Upload 7 files
Browse files- training/train_1.py +192 -0
- training/train_2.py +232 -0
- training/train_3.py +232 -0
- training/train_4.py +232 -0
- training/train_5.py +232 -0
- training/train_6.py +232 -0
- training/train_7.py +232 -0
training/train_1.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset, DataLoader
|
4 |
+
from transformers import AlbertTokenizer, AlbertForSequenceClassification, AdamW, get_linear_schedule_with_warmup
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
from tqdm.auto import tqdm
|
9 |
+
import streamlit as st
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
# Constants
|
13 |
+
EPOCHS = 10
|
14 |
+
VAL_SPLIT = 0.1
|
15 |
+
VAL_EVERY_STEPS = 1000
|
16 |
+
BATCH_SIZE = 38
|
17 |
+
LEARNING_RATE = 5e-5
|
18 |
+
LOG_EVERY_STEP = True
|
19 |
+
SAVE_CHECKPOINTS = True
|
20 |
+
MAX_SEQ_LENGTH = 512
|
21 |
+
EARLY_STOPPING_PATIENCE = 3
|
22 |
+
MODEL_NAME = 'albert/albert-base-v2'
|
23 |
+
LEVEL = 1
|
24 |
+
OUTPUT_DIR = f'level{LEVEL}'
|
25 |
+
|
26 |
+
# Ensure output directory exists
|
27 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
28 |
+
|
29 |
+
# Load data
|
30 |
+
df = pd.read_csv(f'level_{LEVEL}.csv')
|
31 |
+
df.rename(columns={'response': 'text'}, inplace=True)
|
32 |
+
|
33 |
+
# Get unique labels and create mapping
|
34 |
+
labels = sorted(df[str(LEVEL)].unique())
|
35 |
+
label_to_index = {label: i for i, label in enumerate(labels)}
|
36 |
+
index_to_label = {i: label for label, i in label_to_index.items()}
|
37 |
+
num_labels = len(labels)
|
38 |
+
|
39 |
+
# Save label mapping
|
40 |
+
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
|
41 |
+
|
42 |
+
# Prepare data for training
|
43 |
+
df['label'] = df[str(LEVEL)].map(label_to_index)
|
44 |
+
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
|
45 |
+
|
46 |
+
# Tokenizer
|
47 |
+
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
|
48 |
+
|
49 |
+
class TaxonomyDataset(Dataset):
|
50 |
+
def __init__(self, dataframe, tokenizer, max_len):
|
51 |
+
self.data = dataframe
|
52 |
+
self.tokenizer = tokenizer
|
53 |
+
self.max_len = max_len
|
54 |
+
|
55 |
+
def __len__(self):
|
56 |
+
return len(self.data)
|
57 |
+
|
58 |
+
def __getitem__(self, index):
|
59 |
+
text = str(self.data.iloc[index].text)
|
60 |
+
label = int(self.data.iloc[index].label)
|
61 |
+
encoding = self.tokenizer.encode_plus(
|
62 |
+
text,
|
63 |
+
add_special_tokens=True,
|
64 |
+
max_length=self.max_len,
|
65 |
+
padding='max_length',
|
66 |
+
truncation=True,
|
67 |
+
return_attention_mask=True,
|
68 |
+
return_tensors='pt'
|
69 |
+
)
|
70 |
+
return {
|
71 |
+
'input_ids': encoding['input_ids'].flatten(),
|
72 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
73 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
74 |
+
}
|
75 |
+
|
76 |
+
# Create datasets and dataloaders
|
77 |
+
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH)
|
78 |
+
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH)
|
79 |
+
|
80 |
+
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
81 |
+
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
82 |
+
|
83 |
+
# Model
|
84 |
+
model = AlbertForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=num_labels)
|
85 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
86 |
+
model.to(device)
|
87 |
+
|
88 |
+
# Optimizer and scheduler
|
89 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
90 |
+
total_steps = len(train_dataloader) * EPOCHS
|
91 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
|
92 |
+
|
93 |
+
# Loss tracking
|
94 |
+
train_losses = []
|
95 |
+
val_losses = []
|
96 |
+
val_steps = []
|
97 |
+
best_val_loss = float('inf')
|
98 |
+
early_stopping_counter = 0
|
99 |
+
global_step = 0
|
100 |
+
|
101 |
+
# Streamlit setup
|
102 |
+
st.title(f'Level {LEVEL} Model Training')
|
103 |
+
progress_bar = st.progress(0)
|
104 |
+
status_text = st.empty()
|
105 |
+
train_loss_fig, train_loss_ax = plt.subplots()
|
106 |
+
val_loss_fig, val_loss_ax = plt.subplots()
|
107 |
+
train_loss_chart = st.pyplot(train_loss_fig)
|
108 |
+
val_loss_chart = st.pyplot(val_loss_fig)
|
109 |
+
|
110 |
+
def update_loss_charts():
|
111 |
+
train_loss_ax.clear()
|
112 |
+
train_loss_ax.plot(range(len(train_losses)), train_losses)
|
113 |
+
train_loss_ax.set_xlabel("Steps")
|
114 |
+
train_loss_ax.set_ylabel("Loss")
|
115 |
+
train_loss_ax.set_title("Training Loss")
|
116 |
+
train_loss_chart.pyplot(train_loss_fig)
|
117 |
+
|
118 |
+
val_loss_ax.clear()
|
119 |
+
val_loss_ax.plot(val_steps, val_losses)
|
120 |
+
val_loss_ax.set_xlabel("Steps")
|
121 |
+
val_loss_ax.set_ylabel("Loss")
|
122 |
+
val_loss_ax.set_title("Validation Loss")
|
123 |
+
val_loss_chart.pyplot(val_loss_fig)
|
124 |
+
|
125 |
+
# Training loop
|
126 |
+
for epoch in range(EPOCHS):
|
127 |
+
model.train()
|
128 |
+
total_train_loss = 0
|
129 |
+
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
|
130 |
+
optimizer.zero_grad()
|
131 |
+
input_ids = batch['input_ids'].to(device)
|
132 |
+
attention_mask = batch['attention_mask'].to(device)
|
133 |
+
labels = batch['labels'].to(device)
|
134 |
+
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
|
135 |
+
loss = outputs.loss
|
136 |
+
total_train_loss += loss.item()
|
137 |
+
loss.backward()
|
138 |
+
optimizer.step()
|
139 |
+
scheduler.step()
|
140 |
+
global_step += 1
|
141 |
+
|
142 |
+
train_losses.append(loss.item())
|
143 |
+
|
144 |
+
if LOG_EVERY_STEP:
|
145 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
|
146 |
+
update_loss_charts()
|
147 |
+
|
148 |
+
if global_step % VAL_EVERY_STEPS == 0:
|
149 |
+
model.eval()
|
150 |
+
total_val_loss = 0
|
151 |
+
with torch.no_grad():
|
152 |
+
for val_batch in val_dataloader:
|
153 |
+
input_ids = val_batch['input_ids'].to(device)
|
154 |
+
attention_mask = val_batch['attention_mask'].to(device)
|
155 |
+
labels = val_batch['labels'].to(device)
|
156 |
+
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
|
157 |
+
total_val_loss += outputs.loss.item()
|
158 |
+
|
159 |
+
avg_val_loss = total_val_loss / len(val_dataloader)
|
160 |
+
val_losses.append(avg_val_loss)
|
161 |
+
val_steps.append(global_step)
|
162 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
|
163 |
+
update_loss_charts()
|
164 |
+
|
165 |
+
if SAVE_CHECKPOINTS:
|
166 |
+
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
|
167 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
168 |
+
model.save_pretrained(checkpoint_dir)
|
169 |
+
tokenizer.save_pretrained(checkpoint_dir)
|
170 |
+
status_text.text(f"Checkpoint saved at step {global_step}")
|
171 |
+
|
172 |
+
if avg_val_loss < best_val_loss:
|
173 |
+
best_val_loss = avg_val_loss
|
174 |
+
early_stopping_counter = 0
|
175 |
+
else:
|
176 |
+
early_stopping_counter += 1
|
177 |
+
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
|
178 |
+
status_text.text(f"Early stopping triggered at step {global_step}")
|
179 |
+
progress_bar.progress(100)
|
180 |
+
# Save final model before stopping
|
181 |
+
model.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
182 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
183 |
+
exit() # Stop training
|
184 |
+
progress_bar.progress(int((global_step / total_steps) * 100))
|
185 |
+
|
186 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
187 |
+
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
|
188 |
+
|
189 |
+
# Save final model
|
190 |
+
model.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
191 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
192 |
+
status_text.success("Training complete!")
