Uploading /ephemeral/hossein/output/newData-progressive-yoco-tiny-llama-CDL-20
Browse files- README.md +61 -0
- all_results.json +8 -0
- checkpoint-50/config.json +30 -0
- checkpoint-50/generation_config.json +7 -0
- checkpoint-50/latest +1 -0
- checkpoint-50/model.safetensors +3 -0
- checkpoint-50/rng_state_0.pth +3 -0
- checkpoint-50/rng_state_1.pth +3 -0
- checkpoint-50/rng_state_2.pth +3 -0
- checkpoint-50/rng_state_3.pth +3 -0
- checkpoint-50/rng_state_4.pth +3 -0
- checkpoint-50/rng_state_5.pth +3 -0
- checkpoint-50/rng_state_6.pth +3 -0
- checkpoint-50/rng_state_7.pth +3 -0
- checkpoint-50/scheduler.pt +3 -0
- checkpoint-50/special_tokens_map.json +30 -0
- checkpoint-50/tokenizer.json +0 -0
- checkpoint-50/tokenizer.model +3 -0
- checkpoint-50/tokenizer_config.json +44 -0
- checkpoint-50/trainer_state.json +383 -0
- checkpoint-50/training_args.bin +3 -0
- checkpoint-50/zero_to_fp32.py +674 -0
- config.json +1 -0
- generation_config.json +7 -0
- runs/Nov29_08-38-26_creative-turing-2/events.out.tfevents.1732869726.creative-turing-2.2655059.0 +3 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +44 -0
- train_results.json +8 -0
- trainer_log.jsonl +51 -0
- trainer_state.json +392 -0
- training_args.bin +3 -0
- training_loss.png +0 -0
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: TinyLlama/TinyLlama_v1.1
|
5 |
+
tags:
|
6 |
+
- llama-factory
|
7 |
+
- full
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: newData-progressive-yoco-tiny-llama-CDL-20
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# newData-progressive-yoco-tiny-llama-CDL-20
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [/ephemeral/hossein/output/newData-progressive-yoco-tiny-llama-CDL-21/checkpoint-50](https://huggingface.co//ephemeral/hossein/output/newData-progressive-yoco-tiny-llama-CDL-21/checkpoint-50) on the alpaca_reformatted, the UltraInteract_sft_reformatted, the reformatted_ultrachat_200k, the reformatted_MathInstruct and the small_slim_pajama datasets.
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 58
|
40 |
+
- eval_batch_size: 1
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- num_devices: 8
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 1856
|
46 |
+
- total_eval_batch_size: 8
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: cosine
|
49 |
+
- lr_scheduler_warmup_ratio: 0.005
|
50 |
+
- training_steps: 50
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
### Framework versions
|
57 |
+
|
58 |
+
- Transformers 4.45.2
|
59 |
+
- Pytorch 2.5.1+cu124
|
60 |
+
- Datasets 3.1.0
|
61 |
+
- Tokenizers 0.20.3
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 0.05959475566150179,
|
3 |
+
"total_flos": 106890730143744.0,
|
4 |
+
"train_loss": 1.9756734085083008,
|
5 |
+
"train_runtime": 1598.4061,
|
6 |
+
"train_samples_per_second": 58.058,
|
7 |
+
"train_steps_per_second": 0.031
|
8 |
+
}
|
checkpoint-50/config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "TinyLlama/TinyLlama_v1.1",
|
3 |
+
"architectures": [
|
4 |
+
"ProgressiveYocoLlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"crossDecoder_start_idx": 2,
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 2048,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 5632,
|
15 |
+
"max_position_embeddings": 2048,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "progressive_yoco_llama",
|
18 |
+
"num_attention_heads": 32,
|
19 |
+
"num_hidden_layers": 22,
|
20 |
+
"num_key_value_heads": 4,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": null,
|
24 |
+
"rope_theta": 10000.0,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.45.2",
|
28 |
+
"use_cache": false,
|
29 |
+
"vocab_size": 32000
|
30 |
+
}
|
checkpoint-50/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"eos_token_id": 2,
|
4 |
+
"max_length": 2048,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.45.2"
|
7 |
+
}
|
checkpoint-50/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step50
|
checkpoint-50/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b53a3e8c75ccf099ac77b0790e3f96f661a4fed2eaf311cea40eea7d2c5a77a0
|
3 |
+
size 2198026696
|
checkpoint-50/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:575119a228f98110923ffa2dedcb50e3317251b26054355d015e0b2240d566f2
|
3 |
+
size 15984
|
checkpoint-50/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0728b56dab7abb5ef8a0d4bae3519c5767c97467bdd886d26bf19cc8599d0312
|
3 |
+
size 15984
|
checkpoint-50/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4e481d4ef1546694da7337f6bb6c658b866dcb79b85deeb477da0d27ebe851e
|
3 |
+
size 15984
|
checkpoint-50/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:353c60be37ea56fc992fca446598ceca5d1fd002aa3bd6dbb9ad740e6f47ebb3
|
3 |
+
size 15984
|
checkpoint-50/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9107fe964ba7205e354084b85210e5a5ea1c98cfd4d38adb9cd3926945dcae4
|
3 |
+
size 15984
|
checkpoint-50/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69d1bb1abee38b92e53f3f23549b642ce0f1edcdccf7b6129847ac61636e96d5
