hosseinbv commited on
Commit
05625a5
·
verified ·
1 Parent(s): 778024d

Uploading /ephemeral/hossein/output/newData-progressive-yoco-tiny-llama-CDL-20

Browse files
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: TinyLlama/TinyLlama_v1.1
5
+ tags:
6
+ - llama-factory
7
+ - full
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: newData-progressive-yoco-tiny-llama-CDL-20
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # newData-progressive-yoco-tiny-llama-CDL-20
18
+
19
+ This model is a fine-tuned version of [/ephemeral/hossein/output/newData-progressive-yoco-tiny-llama-CDL-21/checkpoint-50](https://huggingface.co//ephemeral/hossein/output/newData-progressive-yoco-tiny-llama-CDL-21/checkpoint-50) on the alpaca_reformatted, the UltraInteract_sft_reformatted, the reformatted_ultrachat_200k, the reformatted_MathInstruct and the small_slim_pajama datasets.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 2e-05
39
+ - train_batch_size: 58
40
+ - eval_batch_size: 1
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 8
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 1856
46
+ - total_eval_batch_size: 8
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: cosine
49
+ - lr_scheduler_warmup_ratio: 0.005
50
+ - training_steps: 50
51
+
52
+ ### Training results
53
+
54
+
55
+
56
+ ### Framework versions
57
+
58
+ - Transformers 4.45.2
59
+ - Pytorch 2.5.1+cu124
60
+ - Datasets 3.1.0
61
+ - Tokenizers 0.20.3
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.05959475566150179,
3
+ "total_flos": 106890730143744.0,
4
+ "train_loss": 1.9756734085083008,
5
+ "train_runtime": 1598.4061,
6
+ "train_samples_per_second": 58.058,
7
+ "train_steps_per_second": 0.031
8
+ }
checkpoint-50/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "TinyLlama/TinyLlama_v1.1",
3
+ "architectures": [
4
+ "ProgressiveYocoLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "crossDecoder_start_idx": 2,
10
+ "eos_token_id": 2,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 2048,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 5632,
15
+ "max_position_embeddings": 2048,
16
+ "mlp_bias": false,
17
+ "model_type": "progressive_yoco_llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 22,
20
+ "num_key_value_heads": 4,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": null,
24
+ "rope_theta": 10000.0,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.45.2",
28
+ "use_cache": false,
29
+ "vocab_size": 32000
30
+ }
checkpoint-50/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "eos_token_id": 2,
4
+ "max_length": 2048,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.45.2"
7
+ }
checkpoint-50/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step50
checkpoint-50/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b53a3e8c75ccf099ac77b0790e3f96f661a4fed2eaf311cea40eea7d2c5a77a0
3
+ size 2198026696
checkpoint-50/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:575119a228f98110923ffa2dedcb50e3317251b26054355d015e0b2240d566f2
3
+ size 15984
checkpoint-50/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0728b56dab7abb5ef8a0d4bae3519c5767c97467bdd886d26bf19cc8599d0312
3
+ size 15984
checkpoint-50/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4e481d4ef1546694da7337f6bb6c658b866dcb79b85deeb477da0d27ebe851e
3
+ size 15984
checkpoint-50/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:353c60be37ea56fc992fca446598ceca5d1fd002aa3bd6dbb9ad740e6f47ebb3
3
+ size 15984
checkpoint-50/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9107fe964ba7205e354084b85210e5a5ea1c98cfd4d38adb9cd3926945dcae4
3
+ size 15984
checkpoint-50/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69d1bb1abee38b92e53f3f23549b642ce0f1edcdccf7b6129847ac61636e96d5
3
+ size 15984
checkpoint-50/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afd5516048e20f36959601574e29e40106085a7d3cdc7bf425ce5e84633490e6
3
+ size 15984
checkpoint-50/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e2c46927fc06939b4c976a01e4b95dec1f8b98ceaea86d31a5d756fc30ff006
3
+ size 15984
checkpoint-50/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9b23fe3d7c8cff984a05b7865b1b491bac693fd2f496a4e0e24b70ad75a25bd
3
+ size 1064
checkpoint-50/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-50/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-50/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-50/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ content }}{% elif message['role'] == 'assistant' %}{{ content }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