|
training/train_2.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset, DataLoader
|
4 |
+
from transformers import AlbertTokenizer, AlbertModel, AdamW, get_linear_schedule_with_warmup
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
from tqdm.auto import tqdm
|
9 |
+
import streamlit as st
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import torch.nn as nn
|
12 |
+
|
13 |
+
# Constants
|
14 |
+
EPOCHS = 10
|
15 |
+
VAL_SPLIT = 0.1
|
16 |
+
VAL_EVERY_STEPS = 1000
|
17 |
+
BATCH_SIZE = 38
|
18 |
+
LEARNING_RATE = 1e-5
|
19 |
+
LOG_EVERY_STEP = True
|
20 |
+
SAVE_CHECKPOINTS = True
|
21 |
+
MAX_SEQ_LENGTH = 512
|
22 |
+
EARLY_STOPPING_PATIENCE = 3
|
23 |
+
MODEL_NAME = 'albert/albert-base-v2'
|
24 |
+
LEVEL = 2
|
25 |
+
OUTPUT_DIR = f'level{LEVEL}'
|
26 |
+
|
27 |
+
# Ensure output directory exists
|
28 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
29 |
+
|
30 |
+
# Load data
|
31 |
+
df = pd.read_csv(f'level_{LEVEL}.csv')
|
32 |
+
df.rename(columns={'response': 'text'}, inplace=True)
|
33 |
+
|
34 |
+
# Get unique labels for current level and create mapping
|
35 |
+
labels = sorted(df[str(LEVEL)].unique())
|
36 |
+
label_to_index = {label: i for i, label in enumerate(labels)}
|
37 |
+
index_to_label = {i: label for label, i in label_to_index.items()}
|
38 |
+
num_labels = len(labels)
|
39 |
+
|
40 |
+
# Save label mapping for current level
|
41 |
+
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
|
42 |
+
|
43 |
+
# Load parent level ID mapping
|
44 |
+
parent_level = LEVEL - 1
|
45 |
+
parent_label_to_index = np.load(f'level{parent_level}/label_map.npy', allow_pickle=True).item()
|
46 |
+
num_parent_labels = len(parent_label_to_index)
|
47 |
+
|
48 |
+
# Prepare data for training
|
49 |
+
df['label'] = df[str(LEVEL)].map(label_to_index)
|
50 |
+
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
|
51 |
+
|
52 |
+
# Tokenizer
|
53 |
+
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
|
54 |
+
|
55 |
+
class TaxonomyDataset(Dataset):
|
56 |
+
def __init__(self, dataframe, tokenizer, max_len, parent_label_to_index):
|
57 |
+
self.data = dataframe
|
58 |
+
self.tokenizer = tokenizer
|
59 |
+
self.max_len = max_len
|
60 |
+
self.parent_label_to_index = parent_label_to_index
|
61 |
+
|
62 |
+
def __len__(self):
|
63 |
+
return len(self.data)
|
64 |
+
|
65 |
+
def __getitem__(self, index):
|
66 |
+
text = str(self.data.iloc[index].text)
|
67 |
+
label = int(self.data.iloc[index].label)
|
68 |
+
parent_id = int(self.data.iloc[index][str(LEVEL - 1)])
|
69 |
+
|
70 |
+
encoding = self.tokenizer.encode_plus(
|
71 |
+
text,
|
72 |
+
add_special_tokens=True,
|
73 |
+
max_length=self.max_len,
|
74 |
+
padding='max_length',
|
75 |
+
truncation=True,
|
76 |
+
return_attention_mask=True,
|
77 |
+
return_tensors='pt'
|
78 |
+
)
|
79 |
+
|
80 |
+
# One-hot encode parent ID
|
81 |
+
parent_one_hot = torch.zeros(len(self.parent_label_to_index))
|
82 |
+
if parent_id != 0:
|
83 |
+
parent_index = self.parent_label_to_index.get(parent_id)
|
84 |
+
if parent_index is not None:
|
85 |
+
parent_one_hot[parent_index] = 1
|
86 |
+
|
87 |
+
return {
|
88 |
+
'input_ids': encoding['input_ids'].flatten(),
|
89 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
90 |
+
'parent_ids': parent_one_hot,
|
91 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
92 |
+
}
|
93 |
+
|
94 |
+
# Create datasets and dataloaders
|
95 |
+
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
96 |
+
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
97 |
+
|
98 |
+
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
99 |
+
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
100 |
+
|
101 |
+
# Model Definition
|
102 |
+
class TaxonomyClassifier(nn.Module):
|
103 |
+
def __init__(self, base_model_name, num_parent_labels, num_labels):
|
104 |
+
super().__init__()
|
105 |
+
self.albert = AlbertModel.from_pretrained(base_model_name)
|
106 |
+
self.dropout = nn.Dropout(0.1)
|
107 |
+
self.classifier = nn.Linear(self.albert.config.hidden_size + num_parent_labels, num_labels)
|
108 |
+
|
109 |
+
def forward(self, input_ids, attention_mask, parent_ids):
|
110 |
+
outputs = self.albert(input_ids, attention_mask=attention_mask)
|
111 |
+
pooled_output = outputs.pooler_output
|
112 |
+
pooled_output = self.dropout(pooled_output)
|
113 |
+
combined_features = torch.cat((pooled_output, parent_ids), dim=1)
|
114 |
+
logits = self.classifier(combined_features)
|
115 |
+
return logits
|
116 |
+
|
117 |
+
# Model Initialization
|
118 |
+
model = TaxonomyClassifier(MODEL_NAME, num_parent_labels, num_labels)
|
119 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
120 |
+
model.to(device)
|
121 |
+
|
122 |
+
# Optimizer and scheduler
|
123 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
124 |
+
total_steps = len(train_dataloader) * EPOCHS
|
125 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
|
126 |
+
|
127 |
+
# Loss Function
|
128 |
+
loss_fn = nn.CrossEntropyLoss()
|
129 |
+
|
130 |
+
# Loss tracking
|
131 |
+
train_losses = []
|
132 |
+
val_losses = []
|
133 |
+
val_steps = []
|
134 |
+
best_val_loss = float('inf')
|
135 |
+
early_stopping_counter = 0
|
136 |
+
global_step = 0
|
137 |
+
|
138 |
+
# Streamlit setup
|
139 |
+
st.title(f'Level {LEVEL} Model Training')
|
140 |
+
progress_bar = st.progress(0)
|
141 |
+
status_text = st.empty()
|
142 |
+
train_loss_fig, train_loss_ax = plt.subplots()
|
143 |
+
val_loss_fig, val_loss_ax = plt.subplots()
|
144 |
+
train_loss_chart = st.pyplot(train_loss_fig)
|
145 |
+
val_loss_chart = st.pyplot(val_loss_fig)
|
146 |
+
|
147 |
+
def update_loss_charts():
|
148 |
+
train_loss_ax.clear()
|
149 |
+
train_loss_ax.plot(range(len(train_losses)), train_losses)
|
150 |
+
train_loss_ax.set_xlabel("Steps")
|
151 |
+
train_loss_ax.set_ylabel("Loss")
|
152 |
+
train_loss_ax.set_title("Training Loss")
|
153 |
+
train_loss_chart.pyplot(train_loss_fig)
|
154 |
+
|
155 |
+
val_loss_ax.clear()
|
156 |
+
val_loss_ax.plot(val_steps, val_losses)
|
157 |
+
val_loss_ax.set_xlabel("Steps")
|
158 |
+
val_loss_ax.set_ylabel("Loss")
|
159 |
+
val_loss_ax.set_title("Validation Loss")
|
160 |
+
val_loss_chart.pyplot(val_loss_fig)
|
161 |
+
|
162 |
+
# Training loop
|
163 |
+
for epoch in range(EPOCHS):
|
164 |
+
model.train()
|
165 |
+
total_train_loss = 0
|
166 |
+
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
|
167 |
+
optimizer.zero_grad()
|
168 |
+
input_ids = batch['input_ids'].to(device)
|
169 |
+
attention_mask = batch['attention_mask'].to(device)
|
170 |
+
parent_ids = batch['parent_ids'].to(device)
|
171 |
+
labels = batch['labels'].to(device)
|
172 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
173 |
+
loss = loss_fn(outputs, labels)
|
174 |
+
total_train_loss += loss.item()
|
175 |
+
loss.backward()
|
176 |
+
optimizer.step()
|
177 |
+
scheduler.step()
|
178 |
+
global_step += 1
|
179 |
+
|
180 |
+
train_losses.append(loss.item())
|
181 |
+
|
182 |
+
if LOG_EVERY_STEP:
|
183 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
|
184 |
+
update_loss_charts()
|
185 |
+
|
186 |
+
if global_step % VAL_EVERY_STEPS == 0:
|
187 |
+
model.eval()
|
188 |
+
total_val_loss = 0
|
189 |
+
with torch.no_grad():
|
190 |
+
for val_batch in val_dataloader:
|
191 |
+
input_ids = val_batch['input_ids'].to(device)
|
192 |
+
attention_mask = val_batch['attention_mask'].to(device)
|
193 |
+
parent_ids = val_batch['parent_ids'].to(device)
|
194 |
+
labels = val_batch['labels'].to(device)
|
195 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
196 |
+
loss = loss_fn(outputs, labels)
|
197 |
+
total_val_loss += loss.item()
|
198 |
+
|
199 |
+
avg_val_loss = total_val_loss / len(val_dataloader)
|
200 |
+
val_losses.append(avg_val_loss)
|
201 |
+
val_steps.append(global_step)
|
202 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
|
203 |
+
update_loss_charts()
|
204 |
+
|
205 |
+
if SAVE_CHECKPOINTS:
|
206 |
+
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
|
207 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
208 |
+
torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'model.safetensors'))
|
209 |
+
tokenizer.save_pretrained(checkpoint_dir)
|
210 |
+
status_text.text(f"Checkpoint saved at step {global_step}")
|
211 |
+
|
212 |
+
if avg_val_loss < best_val_loss:
|
213 |
+
best_val_loss = avg_val_loss
|
214 |
+
early_stopping_counter = 0
|
215 |
+
else:
|
216 |
+
early_stopping_counter += 1
|
217 |
+
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
|
218 |
+
status_text.text(f"Early stopping triggered at step {global_step}")
|
219 |
+
progress_bar.progress(100)
|
220 |
+
# Save final model before stopping
|
221 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
222 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
223 |
+
exit() # Stop training
|
224 |
+
progress_bar.progress(int((global_step / total_steps) * 100))
|
225 |
+
|
226 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
227 |
+
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
|
228 |
+
|
229 |
+
# Save final model
|
230 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
231 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
232 |
+
status_text.success("Training complete!")