|
3 |
+
size 15984
|
checkpoint-50/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afd5516048e20f36959601574e29e40106085a7d3cdc7bf425ce5e84633490e6
|
3 |
+
size 15984
|
checkpoint-50/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e2c46927fc06939b4c976a01e4b95dec1f8b98ceaea86d31a5d756fc30ff006
|
3 |
+
size 15984
|
checkpoint-50/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9b23fe3d7c8cff984a05b7865b1b491bac693fd2f496a4e0e24b70ad75a25bd
|
3 |
+
size 1064
|
checkpoint-50/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
checkpoint-50/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-50/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
checkpoint-50/tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ content }}{% elif message['role'] == 'assistant' %}{{ content }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": false,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"padding_side": "right",
|
39 |
+
"sp_model_kwargs": {},
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "LlamaTokenizer",
|
42 |
+
"unk_token": "<unk>",
|
43 |
+
"use_default_system_prompt": false
|
44 |
+
}
|
checkpoint-50/trainer_state.json
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.05959475566150179,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 50,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0011918951132300357,
|
13 |
+
"grad_norm": 1.8323841453219294,
|
14 |
+
"learning_rate": 2e-05,
|
15 |
+
"loss": 2.1039,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0023837902264600714,
|
20 |
+
"grad_norm": 1.837920719204094,
|
21 |
+
"learning_rate": 1.9979453927503366e-05,
|
22 |
+
"loss": 2.1015,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.003575685339690107,
|
27 |
+
"grad_norm": 0.9173452411852326,
|
28 |
+
"learning_rate": 1.991790013823246e-05,
|
29 |
+
"loss": 2.0311,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.004767580452920143,
|
34 |
+
"grad_norm": 1.265146161082013,
|
35 |
+
"learning_rate": 1.9815591569910654e-05,
|
36 |
+
"loss": 2.0187,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.0059594755661501785,
|
41 |
+
"grad_norm": 1.0055189392399428,
|
42 |
+
"learning_rate": 1.9672948630390296e-05,
|
43 |
+
"loss": 2.0142,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.007151370679380214,
|
48 |
+
"grad_norm": 1.6116133535057522,
|
49 |
+
"learning_rate": 1.949055747010669e-05,
|
50 |
+
"loss": 2.047,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.00834326579261025,
|
55 |
+
"grad_norm": 1.0164569935770877,
|
56 |
+
"learning_rate": 1.926916757346022e-05,
|
57 |
+
"loss": 2.0114,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.009535160905840286,
|
62 |
+
"grad_norm": 0.8088386058968114,
|
63 |
+
"learning_rate": 1.900968867902419e-05,
|
64 |
+
"loss": 1.979,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.010727056019070322,
|
69 |
+
"grad_norm": 0.7238192809262382,
|
70 |
+
"learning_rate": 1.8713187041233896e-05,
|
71 |
+
"loss": 1.9969,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.011918951132300357,
|
76 |
+
"grad_norm": 0.5757195660436086,
|
77 |
+
"learning_rate": 1.8380881048918406e-05,
|
78 |
+
"loss": 1.9719,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.013110846245530394,
|
83 |
+
"grad_norm": 0.6136131835485481,
|
84 |
+
"learning_rate": 1.8014136218679566e-05,
|
85 |
+
"loss": 1.9736,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.014302741358760428,
|
90 |
+
"grad_norm": 0.6462531692000065,
|
91 |
+
"learning_rate": 1.7614459583691346e-05,
|
92 |
+
"loss": 1.9625,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.015494636471990465,
|
97 |
+
"grad_norm": 0.5160196738824037,
|
98 |
+
"learning_rate": 1.7183493500977277e-05,
|
99 |
+
"loss": 1.9524,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.0166865315852205,
|
104 |
+
"grad_norm": 0.48508132154258404,
|
105 |
+
"learning_rate": 1.672300890261317e-05,
|
106 |
+
"loss": 1.9584,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.017878426698450536,
|
111 |
+
"grad_norm": 0.5181005310771087,
|
112 |
+
"learning_rate": 1.6234898018587336e-05,
|
113 |
+
"loss": 1.967,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.01907032181168057,
|
118 |
+
"grad_norm": 0.4150834616993424,
|
119 |
+
"learning_rate": 1.5721166601221697e-05,
|
120 |
+
"loss": 1.9456,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.02026221692491061,
|
125 |
+
"grad_norm": 0.3379165251881648,
|
126 |
+
"learning_rate": 1.5183925683105254e-05,
|
127 |
+
"loss": 1.9637,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.021454112038140644,
|
132 |
+
"grad_norm": 0.3484808167274383,
|
133 |
+
"learning_rate": 1.4625382902408356e-05,
|
134 |
+
"loss": 1.9582,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.02264600715137068,
|
139 |
+
"grad_norm": 0.35126742165373703,
|
140 |
+
"learning_rate": 1.4047833431223938e-05,
|
141 |
+