checkpoint-50/trainer_state.json ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.05959475566150179,
5
+ "eval_steps": 50,
6
+ "global_step": 50,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0011918951132300357,
13
+ "grad_norm": 1.8323841453219294,
14
+ "learning_rate": 2e-05,
15
+ "loss": 2.1039,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0023837902264600714,
20
+ "grad_norm": 1.837920719204094,
21
+ "learning_rate": 1.9979453927503366e-05,
22
+ "loss": 2.1015,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.003575685339690107,
27
+ "grad_norm": 0.9173452411852326,
28
+ "learning_rate": 1.991790013823246e-05,
29
+ "loss": 2.0311,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.004767580452920143,
34
+ "grad_norm": 1.265146161082013,
35
+ "learning_rate": 1.9815591569910654e-05,
36
+ "loss": 2.0187,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.0059594755661501785,
41
+ "grad_norm": 1.0055189392399428,
42
+ "learning_rate": 1.9672948630390296e-05,
43
+ "loss": 2.0142,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.007151370679380214,
48
+ "grad_norm": 1.6116133535057522,
49
+ "learning_rate": 1.949055747010669e-05,
50
+ "loss": 2.047,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.00834326579261025,
55
+ "grad_norm": 1.0164569935770877,
56
+ "learning_rate": 1.926916757346022e-05,
57
+ "loss": 2.0114,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.009535160905840286,
62
+ "grad_norm": 0.8088386058968114,
63
+ "learning_rate": 1.900968867902419e-05,
64
+ "loss": 1.979,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.010727056019070322,
69
+ "grad_norm": 0.7238192809262382,
70
+ "learning_rate": 1.8713187041233896e-05,
71
+ "loss": 1.9969,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.011918951132300357,
76
+ "grad_norm": 0.5757195660436086,
77
+ "learning_rate": 1.8380881048918406e-05,
78
+ "loss": 1.9719,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.013110846245530394,
83
+ "grad_norm": 0.6136131835485481,
84
+ "learning_rate": 1.8014136218679566e-05,
85
+ "loss": 1.9736,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.014302741358760428,
90
+ "grad_norm": 0.6462531692000065,
91
+ "learning_rate": 1.7614459583691346e-05,
92
+ "loss": 1.9625,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.015494636471990465,
97
+ "grad_norm": 0.5160196738824037,
98
+ "learning_rate": 1.7183493500977277e-05,
99
+ "loss": 1.9524,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.0166865315852205,
104
+ "grad_norm": 0.48508132154258404,
105
+ "learning_rate": 1.672300890261317e-05,
106
+ "loss": 1.9584,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.017878426698450536,
111
+ "grad_norm": 0.5181005310771087,
112
+ "learning_rate": 1.6234898018587336e-05,
113
+ "loss": 1.967,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.01907032181168057,
118
+ "grad_norm": 0.4150834616993424,
119
+ "learning_rate": 1.5721166601221697e-05,
120
+ "loss": 1.9456,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.02026221692491061,
125
+ "grad_norm": 0.3379165251881648,
126
+ "learning_rate": 1.5183925683105254e-05,
127
+ "loss": 1.9637,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.021454112038140644,
132
+ "grad_norm": 0.3484808167274383,
133
+ "learning_rate": 1.4625382902408356e-05,
134
+ "loss": 1.9582,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.02264600715137068,
139
+ "grad_norm": 0.35126742165373703,
140
+ "learning_rate": 1.4047833431223938e-05,
141
+ "loss": 1.9716,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.023837902264600714,
146
+ "grad_norm": 0.2995298854480071,
147
+ "learning_rate": 1.3453650544213078e-05,
148
+ "loss": 1.9804,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.025029797377830752,
153
+ "grad_norm": 0.2812553357334388,
154
+ "learning_rate": 1.2845275866310325e-05,
155
+ "loss": 1.943,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.026221692491060787,
160
+ "grad_norm": 0.29784459167074245,
161
+ "learning_rate": 1.2225209339563144e-05,
162
+ "loss": 1.9517,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.027413587604290822,
167
+ "grad_norm": 0.28759384963571305,
168
+ "learning_rate": 1.1595998950333794e-05,
169
+ "loss": 1.9676,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.028605482717520857,
174
+ "grad_norm": 0.26154732718281476,
175
+ "learning_rate": 1.0960230259076819e-05,
176