|
training/train_3.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset, DataLoader
|
4 |
+
from transformers import AlbertTokenizer, AlbertModel, AdamW, get_linear_schedule_with_warmup
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
from tqdm.auto import tqdm
|
9 |
+
import streamlit as st
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import torch.nn as nn
|
12 |
+
|
13 |
+
# Constants
|
14 |
+
EPOCHS = 10
|
15 |
+
VAL_SPLIT = 0.1
|
16 |
+
VAL_EVERY_STEPS = 1000
|
17 |
+
BATCH_SIZE = 38
|
18 |
+
LEARNING_RATE = 5e-5
|
19 |
+
LOG_EVERY_STEP = True
|
20 |
+
SAVE_CHECKPOINTS = True
|
21 |
+
MAX_SEQ_LENGTH = 512
|
22 |
+
EARLY_STOPPING_PATIENCE = 3
|
23 |
+
MODEL_NAME = 'albert/albert-base-v2'
|
24 |
+
LEVEL = 3
|
25 |
+
OUTPUT_DIR = f'level{LEVEL}'
|
26 |
+
|
27 |
+
# Ensure output directory exists
|
28 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
29 |
+
|
30 |
+
# Load data
|
31 |
+
df = pd.read_csv(f'level_{LEVEL}.csv')
|
32 |
+
df.rename(columns={'response': 'text'}, inplace=True)
|
33 |
+
|
34 |
+
# Get unique labels for current level and create mapping
|
35 |
+
labels = sorted(df[str(LEVEL)].unique())
|
36 |
+
label_to_index = {label: i for i, label in enumerate(labels)}
|
37 |
+
index_to_label = {i: label for label, i in label_to_index.items()}
|
38 |
+
num_labels = len(labels)
|
39 |
+
|
40 |
+
# Save label mapping for current level
|
41 |
+
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
|
42 |
+
|
43 |
+
# Load parent level ID mapping
|
44 |
+
parent_level = LEVEL - 1
|
45 |
+
parent_label_to_index = np.load(f'level{parent_level}/label_map.npy', allow_pickle=True).item()
|
46 |
+
num_parent_labels = len(parent_label_to_index)
|
47 |
+
|
48 |
+
# Prepare data for training
|
49 |
+
df['label'] = df[str(LEVEL)].map(label_to_index)
|
50 |
+
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
|
51 |
+
|
52 |
+
# Tokenizer
|
53 |
+
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
|
54 |
+
|
55 |
+
class TaxonomyDataset(Dataset):
|
56 |
+
def __init__(self, dataframe, tokenizer, max_len, parent_label_to_index):
|
57 |
+
self.data = dataframe
|
58 |
+
self.tokenizer = tokenizer
|
59 |
+
self.max_len = max_len
|
60 |
+
self.parent_label_to_index = parent_label_to_index
|
61 |
+
|
62 |
+
def __len__(self):
|
63 |
+
return len(self.data)
|
64 |
+
|
65 |
+
def __getitem__(self, index):
|
66 |
+
text = str(self.data.iloc[index].text)
|
67 |
+
label = int(self.data.iloc[index].label)
|
68 |
+
parent_id = int(self.data.iloc[index][str(LEVEL - 1)])
|
69 |
+
|
70 |
+
encoding = self.tokenizer.encode_plus(
|
71 |
+
text,
|
72 |
+
add_special_tokens=True,
|
73 |
+
max_length=self.max_len,
|
74 |
+
padding='max_length',
|
75 |
+
truncation=True,
|
76 |
+
return_attention_mask=True,
|
77 |
+
return_tensors='pt'
|
78 |
+
)
|
79 |
+
|
80 |
+
# One-hot encode parent ID
|
81 |
+
parent_one_hot = torch.zeros(len(self.parent_label_to_index))
|
82 |
+
if parent_id != 0:
|
83 |
+
parent_index = self.parent_label_to_index.get(parent_id)
|
84 |
+
if parent_index is not None:
|
85 |
+
parent_one_hot[parent_index] = 1
|
86 |
+
|
87 |
+
return {
|
88 |
+
'input_ids': encoding['input_ids'].flatten(),
|
89 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
90 |
+
'parent_ids': parent_one_hot,
|
91 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
92 |
+
}
|
93 |
+
|
94 |
+
# Create datasets and dataloaders
|
95 |
+
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
96 |
+
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
97 |
+
|
98 |
+
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
99 |
+
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
100 |
+
|
101 |
+
# Model Definition
|
102 |
+
class TaxonomyClassifier(nn.Module):
|
103 |
+
def __init__(self, base_model_name, num_parent_labels, num_labels):
|
104 |
+
super().__init__()
|
105 |
+
self.albert = AlbertModel.from_pretrained(base_model_name)
|
106 |
+
self.dropout = nn.Dropout(0.1)
|
107 |
+
self.classifier = nn.Linear(self.albert.config.hidden_size + num_parent_labels, num_labels)
|
108 |
+
|
109 |
+
def forward(self, input_ids, attention_mask, parent_ids):
|
110 |
+
outputs = self.albert(input_ids, attention_mask=attention_mask)
|
111 |
+
pooled_output = outputs.pooler_output
|
112 |
+
pooled_output = self.dropout(pooled_output)
|
113 |
+
combined_features = torch.cat((pooled_output, parent_ids), dim=1)
|
114 |
+
logits = self.classifier(combined_features)
|
115 |
+
return logits
|
116 |
+
|
117 |
+
# Model Initialization
|
118 |
+
model = TaxonomyClassifier(MODEL_NAME, num_parent_labels, num_labels)
|
119 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
120 |
+
model.to(device)
|
121 |
+
|
122 |
+
# Optimizer and scheduler
|
123 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
124 |
+
total_steps = len(train_dataloader) * EPOCHS
|
125 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
|
126 |
+
|
127 |
+
# Loss Function
|
128 |
+
loss_fn = nn.CrossEntropyLoss()
|
129 |
+
|
130 |
+
# Loss tracking
|
131 |
+
train_losses = []
|
132 |
+
val_losses = []
|
133 |
+
val_steps = []
|
134 |
+
best_val_loss = float('inf')
|
135 |
+
early_stopping_counter = 0
|
136 |
+
global_step = 0
|
137 |
+
|
138 |
+
# Streamlit setup
|
139 |
+
st.title(f'Level {LEVEL} Model Training')
|
140 |
+
progress_bar = st.progress(0)
|
141 |
+
status_text = st.empty()
|
142 |
+
train_loss_fig, train_loss_ax = plt.subplots()
|
143 |
+
val_loss_fig, val_loss_ax = plt.subplots()
|
144 |
+
train_loss_chart = st.pyplot(train_loss_fig)
|
145 |
+
val_loss_chart = st.pyplot(val_loss_fig)
|
146 |
+
|
147 |
+
def update_loss_charts():
|
148 |
+
train_loss_ax.clear()
|
149 |
+
train_loss_ax.plot(range(len(train_losses)), train_losses)
|
150 |
+
train_loss_ax.set_xlabel("Steps")
|
151 |
+
train_loss_ax.set_ylabel("Loss")
|
152 |
+
train_loss_ax.set_title("Training Loss")
|
153 |
+
train_loss_chart.pyplot(train_loss_fig)
|
154 |
+
|
155 |
+
val_loss_ax.clear()
|
156 |
+
val_loss_ax.plot(val_steps, val_losses)
|
157 |
+
val_loss_ax.set_xlabel("Steps")
|
158 |
+
val_loss_ax.set_ylabel("Loss")
|
159 |
+
val_loss_ax.set_title("Validation Loss")
|
160 |
+
val_loss_chart.pyplot(val_loss_fig)
|
161 |
+
|
162 |
+
# Training loop
|
163 |
+
for epoch in range(EPOCHS):
|
164 |
+
model.train()
|
165 |
+
total_train_loss = 0
|
166 |
+
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
|
167 |
+
optimizer.zero_grad()
|
168 |
+
input_ids = batch['input_ids'].to(device)
|
169 |
+
attention_mask = batch['attention_mask'].to(device)
|
170 |
+
parent_ids = batch['parent_ids'].to(device)
|
171 |
+
labels = batch['labels'].to(device)
|
172 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
173 |
+
loss = loss_fn(outputs, labels)
|
174 |
+
total_train_loss += loss.item()
|
175 |
+
loss.backward()
|
176 |
+
optimizer.step()
|
177 |
+
scheduler.step()
|
178 |
+
global_step += 1
|
179 |
+
|
180 |
+