"loss": 1.9716,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.023837902264600714,
|
146 |
+
"grad_norm": 0.2995298854480071,
|
147 |
+
"learning_rate": 1.3453650544213078e-05,
|
148 |
+
"loss": 1.9804,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.025029797377830752,
|
153 |
+
"grad_norm": 0.2812553357334388,
|
154 |
+
"learning_rate": 1.2845275866310325e-05,
|
155 |
+
"loss": 1.943,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.026221692491060787,
|
160 |
+
"grad_norm": 0.29784459167074245,
|
161 |
+
"learning_rate": 1.2225209339563144e-05,
|
162 |
+
"loss": 1.9517,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.027413587604290822,
|
167 |
+
"grad_norm": 0.28759384963571305,
|
168 |
+
"learning_rate": 1.1595998950333794e-05,
|
169 |
+
"loss": 1.9676,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.028605482717520857,
|
174 |
+
"grad_norm": 0.26154732718281476,
|
175 |
+
"learning_rate": 1.0960230259076819e-05,
|
176 |
+
"loss": 1.9585,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.029797377830750895,
|
181 |
+
"grad_norm": 0.2417322199141499,
|
182 |
+
"learning_rate": 1.0320515775716556e-05,
|
183 |
+
"loss": 1.9658,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.03098927294398093,
|
188 |
+
"grad_norm": 0.2647008811703257,
|
189 |
+
"learning_rate": 9.67948422428345e-06,
|
190 |
+
"loss": 1.9677,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.03218116805721097,
|
195 |
+
"grad_norm": 0.28156330533090274,
|
196 |
+
"learning_rate": 9.039769740923183e-06,
|
197 |
+
"loss": 1.971,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.033373063170441,
|
202 |
+
"grad_norm": 0.23451944041424483,
|
203 |
+
"learning_rate": 8.404001049666211e-06,
|
204 |
+
"loss": 1.9777,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.03456495828367104,
|
209 |
+
"grad_norm": 0.20425845712936946,
|
210 |
+
"learning_rate": 7.774790660436857e-06,
|
211 |
+
"loss": 1.9455,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.03575685339690107,
|
216 |
+
"grad_norm": 0.20003632743257047,
|
217 |
+
"learning_rate": 7.154724133689677e-06,
|
218 |
+
"loss": 1.9219,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.03694874851013111,
|
223 |
+
"grad_norm": 0.22248700808509062,
|
224 |
+
"learning_rate": 6.546349455786926e-06,
|
225 |
+
"loss": 1.9595,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.03814064362336114,
|
230 |
+
"grad_norm": 0.22141566358189815,
|
231 |
+
"learning_rate": 5.952166568776062e-06,
|
232 |
+
"loss": 1.9736,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.03933253873659118,
|
237 |
+
"grad_norm": 0.20350762417692123,
|
238 |
+
"learning_rate": 5.37461709759165e-06,
|
239 |
+
"loss": 1.9491,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.04052443384982122,
|
244 |
+
"grad_norm": 0.18362905257668707,
|
245 |
+
"learning_rate": 4.81607431689475e-06,
|
246 |
+
"loss": 1.9877,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.041716328963051254,
|
251 |
+
"grad_norm": 0.18209143534810343,
|
252 |
+
"learning_rate": 4.278833398778306e-06,
|
253 |
+
"loss": 1.9711,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.04290822407628129,
|
258 |
+
"grad_norm": 0.1870043994840097,
|
259 |
+
"learning_rate": 3.7651019814126656e-06,
|
260 |
+
"loss": 1.9997,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.04410011918951132,
|
265 |
+
"grad_norm": 0.18563803773188292,
|
266 |
+
"learning_rate": 3.2769910973868314e-06,
|
267 |
+
"loss": 1.9611,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.04529201430274136,
|
272 |
+
"grad_norm": 0.1803488628139512,
|
273 |
+
"learning_rate": 2.8165064990227255e-06,
|
274 |
+
"loss": 1.9779,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.04648390941597139,
|
279 |
+
"grad_norm": 0.18280901111654344,
|
280 |
+
"learning_rate": 2.3855404163086558e-06,
|
281 |
+
"loss": 1.9753,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.04767580452920143,
|
286 |
+
"grad_norm": 0.18003744910780412,
|
287 |
+
"learning_rate": 1.9858637813204352e-06,
|
288 |
+
"loss": 1.9327,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.04886769964243146,
|
293 |
+
"grad_norm": 0.1751954707202772,
|
294 |
+
"learning_rate": 1.6191189510815942e-06,
|
295 |
+
"loss": 1.9578,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.050059594755661505,
|
300 |
+
"grad_norm": 0.17152593814056669,
|
301 |
+
"learning_rate": 1.286812958766106e-06,
|
302 |
+
"loss": 1.9176,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.05125148986889154,
|
307 |
+
"grad_norm": 0.16959349088820902,
|
308 |
+
"learning_rate": 9.903113209758098e-07,
|
309 |
+
"loss": 1.9505,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.052443384982121574,
|
314 |
+
"grad_norm": 0.16660058312767648,
|
315 |
+
"learning_rate": 7.308324265397837e-07,
|
316 |
+
"loss": 1.9683,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.05363528009535161,
|
321 |
+
"grad_norm": 0.17674746764132468,
|
322 |
+
"learning_rate": 5.094425298933136e-07,