+ "loss": 1.9585,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.029797377830750895,
181
+ "grad_norm": 0.2417322199141499,
182
+ "learning_rate": 1.0320515775716556e-05,
183
+ "loss": 1.9658,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.03098927294398093,
188
+ "grad_norm": 0.2647008811703257,
189
+ "learning_rate": 9.67948422428345e-06,
190
+ "loss": 1.9677,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.03218116805721097,
195
+ "grad_norm": 0.28156330533090274,
196
+ "learning_rate": 9.039769740923183e-06,
197
+ "loss": 1.971,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.033373063170441,
202
+ "grad_norm": 0.23451944041424483,
203
+ "learning_rate": 8.404001049666211e-06,
204
+ "loss": 1.9777,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.03456495828367104,
209
+ "grad_norm": 0.20425845712936946,
210
+ "learning_rate": 7.774790660436857e-06,
211
+ "loss": 1.9455,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.03575685339690107,
216
+ "grad_norm": 0.20003632743257047,
217
+ "learning_rate": 7.154724133689677e-06,
218
+ "loss": 1.9219,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.03694874851013111,
223
+ "grad_norm": 0.22248700808509062,
224
+ "learning_rate": 6.546349455786926e-06,
225
+ "loss": 1.9595,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.03814064362336114,
230
+ "grad_norm": 0.22141566358189815,
231
+ "learning_rate": 5.952166568776062e-06,
232
+ "loss": 1.9736,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.03933253873659118,
237
+ "grad_norm": 0.20350762417692123,
238
+ "learning_rate": 5.37461709759165e-06,
239
+ "loss": 1.9491,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.04052443384982122,
244
+ "grad_norm": 0.18362905257668707,
245
+ "learning_rate": 4.81607431689475e-06,
246
+ "loss": 1.9877,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.041716328963051254,
251
+ "grad_norm": 0.18209143534810343,
252
+ "learning_rate": 4.278833398778306e-06,
253
+ "loss": 1.9711,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.04290822407628129,
258
+ "grad_norm": 0.1870043994840097,
259
+ "learning_rate": 3.7651019814126656e-06,
260
+ "loss": 1.9997,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.04410011918951132,
265
+ "grad_norm": 0.18563803773188292,
266
+ "learning_rate": 3.2769910973868314e-06,
267
+ "loss": 1.9611,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.04529201430274136,
272
+ "grad_norm": 0.1803488628139512,
273
+ "learning_rate": 2.8165064990227255e-06,
274
+ "loss": 1.9779,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.04648390941597139,
279
+ "grad_norm": 0.18280901111654344,
280
+ "learning_rate": 2.3855404163086558e-06,
281
+ "loss": 1.9753,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.04767580452920143,
286
+ "grad_norm": 0.18003744910780412,
287
+ "learning_rate": 1.9858637813204352e-06,
288
+ "loss": 1.9327,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.04886769964243146,
293
+ "grad_norm": 0.1751954707202772,
294
+ "learning_rate": 1.6191189510815942e-06,
295
+ "loss": 1.9578,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.050059594755661505,
300
+ "grad_norm": 0.17152593814056669,
301
+ "learning_rate": 1.286812958766106e-06,
302
+ "loss": 1.9176,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.05125148986889154,
307
+ "grad_norm": 0.16959349088820902,
308
+ "learning_rate": 9.903113209758098e-07,
309
+ "loss": 1.9505,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.052443384982121574,
314
+ "grad_norm": 0.16660058312767648,
315
+ "learning_rate": 7.308324265397837e-07,
316
+ "loss": 1.9683,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.05363528009535161,
321
+ "grad_norm": 0.17674746764132468,
322
+ "learning_rate": 5.094425298933136e-07,
323
+ "loss": 1.9643,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.054827175208581644,
328
+ "grad_norm": 0.16795370746145422,
329
+ "learning_rate": 3.2705136960970554e-07,
330
+ "loss": 1.9812,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.05601907032181168,
335
+ "grad_norm": 0.17056366756389463,
336
+ "learning_rate": 1.844084300893456e-07,
337
+ "loss": 1.959,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.057210965435041714,
342
+ "grad_norm": 0.16170892183194993,
343
+ "learning_rate": 8.209986176753947e-08,
344
+ "loss": 1.9624,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.058402860548271755,
349
+ "grad_norm": 0.17173937225335953,
350
+ "learning_rate": 2.054607249663665e-08,
351