train_losses.append(loss.item())
|
181 |
+
|
182 |
+
if LOG_EVERY_STEP:
|
183 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
|
184 |
+
update_loss_charts()
|
185 |
+
|
186 |
+
if global_step % VAL_EVERY_STEPS == 0:
|
187 |
+
model.eval()
|
188 |
+
total_val_loss = 0
|
189 |
+
with torch.no_grad():
|
190 |
+
for val_batch in val_dataloader:
|
191 |
+
input_ids = val_batch['input_ids'].to(device)
|
192 |
+
attention_mask = val_batch['attention_mask'].to(device)
|
193 |
+
parent_ids = val_batch['parent_ids'].to(device)
|
194 |
+
labels = val_batch['labels'].to(device)
|
195 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
196 |
+
loss = loss_fn(outputs, labels)
|
197 |
+
total_val_loss += loss.item()
|
198 |
+
|
199 |
+
avg_val_loss = total_val_loss / len(val_dataloader)
|
200 |
+
val_losses.append(avg_val_loss)
|
201 |
+
val_steps.append(global_step)
|
202 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
|
203 |
+
update_loss_charts()
|
204 |
+
|
205 |
+
if SAVE_CHECKPOINTS:
|
206 |
+
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
|
207 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
208 |
+
torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'model.safetensors'))
|
209 |
+
tokenizer.save_pretrained(checkpoint_dir)
|
210 |
+
status_text.text(f"Checkpoint saved at step {global_step}")
|
211 |
+
|
212 |
+
if avg_val_loss < best_val_loss:
|
213 |
+
best_val_loss = avg_val_loss
|
214 |
+
early_stopping_counter = 0
|
215 |
+
else:
|
216 |
+
early_stopping_counter += 1
|
217 |
+
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
|
218 |
+
status_text.text(f"Early stopping triggered at step {global_step}")
|
219 |
+
progress_bar.progress(100)
|
220 |
+
# Save final model before stopping
|
221 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
222 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
223 |
+
exit() # Stop training
|
224 |
+
progress_bar.progress(int((global_step / total_steps) * 100))
|
225 |
+
|
226 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
227 |
+
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
|
228 |
+
|
229 |
+
# Save final model
|
230 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
231 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
232 |
+
status_text.success("Training complete!")
|
training/train_4.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset, DataLoader
|
4 |
+
from transformers import AlbertTokenizer, AlbertModel, AdamW, get_linear_schedule_with_warmup
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
from tqdm.auto import tqdm
|
9 |
+
import streamlit as st
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import torch.nn as nn
|
12 |
+
|
13 |
+
# Constants
|
14 |
+
EPOCHS = 10
|
15 |
+
VAL_SPLIT = 0.1
|
16 |
+
VAL_EVERY_STEPS = 1000
|
17 |
+
BATCH_SIZE = 38
|
18 |
+
LEARNING_RATE = 5e-5
|
19 |
+
LOG_EVERY_STEP = True
|
20 |
+
SAVE_CHECKPOINTS = True
|
21 |
+
MAX_SEQ_LENGTH = 512
|
22 |
+
EARLY_STOPPING_PATIENCE = 3
|
23 |
+
MODEL_NAME = 'albert/albert-base-v2'
|
24 |
+
LEVEL = 4
|
25 |
+
OUTPUT_DIR = f'level{LEVEL}'
|
26 |
+
|
27 |
+
# Ensure output directory exists
|
28 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
29 |
+
|
30 |
+
# Load data
|
31 |
+
df = pd.read_csv(f'level_{LEVEL}.csv')
|
32 |
+
df.rename(columns={'response': 'text'}, inplace=True)
|
33 |
+
|
34 |
+
# Get unique labels for current level and create mapping
|
35 |
+
labels = sorted(df[str(LEVEL)].unique())
|
36 |
+
label_to_index = {label: i for i, label in enumerate(labels)}
|
37 |
+
index_to_label = {i: label for label, i in label_to_index.items()}
|
38 |
+
num_labels = len(labels)
|
39 |
+
|
40 |
+
# Save label mapping for current level
|
41 |
+
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
|
42 |
+
|
43 |
+
# Load parent level ID mapping
|
44 |
+
parent_level = LEVEL - 1
|
45 |
+
parent_label_to_index = np.load(f'level{parent_level}/label_map.npy', allow_pickle=True).item()
|
46 |
+
num_parent_labels = len(parent_label_to_index)
|
47 |
+
|
48 |
+
# Prepare data for training
|
49 |
+
df['label'] = df[str(LEVEL)].map(label_to_index)
|
50 |
+
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
|
51 |
+
|
52 |
+
# Tokenizer
|
53 |
+
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
|
54 |
+
|
55 |
+
class TaxonomyDataset(Dataset):
|
56 |
+
def __init__(self, dataframe, tokenizer, max_len, parent_label_to_index):
|
57 |
+
self.data = dataframe
|
58 |
+
self.tokenizer = tokenizer
|
59 |
+
self.max_len = max_len
|
60 |
+
self.parent_label_to_index = parent_label_to_index
|
61 |
+
|
62 |
+
def __len__(self):
|
63 |
+
return len(self.data)
|
64 |
+
|
65 |
+
def __getitem__(self, index):
|
66 |
+
text = str(self.data.iloc[index].text)
|
67 |
+
label = int(self.data.iloc[index].label)
|
68 |
+
parent_id = int(self.data.iloc[index][str(LEVEL - 1)])
|
69 |
+
|
70 |
+
encoding = self.tokenizer.encode_plus(
|
71 |
+
text,
|
72 |
+
add_special_tokens=True,
|
73 |
+
max_length=self.max_len,
|
74 |
+
padding='max_length',
|
75 |
+
truncation=True,
|
76 |
+
return_attention_mask=True,
|
77 |
+
return_tensors='pt'
|
78 |
+
)
|
79 |
+
|
80 |
+
# One-hot encode parent ID
|
81 |
+
parent_one_hot = torch.zeros(len(self.parent_label_to_index))
|
82 |
+
if parent_id != 0:
|
83 |
+
parent_index = self.parent_label_to_index.get(parent_id)
|
84 |
+
if parent_index is not None:
|
85 |
+
parent_one_hot[parent_index] = 1
|
86 |
+
|
87 |
+
return {
|
88 |
+
'input_ids': encoding['input_ids'].flatten(),
|
89 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
90 |
+
'parent_ids': parent_one_hot,
|
91 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
92 |
+
}
|
93 |
+
|
94 |
+
# Create datasets and dataloaders
|
95 |
+
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
96 |
+
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
97 |
+
|
98 |
+
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
99 |
+
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
100 |
+
|
101 |
+
# Model Definition
|
102 |
+
class TaxonomyClassifier(nn.Module):
|
103 |
+
def __init__(self, base_model_name, num_parent_labels, num_labels):
|
104 |
+
super().__init__()
|
105 |
+
self.albert = AlbertModel.from_pretrained(base_model_name)
|
106 |
+
self.dropout = nn.Dropout(0.1)
|
107 |
+
self.classifier = nn.Linear(self.albert.config.hidden_size + num_parent_labels, num_labels)
|
108 |
+
|
109 |
+
def forward(self, input_ids, attention_mask, parent_ids):
|
110 |
+
outputs = self.albert(input_ids, attention_mask=attention_mask)
|
111 |
+
pooled_output = outputs.pooler_output
|
112 |
+
pooled_output = self.dropout(pooled_output)
|
113 |
+
combined_features = torch.cat((pooled_output, parent_ids), dim=1)
|
114 |
+
logits = self.classifier(combined_features)
|
115 |
+
return logits
|
116 |
+
|
117 |
+
# Model Initialization
|
118 |
+
model = TaxonomyClassifier(MODEL_NAME, num_parent_labels, num_labels)
|