|
323 |
+
"loss": 1.9643,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.054827175208581644,
|
328 |
+
"grad_norm": 0.16795370746145422,
|
329 |
+
"learning_rate": 3.2705136960970554e-07,
|
330 |
+
"loss": 1.9812,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.05601907032181168,
|
335 |
+
"grad_norm": 0.17056366756389463,
|
336 |
+
"learning_rate": 1.844084300893456e-07,
|
337 |
+
"loss": 1.959,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.057210965435041714,
|
342 |
+
"grad_norm": 0.16170892183194993,
|
343 |
+
"learning_rate": 8.209986176753947e-08,
|
344 |
+
"loss": 1.9624,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.058402860548271755,
|
349 |
+
"grad_norm": 0.17173937225335953,
|
350 |
+
"learning_rate": 2.054607249663665e-08,
|
351 |
+
"loss": 1.9578,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.05959475566150179,
|
356 |
+
"grad_norm": 0.17021831986392572,
|
357 |
+
"learning_rate": 0.0,
|
358 |
+
"loss": 1.9973,
|
359 |
+
"step": 50
|
360 |
+
}
|
361 |
+
],
|
362 |
+
"logging_steps": 1,
|
363 |
+
"max_steps": 50,
|
364 |
+
"num_input_tokens_seen": 0,
|
365 |
+
"num_train_epochs": 1,
|
366 |
+
"save_steps": 50,
|
367 |
+
"stateful_callbacks": {
|
368 |
+
"TrainerControl": {
|
369 |
+
"args": {
|
370 |
+
"should_epoch_stop": false,
|
371 |
+
"should_evaluate": false,
|
372 |
+
"should_log": false,
|
373 |
+
"should_save": true,
|
374 |
+
"should_training_stop": true
|
375 |
+
},
|
376 |
+
"attributes": {}
|
377 |
+
}
|
378 |
+
},
|
379 |
+
"total_flos": 106890730143744.0,
|
380 |
+
"train_batch_size": 58,
|
381 |
+
"trial_name": null,
|
382 |
+
"trial_params": null
|
383 |
+
}
|
checkpoint-50/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3125fe88bf614ded0206db12e56072f9ec4fb9fe65a19870757576de3b6144d0
|
3 |
+
size 7224
|
checkpoint-50/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"_name_or_path": "TinyLlama/TinyLlama_v1.1", "architectures": ["ProgressiveYocoLlamaForCausalLM"], "attention_bias": false, "attention_dropout": 0.0, "bos_token_id": 1, "crossDecoder_start_idx": 2, "eos_token_id": 2, "hidden_act": "silu", "hidden_size": 2048, "initializer_range": 0.02, "intermediate_size": 5632, "max_position_embeddings": 2048, "mlp_bias": false, "model_type": "progressive_yoco_llama", "num_attention_heads": 32, "num_hidden_layers": 22, "num_key_value_heads": 4, "pretraining_tp": 1, "rms_norm_eps": 1e-05, "rope_scaling": null, "rope_theta": 10000.0, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.45.2", "use_cache": false, "vocab_size": 32000}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"eos_token_id": 2,
|
4 |
+
"max_length": 2048,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.45.2"
|
7 |
+
}
|
runs/Nov29_08-38-26_creative-turing-2/events.out.tfevents.1732869726.creative-turing-2.2655059.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc212a41ff0a75fb942cf1b1cd272298b9cd0bf5b2d9f38aaad2abc3e89a573b
|
3 |
+
size 16158
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ content }}{% elif message['role'] == 'assistant' %}{{ content }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": false,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"padding_side": "right",
|
39 |
+
"sp_model_kwargs": {},
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "LlamaTokenizer",
|
42 |
+
"unk_token": "<unk>",
|
43 |
+
"use_default_system_prompt": false
|
44 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 0.05959475566150179,
|
3 |
+
"total_flos": 106890730143744.0,
|
4 |
+
"train_loss": 1.9756734085083008,
|
5 |
+
"train_runtime": 1598.4061,
|
6 |
+
"train_samples_per_second": 58.058,
|
7 |
+
"train_steps_per_second": 0.031
|
8 |
+
}
|
trainer_log.jsonl
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"current_steps": 1, "total_steps": 50, "loss": 2.1039, "lr": 2e-05, "epoch": 0.0011918951132300357, "percentage": 2.0, "elapsed_time": "0:00:35", "remaining_time": "0:28:50"}
|
2 |
+
{"current_steps": 2, "total_steps": 50, "loss": 2.1015, "lr": 1.9979453927503366e-05, "epoch": 0.0023837902264600714, "percentage": 4.0, "elapsed_time": "0:01:06", "remaining_time": "0:26:41"}
|
3 |
+
{"current_steps": 3, "total_steps": 50, "loss": 2.0311, "lr": 1.991790013823246e-05, "epoch": 0.003575685339690107, "percentage": 6.0, "elapsed_time": "0:01:38", "remaining_time": "0:25:40"}
|
4 |
+
{"current_steps": 4, "total_steps": 50, "loss": 2.0187, "lr": 1.9815591569910654e-05, "epoch": 0.004767580452920143, "percentage": 8.0, "elapsed_time": "0:02:10", "remaining_time": "0:24:55"}
|
5 |
+
{"current_steps": 5, "total_steps": 50, "loss": 2.0142, "lr": 1.9672948630390296e-05, "epoch": 0.0059594755661501785, "percentage": 10.0, "elapsed_time": "0:02:41", "remaining_time": "0:24:15"}
|
6 |
+
{"current_steps": 6, "total_steps": 50, "loss": 2.047, "lr": 1.949055747010669e-05, "epoch": 0.007151370679380214, "percentage": 12.0, "elapsed_time": "0:03:13", "remaining_time": "0:23:39"}
|
7 |
+