+ "loss": 1.9578,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.05959475566150179,
356
+ "grad_norm": 0.17021831986392572,
357
+ "learning_rate": 0.0,
358
+ "loss": 1.9973,
359
+ "step": 50
360
+ }
361
+ ],
362
+ "logging_steps": 1,
363
+ "max_steps": 50,
364
+ "num_input_tokens_seen": 0,
365
+ "num_train_epochs": 1,
366
+ "save_steps": 50,
367
+ "stateful_callbacks": {
368
+ "TrainerControl": {
369
+ "args": {
370
+ "should_epoch_stop": false,
371
+ "should_evaluate": false,
372
+ "should_log": false,
373
+ "should_save": true,
374
+ "should_training_stop": true
375
+ },
376
+ "attributes": {}
377
+ }
378
+ },
379
+ "total_flos": 106890730143744.0,
380
+ "train_batch_size": 58,
381
+ "trial_name": null,
382
+ "trial_params": null
383
+ }
checkpoint-50/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3125fe88bf614ded0206db12e56072f9ec4fb9fe65a19870757576de3b6144d0
3
+ size 7224
checkpoint-50/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"_name_or_path": "TinyLlama/TinyLlama_v1.1", "architectures": ["ProgressiveYocoLlamaForCausalLM"], "attention_bias": false, "attention_dropout": 0.0, "bos_token_id": 1, "crossDecoder_start_idx": 2, "eos_token_id": 2, "hidden_act": "silu", "hidden_size": 2048, "initializer_range": 0.02, "intermediate_size": 5632, "max_position_embeddings": 2048, "mlp_bias": false, "model_type": "progressive_yoco_llama", "num_attention_heads": 32, "num_hidden_layers": 22, "num_key_value_heads": 4, "pretraining_tp": 1, "rms_norm_eps": 1e-05, "rope_scaling": null, "rope_theta": 10000.0, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.45.2", "use_cache": false, "vocab_size": 32000}
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "eos_token_id": 2,
4
+ "max_length": 2048,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.45.2"
7
+ }
runs/Nov29_08-38-26_creative-turing-2/events.out.tfevents.1732869726.creative-turing-2.2655059.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc212a41ff0a75fb942cf1b1cd272298b9cd0bf5b2d9f38aaad2abc3e89a573b
3
+ size 16158
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ content }}{% elif message['role'] == 'assistant' %}{{ content }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.05959475566150179,
3
+ "total_flos": 106890730143744.0,
4
+ "train_loss": 1.9756734085083008,
5
+ "train_runtime": 1598.4061,
6
+ "train_samples_per_second": 58.058,
7
+ "train_steps_per_second": 0.031
8
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 50, "loss": 2.1039, "lr": 2e-05, "epoch": 0.0011918951132300357, "percentage": 2.0, "elapsed_time": "0:00:35", "remaining_time": "0:28:50"}
2
+ {"current_steps": 2, "total_steps": 50, "loss": 2.1015, "lr": 1.9979453927503366e-05, "epoch": 0.0023837902264600714, "percentage": 4.0, "elapsed_time": "0:01:06", "remaining_time": "0:26:41"}
3
+ {"current_steps": 3, "total_steps": 50, "loss": 2.0311, "lr": 1.991790013823246e-05, "epoch": 0.003575685339690107, "percentage": 6.0, "elapsed_time": "0:01:38", "remaining_time": "0:25:40"}
4
+ {"current_steps": 4, "total_steps": 50, "loss": 2.0187, "lr": 1.9815591569910654e-05, "epoch": 0.004767580452920143, "percentage": 8.0, "elapsed_time": "0:02:10", "remaining_time": "0:24:55"}
5
+ {"current_steps": 5, "total_steps": 50, "loss": 2.0142, "lr": 1.9672948630390296e-05, "epoch": 0.0059594755661501785, "percentage": 10.0, "elapsed_time": "0:02:41", "remaining_time": "0:24:15"}
6
+ {"current_steps": 6, "total_steps": 50, "loss": 2.047, "lr": 1.949055747010669e-05, "epoch": 0.007151370679380214, "percentage": 12.0, "elapsed_time": "0:03:13", "remaining_time": "0:23:39"}
7
+ {"current_steps": 7, "total_steps": 50, "loss": 2.0114, "lr": 1.926916757346022e-05, "epoch": 0.00834326579261025, "percentage": 14.0, "elapsed_time": "0:03:45", "remaining_time": "0:23:03"}
8
+ {"current_steps": 8, "total_steps": 50, "loss": 1.979, "lr": 1.900968867902419e-05, "epoch": 0.009535160905840286, "percentage": 16.0, "elapsed_time": "0:04:17", "remaining_time": "0:22:29"}
9
+ {"current_steps": 9, "total_steps": 50, "loss": 1.9969, "lr": 1.8713187041233896e-05, "epoch": 0.010727056019070322, "percentage": 18.0, "elapsed_time": "0:04:48", "remaining_time": "0:21:55"}
10
+ {"current_steps": 10, "total_steps": 50, "loss": 1.9719, "lr": 1.8380881048918406e-05, "epoch": 0.011918951132300357, "percentage": 20.0, "elapsed_time": "0:05:20", "remaining_time": "0:21:22"}
11
+ {"current_steps": 11, "total_steps": 50, "loss": 1.9736, "lr": 1.8014136218679566e-05, "epoch": 0.013110846245530394, "percentage": 22.0, "elapsed_time": "0:05:52", "remaining_time": "0:20:48"}