119 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
120 |
+
model.to(device)
|
121 |
+
|
122 |
+
# Optimizer and scheduler
|
123 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
124 |
+
total_steps = len(train_dataloader) * EPOCHS
|
125 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
|
126 |
+
|
127 |
+
# Loss Function
|
128 |
+
loss_fn = nn.CrossEntropyLoss()
|
129 |
+
|
130 |
+
# Loss tracking
|
131 |
+
train_losses = []
|
132 |
+
val_losses = []
|
133 |
+
val_steps = []
|
134 |
+
best_val_loss = float('inf')
|
135 |
+
early_stopping_counter = 0
|
136 |
+
global_step = 0
|
137 |
+
|
138 |
+
# Streamlit setup
|
139 |
+
st.title(f'Level {LEVEL} Model Training')
|
140 |
+
progress_bar = st.progress(0)
|
141 |
+
status_text = st.empty()
|
142 |
+
train_loss_fig, train_loss_ax = plt.subplots()
|
143 |
+
val_loss_fig, val_loss_ax = plt.subplots()
|
144 |
+
train_loss_chart = st.pyplot(train_loss_fig)
|
145 |
+
val_loss_chart = st.pyplot(val_loss_fig)
|
146 |
+
|
147 |
+
def update_loss_charts():
|
148 |
+
train_loss_ax.clear()
|
149 |
+
train_loss_ax.plot(range(len(train_losses)), train_losses)
|
150 |
+
train_loss_ax.set_xlabel("Steps")
|
151 |
+
train_loss_ax.set_ylabel("Loss")
|
152 |
+
train_loss_ax.set_title("Training Loss")
|
153 |
+
train_loss_chart.pyplot(train_loss_fig)
|
154 |
+
|
155 |
+
val_loss_ax.clear()
|
156 |
+
val_loss_ax.plot(val_steps, val_losses)
|
157 |
+
val_loss_ax.set_xlabel("Steps")
|
158 |
+
val_loss_ax.set_ylabel("Loss")
|
159 |
+
val_loss_ax.set_title("Validation Loss")
|
160 |
+
val_loss_chart.pyplot(val_loss_fig)
|
161 |
+
|
162 |
+
# Training loop
|
163 |
+
for epoch in range(EPOCHS):
|
164 |
+
model.train()
|
165 |
+
total_train_loss = 0
|
166 |
+
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
|
167 |
+
optimizer.zero_grad()
|
168 |
+
input_ids = batch['input_ids'].to(device)
|
169 |
+
attention_mask = batch['attention_mask'].to(device)
|
170 |
+
parent_ids = batch['parent_ids'].to(device)
|
171 |
+
labels = batch['labels'].to(device)
|
172 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
173 |
+
loss = loss_fn(outputs, labels)
|
174 |
+
total_train_loss += loss.item()
|
175 |
+
loss.backward()
|
176 |
+
optimizer.step()
|
177 |
+
scheduler.step()
|
178 |
+
global_step += 1
|
179 |
+
|
180 |
+
train_losses.append(loss.item())
|
181 |
+
|
182 |
+
if LOG_EVERY_STEP:
|
183 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
|
184 |
+
update_loss_charts()
|
185 |
+
|
186 |
+
if global_step % VAL_EVERY_STEPS == 0:
|
187 |
+
model.eval()
|
188 |
+
total_val_loss = 0
|
189 |
+
with torch.no_grad():
|
190 |
+
for val_batch in val_dataloader:
|
191 |
+
input_ids = val_batch['input_ids'].to(device)
|
192 |
+
attention_mask = val_batch['attention_mask'].to(device)
|
193 |
+
parent_ids = val_batch['parent_ids'].to(device)
|
194 |
+
labels = val_batch['labels'].to(device)
|
195 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
196 |
+
loss = loss_fn(outputs, labels)
|
197 |
+
total_val_loss += loss.item()
|
198 |
+
|
199 |
+
avg_val_loss = total_val_loss / len(val_dataloader)
|
200 |
+
val_losses.append(avg_val_loss)
|
201 |
+
val_steps.append(global_step)
|
202 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
|
203 |
+
update_loss_charts()
|
204 |
+
|
205 |
+
if SAVE_CHECKPOINTS:
|
206 |
+
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
|
207 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
208 |
+
torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'model.safetensors'))
|
209 |
+
tokenizer.save_pretrained(checkpoint_dir)
|
210 |
+
status_text.text(f"Checkpoint saved at step {global_step}")
|
211 |
+
|
212 |
+
if avg_val_loss < best_val_loss:
|
213 |
+
best_val_loss = avg_val_loss
|
214 |
+
early_stopping_counter = 0
|
215 |
+
else:
|
216 |
+
early_stopping_counter += 1
|
217 |
+
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
|
218 |
+
status_text.text(f"Early stopping triggered at step {global_step}")
|
219 |
+
progress_bar.progress(100)
|
220 |
+
# Save final model before stopping
|
221 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
222 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
223 |
+
exit() # Stop training
|
224 |
+
progress_bar.progress(int((global_step / total_steps) * 100))
|
225 |
+
|
226 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
227 |
+
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
|
228 |
+
|
229 |
+
# Save final model
|
230 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
231 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
232 |
+
status_text.success("Training complete!")
|
training/train_5.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset, DataLoader
|
4 |
+
from transformers import AlbertTokenizer, AlbertModel, AdamW, get_linear_schedule_with_warmup
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
from tqdm.auto import tqdm
|
9 |
+
import streamlit as st
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import torch.nn as nn
|
12 |
+
|
13 |
+
# Constants
|
14 |
+
EPOCHS = 10
|
15 |
+
VAL_SPLIT = 0.1
|
16 |
+
VAL_EVERY_STEPS = 1000
|
17 |
+
BATCH_SIZE = 38
|
18 |
+
LEARNING_RATE = 5e-5
|
19 |
+
LOG_EVERY_STEP = True
|
20 |
+
SAVE_CHECKPOINTS = True
|
21 |
+
MAX_SEQ_LENGTH = 512
|
22 |
+
EARLY_STOPPING_PATIENCE = 3
|
23 |
+
MODEL_NAME = 'albert/albert-base-v2'
|
24 |
+
LEVEL = 5
|
25 |
+
OUTPUT_DIR = f'level{LEVEL}'
|
26 |
+
|
27 |
+
# Ensure output directory exists
|
28 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
29 |
+
|
30 |
+
# Load data
|
31 |
+
df = pd.read_csv(f'level_{LEVEL}.csv')
|
32 |
+
df.rename(columns={'response': 'text'}, inplace=True)
|
33 |
+
|
34 |
+
# Get unique labels for current level and create mapping
|
35 |
+
labels = sorted(df[str(LEVEL)].unique())
|
36 |
+
label_to_index = {label: i for i, label in enumerate(labels)}
|
37 |
+
index_to_label = {i: label for label, i in label_to_index.items()}
|
38 |
+
num_labels = len(labels)
|
39 |
+
|
40 |
+
# Save label mapping for current level
|
41 |
+
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
|
42 |
+
|
43 |
+
# Load parent level ID mapping
|
44 |
+
parent_level = LEVEL - 1
|
45 |
+
parent_label_to_index = np.load(f'level{parent_level}/label_map.npy', allow_pickle=True).item()
|
46 |
+
num_parent_labels = len(parent_label_to_index)
|
47 |
+
|
48 |
+
# Prepare data for training
|
49 |
+
df['label'] = df[str(LEVEL)].map(label_to_index)
|
50 |
+
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
|
51 |
+
|
52 |
+
# Tokenizer
|
53 |
+
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
|
54 |
+
|
55 |
+
class TaxonomyDataset(Dataset):
|
56 |
+
def __init__(self, dataframe, tokenizer, max_len, parent_label_to_index):
|
57 |
+
self.data = dataframe
|
58 |
+
self.tokenizer = tokenizer
|
59 |
+
self.max_len = max_len
|
60 |
+
self.parent_label_to_index = parent_label_to_index
|
61 |
+
|
62 |
+
def __len__(self):
|
63 |
+