{"current_steps": 7, "total_steps": 50, "loss": 2.0114, "lr": 1.926916757346022e-05, "epoch": 0.00834326579261025, "percentage": 14.0, "elapsed_time": "0:03:45", "remaining_time": "0:23:03"}
|
8 |
+
{"current_steps": 8, "total_steps": 50, "loss": 1.979, "lr": 1.900968867902419e-05, "epoch": 0.009535160905840286, "percentage": 16.0, "elapsed_time": "0:04:17", "remaining_time": "0:22:29"}
|
9 |
+
{"current_steps": 9, "total_steps": 50, "loss": 1.9969, "lr": 1.8713187041233896e-05, "epoch": 0.010727056019070322, "percentage": 18.0, "elapsed_time": "0:04:48", "remaining_time": "0:21:55"}
|
10 |
+
{"current_steps": 10, "total_steps": 50, "loss": 1.9719, "lr": 1.8380881048918406e-05, "epoch": 0.011918951132300357, "percentage": 20.0, "elapsed_time": "0:05:20", "remaining_time": "0:21:22"}
|
11 |
+
{"current_steps": 11, "total_steps": 50, "loss": 1.9736, "lr": 1.8014136218679566e-05, "epoch": 0.013110846245530394, "percentage": 22.0, "elapsed_time": "0:05:52", "remaining_time": "0:20:48"}
|
12 |
+
{"current_steps": 12, "total_steps": 50, "loss": 1.9625, "lr": 1.7614459583691346e-05, "epoch": 0.014302741358760428, "percentage": 24.0, "elapsed_time": "0:06:23", "remaining_time": "0:20:15"}
|
13 |
+
{"current_steps": 13, "total_steps": 50, "loss": 1.9524, "lr": 1.7183493500977277e-05, "epoch": 0.015494636471990465, "percentage": 26.0, "elapsed_time": "0:06:55", "remaining_time": "0:19:43"}
|
14 |
+
{"current_steps": 14, "total_steps": 50, "loss": 1.9584, "lr": 1.672300890261317e-05, "epoch": 0.0166865315852205, "percentage": 28.0, "elapsed_time": "0:07:27", "remaining_time": "0:19:10"}
|
15 |
+
{"current_steps": 15, "total_steps": 50, "loss": 1.967, "lr": 1.6234898018587336e-05, "epoch": 0.017878426698450536, "percentage": 30.0, "elapsed_time": "0:07:59", "remaining_time": "0:18:38"}
|
16 |
+
{"current_steps": 16, "total_steps": 50, "loss": 1.9456, "lr": 1.5721166601221697e-05, "epoch": 0.01907032181168057, "percentage": 32.0, "elapsed_time": "0:08:31", "remaining_time": "0:18:05"}
|
17 |
+
{"current_steps": 17, "total_steps": 50, "loss": 1.9637, "lr": 1.5183925683105254e-05, "epoch": 0.02026221692491061, "percentage": 34.0, "elapsed_time": "0:09:02", "remaining_time": "0:17:33"}
|
18 |
+
{"current_steps": 18, "total_steps": 50, "loss": 1.9582, "lr": 1.4625382902408356e-05, "epoch": 0.021454112038140644, "percentage": 36.0, "elapsed_time": "0:09:34", "remaining_time": "0:17:01"}
|
19 |
+
{"current_steps": 19, "total_steps": 50, "loss": 1.9716, "lr": 1.4047833431223938e-05, "epoch": 0.02264600715137068, "percentage": 38.0, "elapsed_time": "0:10:06", "remaining_time": "0:16:29"}
|
20 |
+
{"current_steps": 20, "total_steps": 50, "loss": 1.9804, "lr": 1.3453650544213078e-05, "epoch": 0.023837902264600714, "percentage": 40.0, "elapsed_time": "0:10:38", "remaining_time": "0:15:57"}
|
21 |
+
{"current_steps": 21, "total_steps": 50, "loss": 1.943, "lr": 1.2845275866310325e-05, "epoch": 0.025029797377830752, "percentage": 42.0, "elapsed_time": "0:11:09", "remaining_time": "0:15:25"}
|
22 |
+
{"current_steps": 22, "total_steps": 50, "loss": 1.9517, "lr": 1.2225209339563144e-05, "epoch": 0.026221692491060787, "percentage": 44.0, "elapsed_time": "0:11:41", "remaining_time": "0:14:53"}
|
23 |
+
{"current_steps": 23, "total_steps": 50, "loss": 1.9676, "lr": 1.1595998950333794e-05, "epoch": 0.027413587604290822, "percentage": 46.0, "elapsed_time": "0:12:13", "remaining_time": "0:14:20"}
|
24 |
+
{"current_steps": 24, "total_steps": 50, "loss": 1.9585, "lr": 1.0960230259076819e-05, "epoch": 0.028605482717520857, "percentage": 48.0, "elapsed_time": "0:12:45", "remaining_time": "0:13:48"}
|
25 |
+
{"current_steps": 25, "total_steps": 50, "loss": 1.9658, "lr": 1.0320515775716556e-05, "epoch": 0.029797377830750895, "percentage": 50.0, "elapsed_time": "0:13:16", "remaining_time": "0:13:16"}
|
26 |
+
{"current_steps": 26, "total_steps": 50, "loss": 1.9677, "lr": 9.67948422428345e-06, "epoch": 0.03098927294398093, "percentage": 52.0, "elapsed_time": "0:13:48", "remaining_time": "0:12:44"}
|
27 |
+
{"current_steps": 27, "total_steps": 50, "loss": 1.971, "lr": 9.039769740923183e-06, "epoch": 0.03218116805721097, "percentage": 54.0, "elapsed_time": "0:14:20", "remaining_time": "0:12:13"}
|
28 |
+
{"current_steps": 28, "total_steps": 50, "loss": 1.9777, "lr": 8.404001049666211e-06, "epoch": 0.033373063170441, "percentage": 56.0, "elapsed_time": "0:14:52", "remaining_time": "0:11:41"}
|
29 |
+
{"current_steps": 29, "total_steps": 50, "loss": 1.9455, "lr": 7.774790660436857e-06, "epoch": 0.03456495828367104, "percentage": 58.0, "elapsed_time": "0:15:24", "remaining_time": "0:11:09"}
|
30 |
+
{"current_steps": 30, "total_steps": 50, "loss": 1.9219, "lr": 7.154724133689677e-06, "epoch": 0.03575685339690107, "percentage": 60.0, "elapsed_time": "0:15:55", "remaining_time": "0:10:37"}
|
31 |
+
{"current_steps": 31, "total_steps": 50, "loss": 1.9595, "lr": 6.546349455786926e-06, "epoch": 0.03694874851013111, "percentage": 62.0, "elapsed_time": "0:16:27", "remaining_time": "0:10:05"}