12
+ {"current_steps": 12, "total_steps": 50, "loss": 1.9625, "lr": 1.7614459583691346e-05, "epoch": 0.014302741358760428, "percentage": 24.0, "elapsed_time": "0:06:23", "remaining_time": "0:20:15"}
13
+ {"current_steps": 13, "total_steps": 50, "loss": 1.9524, "lr": 1.7183493500977277e-05, "epoch": 0.015494636471990465, "percentage": 26.0, "elapsed_time": "0:06:55", "remaining_time": "0:19:43"}
14
+ {"current_steps": 14, "total_steps": 50, "loss": 1.9584, "lr": 1.672300890261317e-05, "epoch": 0.0166865315852205, "percentage": 28.0, "elapsed_time": "0:07:27", "remaining_time": "0:19:10"}
15
+ {"current_steps": 15, "total_steps": 50, "loss": 1.967, "lr": 1.6234898018587336e-05, "epoch": 0.017878426698450536, "percentage": 30.0, "elapsed_time": "0:07:59", "remaining_time": "0:18:38"}
16
+ {"current_steps": 16, "total_steps": 50, "loss": 1.9456, "lr": 1.5721166601221697e-05, "epoch": 0.01907032181168057, "percentage": 32.0, "elapsed_time": "0:08:31", "remaining_time": "0:18:05"}
17
+ {"current_steps": 17, "total_steps": 50, "loss": 1.9637, "lr": 1.5183925683105254e-05, "epoch": 0.02026221692491061, "percentage": 34.0, "elapsed_time": "0:09:02", "remaining_time": "0:17:33"}
18
+ {"current_steps": 18, "total_steps": 50, "loss": 1.9582, "lr": 1.4625382902408356e-05, "epoch": 0.021454112038140644, "percentage": 36.0, "elapsed_time": "0:09:34", "remaining_time": "0:17:01"}
19
+ {"current_steps": 19, "total_steps": 50, "loss": 1.9716, "lr": 1.4047833431223938e-05, "epoch": 0.02264600715137068, "percentage": 38.0, "elapsed_time": "0:10:06", "remaining_time": "0:16:29"}
20
+ {"current_steps": 20, "total_steps": 50, "loss": 1.9804, "lr": 1.3453650544213078e-05, "epoch": 0.023837902264600714, "percentage": 40.0, "elapsed_time": "0:10:38", "remaining_time": "0:15:57"}
21
+ {"current_steps": 21, "total_steps": 50, "loss": 1.943, "lr": 1.2845275866310325e-05, "epoch": 0.025029797377830752, "percentage": 42.0, "elapsed_time": "0:11:09", "remaining_time": "0:15:25"}
22
+ {"current_steps": 22, "total_steps": 50, "loss": 1.9517, "lr": 1.2225209339563144e-05, "epoch": 0.026221692491060787, "percentage": 44.0, "elapsed_time": "0:11:41", "remaining_time": "0:14:53"}
23
+ {"current_steps": 23, "total_steps": 50, "loss": 1.9676, "lr": 1.1595998950333794e-05, "epoch": 0.027413587604290822, "percentage": 46.0, "elapsed_time": "0:12:13", "remaining_time": "0:14:20"}
24
+ {"current_steps": 24, "total_steps": 50, "loss": 1.9585, "lr": 1.0960230259076819e-05, "epoch": 0.028605482717520857, "percentage": 48.0, "elapsed_time": "0:12:45", "remaining_time": "0:13:48"}
25
+ {"current_steps": 25, "total_steps": 50, "loss": 1.9658, "lr": 1.0320515775716556e-05, "epoch": 0.029797377830750895, "percentage": 50.0, "elapsed_time": "0:13:16", "remaining_time": "0:13:16"}
26
+ {"current_steps": 26, "total_steps": 50, "loss": 1.9677, "lr": 9.67948422428345e-06, "epoch": 0.03098927294398093, "percentage": 52.0, "elapsed_time": "0:13:48", "remaining_time": "0:12:44"}
27
+ {"current_steps": 27, "total_steps": 50, "loss": 1.971, "lr": 9.039769740923183e-06, "epoch": 0.03218116805721097, "percentage": 54.0, "elapsed_time": "0:14:20", "remaining_time": "0:12:13"}
28
+ {"current_steps": 28, "total_steps": 50, "loss": 1.9777, "lr": 8.404001049666211e-06, "epoch": 0.033373063170441, "percentage": 56.0, "elapsed_time": "0:14:52", "remaining_time": "0:11:41"}
29
+ {"current_steps": 29, "total_steps": 50, "loss": 1.9455, "lr": 7.774790660436857e-06, "epoch": 0.03456495828367104, "percentage": 58.0, "elapsed_time": "0:15:24", "remaining_time": "0:11:09"}
30
+ {"current_steps": 30, "total_steps": 50, "loss": 1.9219, "lr": 7.154724133689677e-06, "epoch": 0.03575685339690107, "percentage": 60.0, "elapsed_time": "0:15:55", "remaining_time": "0:10:37"}
31
+ {"current_steps": 31, "total_steps": 50, "loss": 1.9595, "lr": 6.546349455786926e-06, "epoch": 0.03694874851013111, "percentage": 62.0, "elapsed_time": "0:16:27", "remaining_time": "0:10:05"}
32
+ {"current_steps": 32, "total_steps": 50, "loss": 1.9736, "lr": 5.952166568776062e-06, "epoch": 0.03814064362336114, "percentage": 64.0, "elapsed_time": "0:16:59", "remaining_time": "0:09:33"}
33
+ {"current_steps": 33, "total_steps": 50, "loss": 1.9491, "lr": 5.37461709759165e-06, "epoch": 0.03933253873659118, "percentage": 66.0, "elapsed_time": "0:17:31", "remaining_time": "0:09:01"}
34