return len(self.data)
|
64 |
+
|
65 |
+
def __getitem__(self, index):
|
66 |
+
text = str(self.data.iloc[index].text)
|
67 |
+
label = int(self.data.iloc[index].label)
|
68 |
+
parent_id = int(self.data.iloc[index][str(LEVEL - 1)])
|
69 |
+
|
70 |
+
encoding = self.tokenizer.encode_plus(
|
71 |
+
text,
|
72 |
+
add_special_tokens=True,
|
73 |
+
max_length=self.max_len,
|
74 |
+
padding='max_length',
|
75 |
+
truncation=True,
|
76 |
+
return_attention_mask=True,
|
77 |
+
return_tensors='pt'
|
78 |
+
)
|
79 |
+
|
80 |
+
# One-hot encode parent ID
|
81 |
+
parent_one_hot = torch.zeros(len(self.parent_label_to_index))
|
82 |
+
if parent_id != 0:
|
83 |
+
parent_index = self.parent_label_to_index.get(parent_id)
|
84 |
+
if parent_index is not None:
|
85 |
+
parent_one_hot[parent_index] = 1
|
86 |
+
|
87 |
+
return {
|
88 |
+
'input_ids': encoding['input_ids'].flatten(),
|
89 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
90 |
+
'parent_ids': parent_one_hot,
|
91 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
92 |
+
}
|
93 |
+
|
94 |
+
# Create datasets and dataloaders
|
95 |
+
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
96 |
+
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
97 |
+
|
98 |
+
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
99 |
+
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
100 |
+
|
101 |
+
# Model Definition
|
102 |
+
class TaxonomyClassifier(nn.Module):
|
103 |
+
def __init__(self, base_model_name, num_parent_labels, num_labels):
|
104 |
+
super().__init__()
|
105 |
+
self.albert = AlbertModel.from_pretrained(base_model_name)
|
106 |
+
self.dropout = nn.Dropout(0.1)
|
107 |
+
self.classifier = nn.Linear(self.albert.config.hidden_size + num_parent_labels, num_labels)
|
108 |
+
|
109 |
+
def forward(self, input_ids, attention_mask, parent_ids):
|
110 |
+
outputs = self.albert(input_ids, attention_mask=attention_mask)
|
111 |
+
pooled_output = outputs.pooler_output
|
112 |
+
pooled_output = self.dropout(pooled_output)
|
113 |
+
combined_features = torch.cat((pooled_output, parent_ids), dim=1)
|
114 |
+
logits = self.classifier(combined_features)
|
115 |
+
return logits
|
116 |
+
|
117 |
+
# Model Initialization
|
118 |
+
model = TaxonomyClassifier(MODEL_NAME, num_parent_labels, num_labels)
|
119 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
120 |
+
model.to(device)
|
121 |
+
|
122 |
+
# Optimizer and scheduler
|
123 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
124 |
+
total_steps = len(train_dataloader) * EPOCHS
|
125 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
|
126 |
+
|
127 |
+
# Loss Function
|
128 |
+
loss_fn = nn.CrossEntropyLoss()
|
129 |
+
|
130 |
+
# Loss tracking
|
131 |
+
train_losses = []
|
132 |
+
val_losses = []
|
133 |
+
val_steps = []
|
134 |
+
best_val_loss = float('inf')
|
135 |
+
early_stopping_counter = 0
|
136 |
+
global_step = 0
|
137 |
+
|
138 |
+
# Streamlit setup
|
139 |
+
st.title(f'Level {LEVEL} Model Training')
|
140 |
+
progress_bar = st.progress(0)
|
141 |
+
status_text = st.empty()
|
142 |
+
train_loss_fig, train_loss_ax = plt.subplots()
|
143 |
+
val_loss_fig, val_loss_ax = plt.subplots()
|
144 |
+
train_loss_chart = st.pyplot(train_loss_fig)
|
145 |
+
val_loss_chart = st.pyplot(val_loss_fig)
|
146 |
+
|
147 |
+
def update_loss_charts():
|
148 |
+
train_loss_ax.clear()
|
149 |
+
train_loss_ax.plot(range(len(train_losses)), train_losses)
|
150 |
+
train_loss_ax.set_xlabel("Steps")
|
151 |
+
train_loss_ax.set_ylabel("Loss")
|
152 |
+
train_loss_ax.set_title("Training Loss")
|
153 |
+
train_loss_chart.pyplot(train_loss_fig)
|
154 |
+
|
155 |
+
val_loss_ax.clear()
|
156 |
+
val_loss_ax.plot(val_steps, val_losses)
|
157 |
+
val_loss_ax.set_xlabel("Steps")
|
158 |
+
val_loss_ax.set_ylabel("Loss")
|
159 |
+
val_loss_ax.set_title("Validation Loss")
|
160 |
+
val_loss_chart.pyplot(val_loss_fig)
|
161 |
+
|
162 |
+
# Training loop
|
163 |
+
for epoch in range(EPOCHS):
|
164 |
+
model.train()
|
165 |
+
total_train_loss = 0
|
166 |
+
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
|
167 |
+
optimizer.zero_grad()
|
168 |
+
input_ids = batch['input_ids'].to(device)
|
169 |
+
attention_mask = batch['attention_mask'].to(device)
|
170 |
+
parent_ids = batch['parent_ids'].to(device)
|
171 |
+
labels = batch['labels'].to(device)
|
172 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
173 |
+
loss = loss_fn(outputs, labels)
|
174 |
+
total_train_loss += loss.item()
|
175 |
+
loss.backward()
|
176 |
+
optimizer.step()
|
177 |
+
scheduler.step()
|
178 |
+
global_step += 1
|
179 |
+
|
180 |
+
train_losses.append(loss.item())
|
181 |
+
|
182 |
+
if LOG_EVERY_STEP:
|
183 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
|
184 |
+
update_loss_charts()
|
185 |
+
|
186 |
+
if global_step % VAL_EVERY_STEPS == 0:
|
187 |
+
model.eval()
|
188 |
+
total_val_loss = 0
|
189 |
+
with torch.no_grad():
|
190 |
+
for val_batch in val_dataloader:
|
191 |
+
input_ids = val_batch['input_ids'].to(device)
|
192 |
+
attention_mask = val_batch['attention_mask'].to(device)
|
193 |
+
parent_ids = val_batch['parent_ids'].to(device)
|
194 |
+
labels = val_batch['labels'].to(device)
|
195 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
196 |
+
loss = loss_fn(outputs, labels)
|
197 |
+
total_val_loss += loss.item()
|
198 |
+
|
199 |
+
avg_val_loss = total_val_loss / len(val_dataloader)
|
200 |
+
val_losses.append(avg_val_loss)
|
201 |
+
val_steps.append(global_step)
|
202 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
|
203 |
+
update_loss_charts()
|
204 |
+
|
205 |
+
if SAVE_CHECKPOINTS:
|
206 |
+
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
|
207 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
208 |
+
torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'model.safetensors'))
|
209 |
+
tokenizer.save_pretrained(checkpoint_dir)
|
210 |
+
status_text.text(f"Checkpoint saved at step {global_step}")
|
211 |
+
|
212 |
+
if avg_val_loss < best_val_loss:
|
213 |
+
best_val_loss = avg_val_loss
|
214 |
+
early_stopping_counter = 0
|
215 |
+
else:
|
216 |
+
early_stopping_counter += 1
|
217 |
+
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
|
218 |
+
status_text.text(f"Early stopping triggered at step {global_step}")
|
219 |
+
progress_bar.progress(100)
|
220 |
+
# Save final model before stopping
|
221 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
222 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
223 |
+
exit() # Stop training
|
224 |
+
progress_bar.progress(int((global_step / total_steps) * 100))
|
225 |
+
|
226 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
227 |
+
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
|
228 |
+
|
229 |
+
# Save final model
|
230 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
231 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
232 |
+
status_text.success("Training complete!")