|
32 |
+
{"current_steps": 32, "total_steps": 50, "loss": 1.9736, "lr": 5.952166568776062e-06, "epoch": 0.03814064362336114, "percentage": 64.0, "elapsed_time": "0:16:59", "remaining_time": "0:09:33"}
|
33 |
+
{"current_steps": 33, "total_steps": 50, "loss": 1.9491, "lr": 5.37461709759165e-06, "epoch": 0.03933253873659118, "percentage": 66.0, "elapsed_time": "0:17:31", "remaining_time": "0:09:01"}
|
34 |
+
{"current_steps": 34, "total_steps": 50, "loss": 1.9877, "lr": 4.81607431689475e-06, "epoch": 0.04052443384982122, "percentage": 68.0, "elapsed_time": "0:18:02", "remaining_time": "0:08:29"}
|
35 |
+
{"current_steps": 35, "total_steps": 50, "loss": 1.9711, "lr": 4.278833398778306e-06, "epoch": 0.041716328963051254, "percentage": 70.0, "elapsed_time": "0:18:34", "remaining_time": "0:07:57"}
|
36 |
+
{"current_steps": 36, "total_steps": 50, "loss": 1.9997, "lr": 3.7651019814126656e-06, "epoch": 0.04290822407628129, "percentage": 72.0, "elapsed_time": "0:19:06", "remaining_time": "0:07:25"}
|
37 |
+
{"current_steps": 37, "total_steps": 50, "loss": 1.9611, "lr": 3.2769910973868314e-06, "epoch": 0.04410011918951132, "percentage": 74.0, "elapsed_time": "0:19:38", "remaining_time": "0:06:53"}
|
38 |
+
{"current_steps": 38, "total_steps": 50, "loss": 1.9779, "lr": 2.8165064990227255e-06, "epoch": 0.04529201430274136, "percentage": 76.0, "elapsed_time": "0:20:09", "remaining_time": "0:06:22"}
|
39 |
+
{"current_steps": 39, "total_steps": 50, "loss": 1.9753, "lr": 2.3855404163086558e-06, "epoch": 0.04648390941597139, "percentage": 78.0, "elapsed_time": "0:20:41", "remaining_time": "0:05:50"}
|
40 |
+
{"current_steps": 40, "total_steps": 50, "loss": 1.9327, "lr": 1.9858637813204352e-06, "epoch": 0.04767580452920143, "percentage": 80.0, "elapsed_time": "0:21:13", "remaining_time": "0:05:18"}
|
41 |
+
{"current_steps": 41, "total_steps": 50, "loss": 1.9578, "lr": 1.6191189510815942e-06, "epoch": 0.04886769964243146, "percentage": 82.0, "elapsed_time": "0:21:45", "remaining_time": "0:04:46"}
|
42 |
+
{"current_steps": 42, "total_steps": 50, "loss": 1.9176, "lr": 1.286812958766106e-06, "epoch": 0.050059594755661505, "percentage": 84.0, "elapsed_time": "0:22:16", "remaining_time": "0:04:14"}
|
43 |
+
{"current_steps": 43, "total_steps": 50, "loss": 1.9505, "lr": 9.903113209758098e-07, "epoch": 0.05125148986889154, "percentage": 86.0, "elapsed_time": "0:22:48", "remaining_time": "0:03:42"}
|
44 |
+
{"current_steps": 44, "total_steps": 50, "loss": 1.9683, "lr": 7.308324265397837e-07, "epoch": 0.052443384982121574, "percentage": 88.0, "elapsed_time": "0:23:20", "remaining_time": "0:03:10"}
|
45 |
+
{"current_steps": 45, "total_steps": 50, "loss": 1.9643, "lr": 5.094425298933136e-07, "epoch": 0.05363528009535161, "percentage": 90.0, "elapsed_time": "0:23:52", "remaining_time": "0:02:39"}
|
46 |
+
{"current_steps": 46, "total_steps": 50, "loss": 1.9812, "lr": 3.2705136960970554e-07, "epoch": 0.054827175208581644, "percentage": 92.0, "elapsed_time": "0:24:23", "remaining_time": "0:02:07"}
|
47 |
+
{"current_steps": 47, "total_steps": 50, "loss": 1.959, "lr": 1.844084300893456e-07, "epoch": 0.05601907032181168, "percentage": 94.0, "elapsed_time": "0:24:55", "remaining_time": "0:01:35"}
|
48 |
+
{"current_steps": 48, "total_steps": 50, "loss": 1.9624, "lr": 8.209986176753947e-08, "epoch": 0.057210965435041714, "percentage": 96.0, "elapsed_time": "0:25:27", "remaining_time": "0:01:03"}
|
49 |
+
{"current_steps": 49, "total_steps": 50, "loss": 1.9578, "lr": 2.054607249663665e-08, "epoch": 0.058402860548271755, "percentage": 98.0, "elapsed_time": "0:25:59", "remaining_time": "0:00:31"}
|
50 |
+
{"current_steps": 50, "total_steps": 50, "loss": 1.9973, "lr": 0.0, "epoch": 0.05959475566150179, "percentage": 100.0, "elapsed_time": "0:26:30", "remaining_time": "0:00:00"}
|
51 |
+
{"current_steps": 50, "total_steps": 50, "epoch": 0.05959475566150179, "percentage": 100.0, "elapsed_time": "0:26:38", "remaining_time": "0:00:00"}
|
trainer_state.json
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.05959475566150179,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 50,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0011918951132300357,
|
13 |
+
"grad_norm": 1.8323841453219294,
|
14 |
+
"learning_rate": 2e-05,
|
15 |
+
"loss": 2.1039,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0023837902264600714,
|
20 |
+
"grad_norm": 1.837920719204094,
|
21 |
+
"learning_rate": 1.9979453927503366e-05,
|
22 |
+
"loss": 2.1015,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.003575685339690107,
|
27 |
+
"grad_norm": 0.9173452411852326,
|
28 |
+
"learning_rate": 1.991790013823246e-05,
|
29 |
+
"loss": 2.0311,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.004767580452920143,
|
34 |
+
"grad_norm": 1.265146161082013,
|
35 |
+
"learning_rate": 1.9815591569910654e-05,
|
36 |
+