+ {"current_steps": 34, "total_steps": 50, "loss": 1.9877, "lr": 4.81607431689475e-06, "epoch": 0.04052443384982122, "percentage": 68.0, "elapsed_time": "0:18:02", "remaining_time": "0:08:29"}
35
+ {"current_steps": 35, "total_steps": 50, "loss": 1.9711, "lr": 4.278833398778306e-06, "epoch": 0.041716328963051254, "percentage": 70.0, "elapsed_time": "0:18:34", "remaining_time": "0:07:57"}
36
+ {"current_steps": 36, "total_steps": 50, "loss": 1.9997, "lr": 3.7651019814126656e-06, "epoch": 0.04290822407628129, "percentage": 72.0, "elapsed_time": "0:19:06", "remaining_time": "0:07:25"}
37
+ {"current_steps": 37, "total_steps": 50, "loss": 1.9611, "lr": 3.2769910973868314e-06, "epoch": 0.04410011918951132, "percentage": 74.0, "elapsed_time": "0:19:38", "remaining_time": "0:06:53"}
38
+ {"current_steps": 38, "total_steps": 50, "loss": 1.9779, "lr": 2.8165064990227255e-06, "epoch": 0.04529201430274136, "percentage": 76.0, "elapsed_time": "0:20:09", "remaining_time": "0:06:22"}
39
+ {"current_steps": 39, "total_steps": 50, "loss": 1.9753, "lr": 2.3855404163086558e-06, "epoch": 0.04648390941597139, "percentage": 78.0, "elapsed_time": "0:20:41", "remaining_time": "0:05:50"}
40
+ {"current_steps": 40, "total_steps": 50, "loss": 1.9327, "lr": 1.9858637813204352e-06, "epoch": 0.04767580452920143, "percentage": 80.0, "elapsed_time": "0:21:13", "remaining_time": "0:05:18"}
41
+ {"current_steps": 41, "total_steps": 50, "loss": 1.9578, "lr": 1.6191189510815942e-06, "epoch": 0.04886769964243146, "percentage": 82.0, "elapsed_time": "0:21:45", "remaining_time": "0:04:46"}
42
+ {"current_steps": 42, "total_steps": 50, "loss": 1.9176, "lr": 1.286812958766106e-06, "epoch": 0.050059594755661505, "percentage": 84.0, "elapsed_time": "0:22:16", "remaining_time": "0:04:14"}
43
+ {"current_steps": 43, "total_steps": 50, "loss": 1.9505, "lr": 9.903113209758098e-07, "epoch": 0.05125148986889154, "percentage": 86.0, "elapsed_time": "0:22:48", "remaining_time": "0:03:42"}
44
+ {"current_steps": 44, "total_steps": 50, "loss": 1.9683, "lr": 7.308324265397837e-07, "epoch": 0.052443384982121574, "percentage": 88.0, "elapsed_time": "0:23:20", "remaining_time": "0:03:10"}
45
+ {"current_steps": 45, "total_steps": 50, "loss": 1.9643, "lr": 5.094425298933136e-07, "epoch": 0.05363528009535161, "percentage": 90.0, "elapsed_time": "0:23:52", "remaining_time": "0:02:39"}
46
+ {"current_steps": 46, "total_steps": 50, "loss": 1.9812, "lr": 3.2705136960970554e-07, "epoch": 0.054827175208581644, "percentage": 92.0, "elapsed_time": "0:24:23", "remaining_time": "0:02:07"}
47
+ {"current_steps": 47, "total_steps": 50, "loss": 1.959, "lr": 1.844084300893456e-07, "epoch": 0.05601907032181168, "percentage": 94.0, "elapsed_time": "0:24:55", "remaining_time": "0:01:35"}
48
+ {"current_steps": 48, "total_steps": 50, "loss": 1.9624, "lr": 8.209986176753947e-08, "epoch": 0.057210965435041714, "percentage": 96.0, "elapsed_time": "0:25:27", "remaining_time": "0:01:03"}
49
+ {"current_steps": 49, "total_steps": 50, "loss": 1.9578, "lr": 2.054607249663665e-08, "epoch": 0.058402860548271755, "percentage": 98.0, "elapsed_time": "0:25:59", "remaining_time": "0:00:31"}
50
+ {"current_steps": 50, "total_steps": 50, "loss": 1.9973, "lr": 0.0, "epoch": 0.05959475566150179, "percentage": 100.0, "elapsed_time": "0:26:30", "remaining_time": "0:00:00"}
51
+ {"current_steps": 50, "total_steps": 50, "epoch": 0.05959475566150179, "percentage": 100.0, "elapsed_time": "0:26:38", "remaining_time": "0:00:00"}
trainer_state.json ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.05959475566150179,
5
+ "eval_steps": 50,
6
+ "global_step": 50,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0011918951132300357,
13
+ "grad_norm": 1.8323841453219294,
14
+ "learning_rate": 2e-05,
15
+ "loss": 2.1039,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0023837902264600714,
20
+ "grad_norm": 1.837920719204094,
21
+ "learning_rate": 1.9979453927503366e-05,
22
+ "loss": 2.1015,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.003575685339690107,
27
+ "grad_norm": 0.9173452411852326,
28
+ "learning_rate": 1.991790013823246e-05,
29
+ "loss": 2.0311,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.004767580452920143,
34
+ "grad_norm": 1.265146161082013,
35
+ "learning_rate": 1.9815591569910654e-05,
36
+ "loss": 2.0187,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.0059594755661501785,
41
+ "grad_norm": 1.0055189392399428,
42
+ "learning_rate": 1.9672948630390296e-05,
43
+ "loss": 2.0142,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.007151370679380214,
48