|
training/train_6.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset, DataLoader
|
4 |
+
from transformers import AlbertTokenizer, AlbertModel, AdamW, get_linear_schedule_with_warmup
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
from tqdm.auto import tqdm
|
9 |
+
import streamlit as st
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import torch.nn as nn
|
12 |
+
|
13 |
+
# Constants
|
14 |
+
EPOCHS = 10
|
15 |
+
VAL_SPLIT = 0.1
|
16 |
+
VAL_EVERY_STEPS = 1000
|
17 |
+
BATCH_SIZE = 38
|
18 |
+
LEARNING_RATE = 5e-5
|
19 |
+
LOG_EVERY_STEP = True
|
20 |
+
SAVE_CHECKPOINTS = True
|
21 |
+
MAX_SEQ_LENGTH = 512
|
22 |
+
EARLY_STOPPING_PATIENCE = 3
|
23 |
+
MODEL_NAME = 'albert/albert-base-v2'
|
24 |
+
LEVEL = 6
|
25 |
+
OUTPUT_DIR = f'level{LEVEL}'
|
26 |
+
|
27 |
+
# Ensure output directory exists
|
28 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
29 |
+
|
30 |
+
# Load data
|
31 |
+
df = pd.read_csv(f'level_{LEVEL}.csv')
|
32 |
+
df.rename(columns={'response': 'text'}, inplace=True)
|
33 |
+
|
34 |
+
# Get unique labels for current level and create mapping
|
35 |
+
labels = sorted(df[str(LEVEL)].unique())
|
36 |
+
label_to_index = {label: i for i, label in enumerate(labels)}
|
37 |
+
index_to_label = {i: label for label, i in label_to_index.items()}
|
38 |
+
num_labels = len(labels)
|
39 |
+
|
40 |
+
# Save label mapping for current level
|
41 |
+
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
|
42 |
+
|
43 |
+
# Load parent level ID mapping
|
44 |
+
parent_level = LEVEL - 1
|
45 |
+
parent_label_to_index = np.load(f'level{parent_level}/label_map.npy', allow_pickle=True).item()
|
46 |
+
num_parent_labels = len(parent_label_to_index)
|
47 |
+
|
48 |
+
# Prepare data for training
|
49 |
+
df['label'] = df[str(LEVEL)].map(label_to_index)
|
50 |
+
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
|
51 |
+
|
52 |
+
# Tokenizer
|
53 |
+
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
|
54 |
+
|
55 |
+
class TaxonomyDataset(Dataset):
|
56 |
+
def __init__(self, dataframe, tokenizer, max_len, parent_label_to_index):
|
57 |
+
self.data = dataframe
|
58 |
+
self.tokenizer = tokenizer
|
59 |
+
self.max_len = max_len
|
60 |
+
self.parent_label_to_index = parent_label_to_index
|
61 |
+
|
62 |
+
def __len__(self):
|
63 |
+
return len(self.data)
|
64 |
+
|
65 |
+
def __getitem__(self, index):
|
66 |
+
text = str(self.data.iloc[index].text)
|
67 |
+
label = int(self.data.iloc[index].label)
|
68 |
+
parent_id = int(self.data.iloc[index][str(LEVEL - 1)])
|
69 |
+
|
70 |
+
encoding = self.tokenizer.encode_plus(
|
71 |
+
text,
|
72 |
+
add_special_tokens=True,
|
73 |
+
max_length=self.max_len,
|
74 |
+
padding='max_length',
|
75 |
+
truncation=True,
|
76 |
+
return_attention_mask=True,
|
77 |
+
return_tensors='pt'
|
78 |
+
)
|
79 |
+
|
80 |
+
# One-hot encode parent ID
|
81 |
+
parent_one_hot = torch.zeros(len(self.parent_label_to_index))
|
82 |
+
if parent_id != 0:
|
83 |
+
parent_index = self.parent_label_to_index.get(parent_id)
|
84 |
+
if parent_index is not None:
|
85 |
+
parent_one_hot[parent_index] = 1
|
86 |
+
|
87 |
+
return {
|
88 |
+
'input_ids': encoding['input_ids'].flatten(),
|
89 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
90 |
+
'parent_ids': parent_one_hot,
|
91 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
92 |
+
}
|
93 |
+
|
94 |
+
# Create datasets and dataloaders
|
95 |
+
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
96 |
+
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
97 |
+
|
98 |
+
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
99 |
+
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
100 |
+
|
101 |
+
# Model Definition
|
102 |
+
class TaxonomyClassifier(nn.Module):
|
103 |
+
def __init__(self, base_model_name, num_parent_labels, num_labels):
|
104 |
+
super().__init__()
|
105 |
+
self.albert = AlbertModel.from_pretrained(base_model_name)
|
106 |
+
self.dropout = nn.Dropout(0.1)
|
107 |
+
self.classifier = nn.Linear(self.albert.config.hidden_size + num_parent_labels, num_labels)
|
108 |
+
|
109 |
+
def forward(self, input_ids, attention_mask, parent_ids):
|
110 |
+
outputs = self.albert(input_ids, attention_mask=attention_mask)
|
111 |
+
pooled_output = outputs.pooler_output
|
112 |
+
pooled_output = self.dropout(pooled_output)
|
113 |
+
combined_features = torch.cat((pooled_output, parent_ids), dim=1)
|
114 |
+
logits = self.classifier(combined_features)
|
115 |
+
return logits
|
116 |
+
|
117 |
+
# Model Initialization
|
118 |
+
model = TaxonomyClassifier(MODEL_NAME, num_parent_labels, num_labels)
|
119 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
120 |
+
model.to(device)
|
121 |
+
|
122 |
+
# Optimizer and scheduler
|
123 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
124 |
+
total_steps = len(train_dataloader) * EPOCHS
|
125 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
|
126 |
+
|
127 |
+
# Loss Function
|
128 |
+
loss_fn = nn.CrossEntropyLoss()
|
129 |
+
|
130 |
+
# Loss tracking
|
131 |
+
train_losses = []
|
132 |
+
val_losses = []
|
133 |
+
val_steps = []
|
134 |
+
best_val_loss = float('inf')
|
135 |
+
early_stopping_counter = 0
|
136 |
+
global_step = 0
|
137 |
+
|
138 |
+
# Streamlit setup
|
139 |
+
st.title(f'Level {LEVEL} Model Training')
|
140 |
+
progress_bar = st.progress(0)
|
141 |
+
status_text = st.empty()
|
142 |
+
train_loss_fig, train_loss_ax = plt.subplots()
|
143 |
+
val_loss_fig, val_loss_ax = plt.subplots()
|
144 |
+
train_loss_chart = st.pyplot(train_loss_fig)
|
145 |
+
val_loss_chart = st.pyplot(val_loss_fig)
|
146 |
+
|
147 |
+
def update_loss_charts():
|
148 |
+
train_loss_ax.clear()
|
149 |
+
train_loss_ax.plot(range(len(train_losses)), train_losses)
|
150 |
+
train_loss_ax.set_xlabel("Steps")
|
151 |
+
train_loss_ax.set_ylabel("Loss")
|
152 |
+
train_loss_ax.set_title("Training Loss")
|
153 |
+
train_loss_chart.pyplot(train_loss_fig)
|
154 |
+
|
155 |
+
val_loss_ax.clear()
|
156 |
+
val_loss_ax.plot(val_steps, val_losses)
|
157 |
+
val_loss_ax.set_xlabel("Steps")
|
158 |
+
val_loss_ax.set_ylabel("Loss")
|
159 |
+
val_loss_ax.set_title("Validation Loss")
|
160 |
+
val_loss_chart.pyplot(val_loss_fig)
|
161 |
+
|
162 |
+
# Training loop
|
163 |
+
for epoch in range(EPOCHS):
|
164 |
+
model.train()
|
165 |
+
total_train_loss = 0
|
166 |
+
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
|
167 |
+
optimizer.zero_grad()
|
168 |
+
input_ids = batch['input_ids'].to(device)
|
169 |
+
attention_mask = batch['attention_mask'].to(device)
|
170 |
+
parent_ids = batch['parent_ids'].to(device)
|
171 |
+
labels = batch['labels'].to(device)
|
172 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
173 |
+
loss = loss_fn(outputs, labels)
|
174 |
+
total_train_loss += loss.item()
|
175 |
+
loss.backward()
|
176 |
+
optimizer.step()
|
177 |
+
scheduler.step()
|
178 |
+
global_step += 1
|
179 |
+
|
180 |
+
train_losses.append(loss.item())
|
181 |
+
|
182 |
+
if LOG_EVERY_STEP:
|
183 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
|
184 |
+
update_loss_charts()
|
185 |
+
|
186 |
+
if global_step % VAL_EVERY_STEPS == 0:
|
187 |
+
model.eval()
|
188 |
+
total_val_loss = 0
|
189 |
+
with torch.no_grad():
|
190 |
+
for val_batch in val_dataloader:
|
191 |
+
input_ids = val_batch['input_ids'].to(device)
|
192 |
+
attention_mask = val_batch['attention_mask'].to(device)
|
193 |
+
parent_ids = val_batch['parent_ids'].to(device)
|
194 |
+
labels = val_batch['labels'].to(device)
|
195 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
196 |
+
loss = loss_fn(outputs, labels)
|
197 |
+
total_val_loss += loss.item()
|
198 |
+
|
199 |
+
avg_val_loss = total_val_loss / len(val_dataloader)
|
200 |
+
val_losses.append(avg_val_loss)
|
201 |
+
val_steps.append(global_step)
|
202 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
|
203 |
+
update_loss_charts()
|
204 |
+
|
205 |
+
if SAVE_CHECKPOINTS:
|
206 |
+
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
|
207 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
208 |
+
torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'model.safetensors'))
|
209 |
+
tokenizer.save_pretrained(checkpoint_dir)
|
210 |
+
status_text.text(f"Checkpoint saved at step {global_step}")
|
211 |
+
|
212 |
+
if avg_val_loss < best_val_loss:
|
213 |
+
best_val_loss = avg_val_loss
|
214 |
+
early_stopping_counter = 0
|
215 |
+
else:
|
216 |
+
early_stopping_counter += 1
|
217 |
+
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
|
218 |
+
status_text.text(f"Early stopping triggered at step {global_step}")
|
219 |
+
progress_bar.progress(100)
|
220 |
+
# Save final model before stopping
|
221 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
222 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
223 |
+
exit() # Stop training
|
224 |
+
progress_bar.progress(int((global_step / total_steps) * 100))
|
225 |
+
|
226 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
227 |
+
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
|
228 |
+
|
229 |
+
# Save final model
|
230 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
231 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
232 |
+
status_text.success("Training complete!")
