_rate": 1.811840289816409e-06,
855
+ "loss": 1.9805,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.16059675296182535,
860
+ "grad_norm": 0.20406970469647664,
861
+ "learning_rate": 1.6926322996765899e-06,
862
+ "loss": 1.9818,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.1619131197893813,
867
+ "grad_norm": 0.2024904864715853,
868
+ "learning_rate": 1.5771172691066793e-06,
869
+ "loss": 1.9859,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.16322948661693726,
874
+ "grad_norm": 0.20299971001174535,
875
+ "learning_rate": 1.4653465491908003e-06,
876
+ "loss": 2.0096,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.1645458534444932,
881
+ "grad_norm": 0.21516178859981677,
882
+ "learning_rate": 1.3573698265161683e-06,
883
+ "loss": 1.9654,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.16586222027204914,
888
+ "grad_norm": 0.20722629324747893,
889
+ "learning_rate": 1.2532351010853916e-06,
890
+ "loss": 1.9708,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.1671785870996051,
895
+ "grad_norm": 0.21213871178644442,
896
+ "learning_rate": 1.152988664978556e-06,
897
+ "loss": 1.9787,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.16849495392716105,
902
+ "grad_norm": 0.20023503307538396,
903
+ "learning_rate": 1.0566750817745076e-06,
904
+ "loss": 1.9858,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.16981132075471697,
909
+ "grad_norm": 0.1924700263570635,
910
+ "learning_rate": 9.6433716674057e-07,
911
+ "loss": 1.9781,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.17112768758227292,
916
+ "grad_norm": 0.20779051083187167,
917
+ "learning_rate": 8.760159677994174e-07,
918
+ "loss": 1.9827,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.17244405440982888,
923
+ "grad_norm": 0.20230044677950978,
924
+ "learning_rate": 7.91750747281621e-07,
925
+ "loss": 1.9741,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.1737604212373848,
930
+ "grad_norm": 0.19683020520485797,
931
+ "learning_rate": 7.115789644719728e-07,
932
+ "loss": 1.9949,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.17507678806494076,
937
+ "grad_norm": 0.19524340774257554,
938
+ "learning_rate": 6.355362589573078e-07,
939
+ "loss": 1.9762,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.1763931548924967,
944
+ "grad_norm": 0.20098123761556075,
945
+ "learning_rate": 5.636564347832907e-07,
946
+ "loss": 1.9818,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.17770952172005267,
951
+ "grad_norm": 0.18935262395702177,
952
+ "learning_rate": 4.95971445427137e-07,
953
+ "loss": 1.983,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.1790258885476086,
958
+ "grad_norm": 0.1906817912560046,
959
+ "learning_rate": 4.3251137959302023e-07,
960
+ "loss": 1.9708,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.18034225537516455,
965
+ "grad_norm": 0.19470612058115894,
966
+ "learning_rate": 3.733044478364234e-07,
967
+ "loss": 1.967,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.1816586222027205,
972
+ "grad_norm": 0.18636115957247928,
973
+ "learning_rate": 3.1837697002341293e-07,
974
+ "loss": 1.9791,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.18297498903027642,
979
+ "grad_norm": 0.18877431556550928,
980
+ "learning_rate": 2.677533636303964e-07,
981
+ "loss": 1.9694,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.18429135585783238,
986
+ "grad_norm": 0.1955087203028538,
987
+ "learning_rate": 2.214561328895748e-07,
988
+ "loss": 1.9741,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.18560772268538833,
993
+ "grad_norm": 0.196549286904382,
994
+ "learning_rate": 1.7950585878489856e-07,
995
+ "loss": 1.979,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.18692408951294429,
1000
+ "grad_norm": 0.19224460294869852,
1001
+ "learning_rate": 1.419211899029971e-07,
1002
+ "loss": 1.9707,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.1882404563405002,
1007
+ "grad_norm": 0.18853581462437616,
1008
+ "learning_rate": 1.0871883414312778e-07,
1009
+ "loss": 1.981,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.18955682316805617,
1014
+ "grad_norm": 0.1838928559361403,
1015
+ "learning_rate": 7.99135512898408e-08,
1016
+ "loss": 1.9731,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.19087318999561212,
1021
+ "grad_norm": 0.190162401461088,
1022
+ "learning_rate": 5.55181464516652e-08,
1023
+ "loss": 1.975,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.19218955682316805,
1028
+ "grad_norm": 0.19003523312950812,
1029
+ "learning_rate": 3.554346436871581e-08,
1030
+ "loss": 1.9704,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.193505923650724,
1035
+ "grad_norm": 0.19021539316010605,
1036
+ "learning_rate": 1.9998384591773945e-08,
1037
+ "loss": 1.979,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.19482229047827995,
1042
+ "grad_norm": 0.18754432655782285,
1043
+ "learning_rate": 8.889817534969425e-09,
1044
+ "loss": 1.9867,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.1961386573058359,
1049
+ "grad_norm": 0.1897467195961825,
1050
+ "learning_rate": 2.222701403818972e-09,
1051
+ "loss": 1.9756,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.19745502413339183,
1056
+ "grad_norm": 0.20302937860642753,
1057
+ "learning_rate": 0.0,
1058
+ "loss": 1.9877,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.19745502413339183,
1063
+ "step": 150,
1064
+ "total_flos": 349677715193856.0,
1065
+ "train_loss": 1.9421729667981467,
1066
+ "train_runtime": 5209.8016,
1067
+ "train_samples_per_second": 58.044,
1068
+ "train_steps_per_second": 0.029
1069
+ }
1070
+ ],
1071
+ "logging_steps": 1,
1072
+ "max_steps": 150,
1073
+ "num_input_tokens_seen": 0,
1074
+ "num_train_epochs": 1,
1075
+ "save_steps": 50,
1076
+ "stateful_callbacks": {
1077
+ "TrainerControl": {
1078
+ "args": {
1079
+ "should_epoch_stop": false,
1080
+ "should_evaluate": false,
1081
+ "should_log": false,
1082
+ "should_save": true,
1083
+ "should_training_stop": true
1084
+ },
1085
+ "attributes": {}
1086
+ }
1087
+ },
1088
+ "total_flos": 349677715193856.0,
1089
+ "train_batch_size": 42,
1090
+ "trial_name": null,
1091
+ "trial_params": null
1092
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:740b7b8a2a5af5fe75fa4a3755ea7b3cb437cad50b07e933078a8d7b44af963f
3
+ size 7224
training_loss.png ADDED