+ "grad_norm": 1.6116133535057522,
49
+ "learning_rate": 1.949055747010669e-05,
50
+ "loss": 2.047,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.00834326579261025,
55
+ "grad_norm": 1.0164569935770877,
56
+ "learning_rate": 1.926916757346022e-05,
57
+ "loss": 2.0114,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.009535160905840286,
62
+ "grad_norm": 0.8088386058968114,
63
+ "learning_rate": 1.900968867902419e-05,
64
+ "loss": 1.979,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.010727056019070322,
69
+ "grad_norm": 0.7238192809262382,
70
+ "learning_rate": 1.8713187041233896e-05,
71
+ "loss": 1.9969,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.011918951132300357,
76
+ "grad_norm": 0.5757195660436086,
77
+ "learning_rate": 1.8380881048918406e-05,
78
+ "loss": 1.9719,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.013110846245530394,
83
+ "grad_norm": 0.6136131835485481,
84
+ "learning_rate": 1.8014136218679566e-05,
85
+ "loss": 1.9736,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.014302741358760428,
90
+ "grad_norm": 0.6462531692000065,
91
+ "learning_rate": 1.7614459583691346e-05,
92
+ "loss": 1.9625,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.015494636471990465,
97
+ "grad_norm": 0.5160196738824037,
98
+ "learning_rate": 1.7183493500977277e-05,
99
+ "loss": 1.9524,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.0166865315852205,
104
+ "grad_norm": 0.48508132154258404,
105
+ "learning_rate": 1.672300890261317e-05,
106
+ "loss": 1.9584,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.017878426698450536,
111
+ "grad_norm": 0.5181005310771087,
112
+ "learning_rate": 1.6234898018587336e-05,
113
+ "loss": 1.967,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.01907032181168057,
118
+ "grad_norm": 0.4150834616993424,
119
+ "learning_rate": 1.5721166601221697e-05,
120
+ "loss": 1.9456,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.02026221692491061,
125
+ "grad_norm": 0.3379165251881648,
126
+ "learning_rate": 1.5183925683105254e-05,
127
+ "loss": 1.9637,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.021454112038140644,
132
+ "grad_norm": 0.3484808167274383,
133
+ "learning_rate": 1.4625382902408356e-05,
134
+ "loss": 1.9582,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.02264600715137068,
139
+ "grad_norm": 0.35126742165373703,
140
+ "learning_rate": 1.4047833431223938e-05,
141
+ "loss": 1.9716,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.023837902264600714,
146
+ "grad_norm": 0.2995298854480071,
147
+ "learning_rate": 1.3453650544213078e-05,
148
+ "loss": 1.9804,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.025029797377830752,
153
+ "grad_norm": 0.2812553357334388,
154
+ "learning_rate": 1.2845275866310325e-05,
155
+ "loss": 1.943,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.026221692491060787,
160
+ "grad_norm": 0.29784459167074245,
161
+ "learning_rate": 1.2225209339563144e-05,
162
+ "loss": 1.9517,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.027413587604290822,
167
+ "grad_norm": 0.28759384963571305,
168
+ "learning_rate": 1.1595998950333794e-05,
169
+ "loss": 1.9676,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.028605482717520857,
174
+ "grad_norm": 0.26154732718281476,
175
+ "learning_rate": 1.0960230259076819e-05,
176
+ "loss": 1.9585,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.029797377830750895,
181
+ "grad_norm": 0.2417322199141499,
182
+ "learning_rate": 1.0320515775716556e-05,
183
+ "loss": 1.9658,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.03098927294398093,
188
+ "grad_norm": 0.2647008811703257,
189
+ "learning_rate": 9.67948422428345e-06,
190
+ "loss": 1.9677,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.03218116805721097,
195
+ "grad_norm": 0.28156330533090274,
196
+ "learning_rate": 9.039769740923183e-06,
197
+ "loss": 1.971,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.033373063170441,
202
+ "grad_norm": 0.23451944041424483,
203
+ "learning_rate": 8.404001049666211e-06,
204
+ "loss": 1.9777,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.03456495828367104,
209
+ "grad_norm": 0.20425845712936946,
210
+ "learning_rate": 7.774790660436857e-06,
211
+ "loss": 1.9455,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.03575685339690107,
216
+ "grad_norm": 0.20003632743257047,
217
+ "learning_rate": 7.154724133689677e-06,
218
+ "loss": 1.9219,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.03694874851013111,
223
