Add quick start code and citation to model card (#1)
Browse files- Add quick start code and citation to model card (9aa404281aa9d5e3dc472eda671afb58127097d3)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
-
library_name: transformers
|
4 |
base_model: openai/whisper-large-v3-turbo
|
5 |
-
|
6 |
-
|
7 |
-
- automatic-speech-recognition
|
8 |
-
- whisper
|
9 |
-
- hf-asr-leaderboard
|
10 |
pipeline_tag: automatic-speech-recognition
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
# Model Card for Lite-Whisper large-v3-turbo-acc
|
@@ -32,4 +32,59 @@ Following is the average word error rate (WER) evaluated on the [ESB datasets](h
|
|
32 |
| [lite-whisper-large-v3-turbo](https://huggingface.co/efficient-speech/lite-whisper-large-v3-turbo) | 12.6 | 374M | 172M |
|
33 |
| [lite-whisper-large-v3-turbo-fast](https://huggingface.co/efficient-speech/lite-whisper-large-v3-turbo-fast) | 20.1 | 313M | 172M |
|
34 |
| | | | |
|
35 |
-
| [whisper-medium](https://huggingface.co/openai/whisper-medium) | 14.8 | 306M | 457M |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
2 |
base_model: openai/whisper-large-v3-turbo
|
3 |
+
library_name: transformers
|
4 |
+
license: apache-2.0
|
|
|
|
|
|
|
5 |
pipeline_tag: automatic-speech-recognition
|
6 |
+
tags:
|
7 |
+
- audio
|
8 |
+
- automatic-speech-recognition
|
9 |
+
- whisper
|
10 |
+
- hf-asr-leaderboard
|
11 |
---
|
12 |
|
13 |
# Model Card for Lite-Whisper large-v3-turbo-acc
|
|
|
32 |
| [lite-whisper-large-v3-turbo](https://huggingface.co/efficient-speech/lite-whisper-large-v3-turbo) | 12.6 | 374M | 172M |
|
33 |
| [lite-whisper-large-v3-turbo-fast](https://huggingface.co/efficient-speech/lite-whisper-large-v3-turbo-fast) | 20.1 | 313M | 172M |
|
34 |
| | | | |
|
35 |
+
| [whisper-medium](https://huggingface.co/openai/whisper-medium) | 14.8 | 306M | 457M |
|
36 |
+
|
37 |
+
## Quick Start
|
38 |
+
|
39 |
+
The easiest way to run our model is to use our integration with HuggingFace Transformers library.
|
40 |
+
We provide model weights for the compressed version of OpenAI Whisper series [here](https://huggingface.co/efficient-speech).
|
41 |
+
|
42 |
+
```python
|
43 |
+
import librosa
|
44 |
+
import torch
|
45 |
+
from transformers import AutoProcessor, AutoModel
|
46 |
+
|
47 |
+
device = "cuda:0"
|
48 |
+
dtype = torch.float16
|
49 |
+
|
50 |
+
# load the compressed Whisper model
|
51 |
+
model = AutoModel.from_pretrained(
|
52 |
+
"efficient-speech/lite-whisper-large-v3-turbo",
|
53 |
+
trust_remote_code=True,
|
54 |
+
)
|
55 |
+
model.to(dtype).to(device)
|
56 |
+
|
57 |
+
# we use the same processor as the original model
|
58 |
+
processor = AutoProcessor.from_pretrained("openai/whisper-large-v3")
|
59 |
+
|
60 |
+
# set the path to your audio file
|
61 |
+
path = "path/to/audio.wav"
|
62 |
+
audio, _ = librosa.load(path, sr=16000)
|
63 |
+
|
64 |
+
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
65 |
+
input_features = input_features.to(dtype).to(device)
|
66 |
+
|
67 |
+
predicted_ids = model.generate(input_features)
|
68 |
+
transcription = processor.batch_decode(
|
69 |
+
predicted_ids,
|
70 |
+
skip_special_tokens=True
|
71 |
+
)[0]
|
72 |
+
|
73 |
+
print(transcription)
|
74 |
+
```
|
75 |
+
|
76 |
+
## Citation
|
77 |
+
|
78 |
+
If you use LiteASR in your research, please cite the following paper:
|
79 |
+
|
80 |
+
```
|
81 |
+
@misc{kamahori2025liteasrefficientautomaticspeech,
|
82 |
+
title={LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation},
|
83 |
+
author={Keisuke Kamahori and Jungo Kasai and Noriyuki Kojima and Baris Kasikci},
|
84 |
+
year={2025},
|
85 |
+
eprint={2502.20583},
|
86 |
+
archivePrefix={arXiv},
|
87 |
+
primaryClass={cs.LG},
|
88 |
+
url={https://arxiv.org/abs/2502.20583},
|
89 |
+
}
|
90 |
+
```
|