"loss": 2.0187,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.0059594755661501785,
|
41 |
+
"grad_norm": 1.0055189392399428,
|
42 |
+
"learning_rate": 1.9672948630390296e-05,
|
43 |
+
"loss": 2.0142,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.007151370679380214,
|
48 |
+
"grad_norm": 1.6116133535057522,
|
49 |
+
"learning_rate": 1.949055747010669e-05,
|
50 |
+
"loss": 2.047,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.00834326579261025,
|
55 |
+
"grad_norm": 1.0164569935770877,
|
56 |
+
"learning_rate": 1.926916757346022e-05,
|
57 |
+
"loss": 2.0114,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.009535160905840286,
|
62 |
+
"grad_norm": 0.8088386058968114,
|
63 |
+
"learning_rate": 1.900968867902419e-05,
|
64 |
+
"loss": 1.979,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.010727056019070322,
|
69 |
+
"grad_norm": 0.7238192809262382,
|
70 |
+
"learning_rate": 1.8713187041233896e-05,
|
71 |
+
"loss": 1.9969,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.011918951132300357,
|
76 |
+
"grad_norm": 0.5757195660436086,
|
77 |
+
"learning_rate": 1.8380881048918406e-05,
|
78 |
+
"loss": 1.9719,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.013110846245530394,
|
83 |
+
"grad_norm": 0.6136131835485481,
|
84 |
+
"learning_rate": 1.8014136218679566e-05,
|
85 |
+
"loss": 1.9736,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.014302741358760428,
|
90 |
+
"grad_norm": 0.6462531692000065,
|
91 |
+
"learning_rate": 1.7614459583691346e-05,
|
92 |
+
"loss": 1.9625,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.015494636471990465,
|
97 |
+
"grad_norm": 0.5160196738824037,
|
98 |
+
"learning_rate": 1.7183493500977277e-05,
|
99 |
+
"loss": 1.9524,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.0166865315852205,
|
104 |
+
"grad_norm": 0.48508132154258404,
|
105 |
+
"learning_rate": 1.672300890261317e-05,
|
106 |
+
"loss": 1.9584,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.017878426698450536,
|
111 |
+
"grad_norm": 0.5181005310771087,
|
112 |
+
"learning_rate": 1.6234898018587336e-05,
|
113 |
+
"loss": 1.967,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.01907032181168057,
|
118 |
+
"grad_norm": 0.4150834616993424,
|
119 |
+
"learning_rate": 1.5721166601221697e-05,
|
120 |
+
"loss": 1.9456,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.02026221692491061,
|
125 |
+
"grad_norm": 0.3379165251881648,
|
126 |
+
"learning_rate": 1.5183925683105254e-05,
|
127 |
+
"loss": 1.9637,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.021454112038140644,
|
132 |
+
"grad_norm": 0.3484808167274383,
|
133 |
+
"learning_rate": 1.4625382902408356e-05,
|
134 |
+
"loss": 1.9582,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.02264600715137068,
|
139 |
+
"grad_norm": 0.35126742165373703,
|
140 |
+
"learning_rate": 1.4047833431223938e-05,
|
141 |
+
"loss": 1.9716,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.023837902264600714,
|
146 |
+
"grad_norm": 0.2995298854480071,
|
147 |
+
"learning_rate": 1.3453650544213078e-05,
|
148 |
+
"loss": 1.9804,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.025029797377830752,
|
153 |
+
"grad_norm": 0.2812553357334388,
|
154 |
+
"learning_rate": 1.2845275866310325e-05,
|
155 |
+
"loss": 1.943,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.026221692491060787,
|
160 |
+
"grad_norm": 0.29784459167074245,
|
161 |
+
"learning_rate": 1.2225209339563144e-05,
|
162 |
+
"loss": 1.9517,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.027413587604290822,
|
167 |
+
"grad_norm": 0.28759384963571305,
|
168 |
+
"learning_rate": 1.1595998950333794e-05,
|
169 |
+
"loss": 1.9676,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.028605482717520857,
|
174 |
+
"grad_norm": 0.26154732718281476,
|
175 |
+
"learning_rate": 1.0960230259076819e-05,
|
176 |
+
"loss": 1.9585,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.029797377830750895,
|
181 |
+
"grad_norm": 0.2417322199141499,
|
182 |
+
"learning_rate": 1.0320515775716556e-05,
|
183 |
+
"loss": 1.9658,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.03098927294398093,
|
188 |
+
"grad_norm": 0.2647008811703257,
|
189 |
+
"learning_rate": 9.67948422428345e-06,
|
190 |
+
"loss": 1.9677,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.03218116805721097,
|
195 |
+
"grad_norm": 0.28156330533090274,
|
196 |
+
"learning_rate": 9.039769740923183e-06,
|
197 |
+
"loss": 1.971,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.033373063170441,
|
202 |
+
"grad_norm": 0.23451944041424483,
|
203 |
+
"learning_rate": 8.404001049666211e-06,
|
204 |
+
"loss": 1.9777,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.03456495828367104,
|
209 |
+
"grad_norm": 0.20425845712936946,
|
210 |
+
"learning_rate": 7.774790660436857e-06,
|
211 |
+
"loss": 1.9455,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.03575685339690107,
|
216 |
+
"grad_norm": 0.20003632743257047,
|
217 |
+
"learning_rate": 7.154724133689677e-06,
|
218 |
+