+ "grad_norm": 0.22248700808509062,
224
+ "learning_rate": 6.546349455786926e-06,
225
+ "loss": 1.9595,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.03814064362336114,
230
+ "grad_norm": 0.22141566358189815,
231
+ "learning_rate": 5.952166568776062e-06,
232
+ "loss": 1.9736,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.03933253873659118,
237
+ "grad_norm": 0.20350762417692123,
238
+ "learning_rate": 5.37461709759165e-06,
239
+ "loss": 1.9491,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.04052443384982122,
244
+ "grad_norm": 0.18362905257668707,
245
+ "learning_rate": 4.81607431689475e-06,
246
+ "loss": 1.9877,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.041716328963051254,
251
+ "grad_norm": 0.18209143534810343,
252
+ "learning_rate": 4.278833398778306e-06,
253
+ "loss": 1.9711,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.04290822407628129,
258
+ "grad_norm": 0.1870043994840097,
259
+ "learning_rate": 3.7651019814126656e-06,
260
+ "loss": 1.9997,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.04410011918951132,
265
+ "grad_norm": 0.18563803773188292,
266
+ "learning_rate": 3.2769910973868314e-06,
267
+ "loss": 1.9611,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.04529201430274136,
272
+ "grad_norm": 0.1803488628139512,
273
+ "learning_rate": 2.8165064990227255e-06,
274
+ "loss": 1.9779,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.04648390941597139,
279
+ "grad_norm": 0.18280901111654344,
280
+ "learning_rate": 2.3855404163086558e-06,
281
+ "loss": 1.9753,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.04767580452920143,
286
+ "grad_norm": 0.18003744910780412,
287
+ "learning_rate": 1.9858637813204352e-06,
288
+ "loss": 1.9327,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.04886769964243146,
293
+ "grad_norm": 0.1751954707202772,
294
+ "learning_rate": 1.6191189510815942e-06,
295
+ "loss": 1.9578,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.050059594755661505,
300
+ "grad_norm": 0.17152593814056669,
301
+ "learning_rate": 1.286812958766106e-06,
302
+ "loss": 1.9176,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.05125148986889154,
307
+ "grad_norm": 0.16959349088820902,
308
+ "learning_rate": 9.903113209758098e-07,
309
+ "loss": 1.9505,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.052443384982121574,
314
+ "grad_norm": 0.16660058312767648,
315
+ "learning_rate": 7.308324265397837e-07,
316
+ "loss": 1.9683,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.05363528009535161,
321
+ "grad_norm": 0.17674746764132468,
322
+ "learning_rate": 5.094425298933136e-07,
323
+ "loss": 1.9643,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.054827175208581644,
328
+ "grad_norm": 0.16795370746145422,
329
+ "learning_rate": 3.2705136960970554e-07,
330
+ "loss": 1.9812,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.05601907032181168,
335
+ "grad_norm": 0.17056366756389463,
336
+ "learning_rate": 1.844084300893456e-07,
337
+ "loss": 1.959,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.057210965435041714,
342
+ "grad_norm": 0.16170892183194993,
343
+ "learning_rate": 8.209986176753947e-08,
344
+ "loss": 1.9624,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.058402860548271755,
349
+ "grad_norm": 0.17173937225335953,
350
+ "learning_rate": 2.054607249663665e-08,
351
+ "loss": 1.9578,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.05959475566150179,
356
+ "grad_norm": 0.17021831986392572,
357
+ "learning_rate": 0.0,
358
+ "loss": 1.9973,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.05959475566150179,
363
+ "step": 50,
364
+ "total_flos": 106890730143744.0,
365
+ "train_loss": 1.9756734085083008,
366
+ "train_runtime": 1598.4061,
367
+ "train_samples_per_second": 58.058,
368
+ "train_steps_per_second": 0.031
369
+ }
370
+ ],
371
+ "logging_steps": 1,
372
+ "max_steps": 50,
373
+ "num_input_tokens_seen": 0,
374
+ "num_train_epochs": 1,
375
+ "save_steps": 50,
376
+ "stateful_callbacks": {
377
+ "TrainerControl": {
378
+ "args": {
379
+ "should_epoch_stop": false,
380
+ "should_evaluate": false,
381
+ "should_log": false,
382
+ "should_save": true,
383
+ "should_training_stop": true
384
+ },
385
+ "attributes": {}
386
+ }
387
+ },
388
+ "total_flos": 106890730143744.0,
389
+ "train_batch_size": 58,
390
+ "trial_name": null,
391
+ "trial_params": null
392
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3125fe88bf614ded0206db12e56072f9ec4fb9fe65a19870757576de3b6144d0
3
+ size 7224
training_loss.png ADDED