"loss": 1.9219,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.03694874851013111,
|
223 |
+
"grad_norm": 0.22248700808509062,
|
224 |
+
"learning_rate": 6.546349455786926e-06,
|
225 |
+
"loss": 1.9595,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.03814064362336114,
|
230 |
+
"grad_norm": 0.22141566358189815,
|
231 |
+
"learning_rate": 5.952166568776062e-06,
|
232 |
+
"loss": 1.9736,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.03933253873659118,
|
237 |
+
"grad_norm": 0.20350762417692123,
|
238 |
+
"learning_rate": 5.37461709759165e-06,
|
239 |
+
"loss": 1.9491,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.04052443384982122,
|
244 |
+
"grad_norm": 0.18362905257668707,
|
245 |
+
"learning_rate": 4.81607431689475e-06,
|
246 |
+
"loss": 1.9877,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.041716328963051254,
|
251 |
+
"grad_norm": 0.18209143534810343,
|
252 |
+
"learning_rate": 4.278833398778306e-06,
|
253 |
+
"loss": 1.9711,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.04290822407628129,
|
258 |
+
"grad_norm": 0.1870043994840097,
|
259 |
+
"learning_rate": 3.7651019814126656e-06,
|
260 |
+
"loss": 1.9997,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.04410011918951132,
|
265 |
+
"grad_norm": 0.18563803773188292,
|
266 |
+
"learning_rate": 3.2769910973868314e-06,
|
267 |
+
"loss": 1.9611,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.04529201430274136,
|
272 |
+
"grad_norm": 0.1803488628139512,
|
273 |
+
"learning_rate": 2.8165064990227255e-06,
|
274 |
+
"loss": 1.9779,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.04648390941597139,
|
279 |
+
"grad_norm": 0.18280901111654344,
|
280 |
+
"learning_rate": 2.3855404163086558e-06,
|
281 |
+
"loss": 1.9753,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.04767580452920143,
|
286 |
+
"grad_norm": 0.18003744910780412,
|
287 |
+
"learning_rate": 1.9858637813204352e-06,
|
288 |
+
"loss": 1.9327,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.04886769964243146,
|
293 |
+
"grad_norm": 0.1751954707202772,
|
294 |
+
"learning_rate": 1.6191189510815942e-06,
|
295 |
+
"loss": 1.9578,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.050059594755661505,
|
300 |
+
"grad_norm": 0.17152593814056669,
|
301 |
+
"learning_rate": 1.286812958766106e-06,
|
302 |
+
"loss": 1.9176,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.05125148986889154,
|
307 |
+
"grad_norm": 0.16959349088820902,
|
308 |
+
"learning_rate": 9.903113209758098e-07,
|
309 |
+
"loss": 1.9505,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.052443384982121574,
|
314 |
+
"grad_norm": 0.16660058312767648,
|
315 |
+
"learning_rate": 7.308324265397837e-07,
|
316 |
+
"loss": 1.9683,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.05363528009535161,
|
321 |
+
"grad_norm": 0.17674746764132468,
|
322 |
+
"learning_rate": 5.094425298933136e-07,
|
323 |
+
"loss": 1.9643,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.054827175208581644,
|
328 |
+
"grad_norm": 0.16795370746145422,
|
329 |
+
"learning_rate": 3.2705136960970554e-07,
|
330 |
+
"loss": 1.9812,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.05601907032181168,
|
335 |
+
"grad_norm": 0.17056366756389463,
|
336 |
+
"learning_rate": 1.844084300893456e-07,
|
337 |
+
"loss": 1.959,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.057210965435041714,
|
342 |
+
"grad_norm": 0.16170892183194993,
|
343 |
+
"learning_rate": 8.209986176753947e-08,
|
344 |
+
"loss": 1.9624,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.058402860548271755,
|
349 |
+
"grad_norm": 0.17173937225335953,
|
350 |
+
"learning_rate": 2.054607249663665e-08,
|
351 |
+
"loss": 1.9578,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.05959475566150179,
|
356 |
+
"grad_norm": 0.17021831986392572,
|
357 |
+
"learning_rate": 0.0,
|
358 |
+
"loss": 1.9973,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.05959475566150179,
|
363 |
+
"step": 50,
|
364 |
+
"total_flos": 106890730143744.0,
|
365 |
+
"train_loss": 1.9756734085083008,
|
366 |
+
"train_runtime": 1598.4061,
|
367 |
+
"train_samples_per_second": 58.058,
|
368 |
+
"train_steps_per_second": 0.031
|
369 |
+
}
|
370 |
+
],
|
371 |
+
"logging_steps": 1,
|
372 |
+
"max_steps": 50,
|
373 |
+
"num_input_tokens_seen": 0,
|
374 |
+
"num_train_epochs": 1,
|
375 |
+
"save_steps": 50,
|
376 |
+
"stateful_callbacks": {
|
377 |
+
"TrainerControl": {
|
378 |
+
"args": {
|
379 |
+
"should_epoch_stop": false,
|
380 |
+
"should_evaluate": false,
|
381 |
+
"should_log": false,
|
382 |
+
"should_save": true,
|
383 |
+
"should_training_stop": true
|
384 |
+
},
|
385 |
+
"attributes": {}
|
386 |
+
}
|
387 |
+
},
|
388 |
+
"total_flos": 106890730143744.0,
|
389 |
+
"train_batch_size": 58,
|
390 |
+
"trial_name": null,
|
391 |
+
"trial_params": null
|
392 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3125fe88bf614ded0206db12e56072f9ec4fb9fe65a19870757576de3b6144d0
|
3 |
+
size 7224
|
training_loss.png
ADDED