|
training/train_7.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset, DataLoader
|
4 |
+
from transformers import AlbertTokenizer, AlbertModel, AdamW, get_linear_schedule_with_warmup
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
from tqdm.auto import tqdm
|
9 |
+
import streamlit as st
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import torch.nn as nn
|
12 |
+
|
13 |
+
# Constants
|
14 |
+
EPOCHS = 10
|
15 |
+
VAL_SPLIT = 0.1
|
16 |
+
VAL_EVERY_STEPS = 1000
|
17 |
+
BATCH_SIZE = 38
|
18 |
+
LEARNING_RATE = 5e-5
|
19 |
+
LOG_EVERY_STEP = True
|
20 |
+
SAVE_CHECKPOINTS = True
|
21 |
+
MAX_SEQ_LENGTH = 512
|
22 |
+
EARLY_STOPPING_PATIENCE = 3
|
23 |
+
MODEL_NAME = 'albert/albert-base-v2'
|
24 |
+
LEVEL = 7
|
25 |
+
OUTPUT_DIR = f'level{LEVEL}'
|
26 |
+
|
27 |
+
# Ensure output directory exists
|
28 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
29 |
+
|
30 |
+
# Load data
|
31 |
+
df = pd.read_csv(f'level_{LEVEL}.csv')
|
32 |
+
df.rename(columns={'response': 'text'}, inplace=True)
|
33 |
+
|
34 |
+
# Get unique labels for current level and create mapping
|
35 |
+
labels = sorted(df[str(LEVEL)].unique())
|
36 |
+
label_to_index = {label: i for i, label in enumerate(labels)}
|
37 |
+
index_to_label = {i: label for label, i in label_to_index.items()}
|
38 |
+
num_labels = len(labels)
|
39 |
+
|
40 |
+
# Save label mapping for current level
|
41 |
+
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
|
42 |
+
|
43 |
+
# Load parent level ID mapping
|
44 |
+
parent_level = LEVEL - 1
|
45 |
+
parent_label_to_index = np.load(f'level{parent_level}/label_map.npy', allow_pickle=True).item()
|
46 |
+
num_parent_labels = len(parent_label_to_index)
|
47 |
+
|
48 |
+
# Prepare data for training
|
49 |
+
df['label'] = df[str(LEVEL)].map(label_to_index)
|
50 |
+
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
|
51 |
+
|
52 |
+
# Tokenizer
|
53 |
+
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
|
54 |
+
|
55 |
+
class TaxonomyDataset(Dataset):
|
56 |
+
def __init__(self, dataframe, tokenizer, max_len, parent_label_to_index):
|
57 |
+
self.data = dataframe
|
58 |
+
self.tokenizer = tokenizer
|
59 |
+
self.max_len = max_len
|
60 |
+
self.parent_label_to_index = parent_label_to_index
|
61 |
+
|
62 |
+
def __len__(self):
|
63 |
+
return len(self.data)
|
64 |
+
|
65 |
+
def __getitem__(self, index):
|
66 |
+
text = str(self.data.iloc[index].text)
|
67 |
+
label = int(self.data.iloc[index].label)
|
68 |
+
parent_id = int(self.data.iloc[index][str(LEVEL - 1)])
|
69 |
+
|
70 |
+
encoding = self.tokenizer.encode_plus(
|
71 |
+
text,
|
72 |
+
add_special_tokens=True,
|
73 |
+
max_length=self.max_len,
|
74 |
+
padding='max_length',
|
75 |
+
truncation=True,
|
76 |
+
return_attention_mask=True,
|
77 |
+
return_tensors='pt'
|
78 |
+
)
|
79 |
+
|
80 |
+
# One-hot encode parent ID
|
81 |
+
parent_one_hot = torch.zeros(len(self.parent_label_to_index))
|
82 |
+
if parent_id != 0:
|
83 |
+
parent_index = self.parent_label_to_index.get(parent_id)
|
84 |
+
if parent_index is not None:
|
85 |
+
parent_one_hot[parent_index] = 1
|
86 |
+
|
87 |
+
return {
|
88 |
+
'input_ids': encoding['input_ids'].flatten(),
|
89 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
90 |
+
'parent_ids': parent_one_hot,
|
91 |
+
'labels': torch.tensor(label, dtype=torch.long)
|
92 |
+
}
|
93 |
+
|
94 |
+
# Create datasets and dataloaders
|
95 |
+
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
96 |
+
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH, parent_label_to_index)
|
97 |
+
|
98 |
+
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
|
99 |
+
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
|
100 |
+
|
101 |
+
# Model Definition
|
102 |
+
class TaxonomyClassifier(nn.Module):
|
103 |
+
def __init__(self, base_model_name, num_parent_labels, num_labels):
|
104 |
+
super().__init__()
|
105 |
+
self.albert = AlbertModel.from_pretrained(base_model_name)
|
106 |
+
self.dropout = nn.Dropout(0.1)
|
107 |
+
self.classifier = nn.Linear(self.albert.config.hidden_size + num_parent_labels, num_labels)
|
108 |
+
|
109 |
+
def forward(self, input_ids, attention_mask, parent_ids):
|
110 |
+
outputs = self.albert(input_ids, attention_mask=attention_mask)
|
111 |
+
pooled_output = outputs.pooler_output
|
112 |
+
pooled_output = self.dropout(pooled_output)
|
113 |
+
combined_features = torch.cat((pooled_output, parent_ids), dim=1)
|
114 |
+
logits = self.classifier(combined_features)
|
115 |
+
return logits
|
116 |
+
|
117 |
+
# Model Initialization
|
118 |
+
model = TaxonomyClassifier(MODEL_NAME, num_parent_labels, num_labels)
|
119 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
120 |
+
model.to(device)
|
121 |
+
|
122 |
+
# Optimizer and scheduler
|
123 |
+
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
|
124 |
+
total_steps = len(train_dataloader) * EPOCHS
|
125 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
|
126 |
+
|
127 |
+
# Loss Function
|
128 |
+
loss_fn = nn.CrossEntropyLoss()
|
129 |
+
|
130 |
+
# Loss tracking
|
131 |
+
train_losses = []
|
132 |
+
val_losses = []
|
133 |
+
val_steps = []
|
134 |
+
best_val_loss = float('inf')
|
135 |
+
early_stopping_counter = 0
|
136 |
+
global_step = 0
|
137 |
+
|
138 |
+
# Streamlit setup
|
139 |
+
st.title(f'Level {LEVEL} Model Training')
|
140 |
+
progress_bar = st.progress(0)
|
141 |
+
status_text = st.empty()
|
142 |
+
train_loss_fig, train_loss_ax = plt.subplots()
|
143 |
+
val_loss_fig, val_loss_ax = plt.subplots()
|
144 |
+
train_loss_chart = st.pyplot(train_loss_fig)
|
145 |
+
val_loss_chart = st.pyplot(val_loss_fig)
|
146 |
+
|
147 |
+
def update_loss_charts():
|
148 |
+
train_loss_ax.clear()
|
149 |
+
train_loss_ax.plot(range(len(train_losses)), train_losses)
|
150 |
+
train_loss_ax.set_xlabel("Steps")
|
151 |
+
train_loss_ax.set_ylabel("Loss")
|
152 |
+
train_loss_ax.set_title("Training Loss")
|
153 |
+
train_loss_chart.pyplot(train_loss_fig)
|
154 |
+
|
155 |
+
val_loss_ax.clear()
|
156 |
+
val_loss_ax.plot(val_steps, val_losses)
|
157 |
+
val_loss_ax.set_xlabel("Steps")
|
158 |
+
val_loss_ax.set_ylabel("Loss")
|
159 |
+
val_loss_ax.set_title("Validation Loss")
|
160 |
+
val_loss_chart.pyplot(val_loss_fig)
|
161 |
+
|
162 |
+
# Training loop
|
163 |
+
for epoch in range(EPOCHS):
|
164 |
+
model.train()
|
165 |
+
total_train_loss = 0
|
166 |
+
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
|
167 |
+
optimizer.zero_grad()
|
168 |
+
input_ids = batch['input_ids'].to(device)
|
169 |
+
attention_mask = batch['attention_mask'].to(device)
|
170 |
+
parent_ids = batch['parent_ids'].to(device)
|
171 |
+
labels = batch['labels'].to(device)
|
172 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
173 |
+
loss = loss_fn(outputs, labels)
|
174 |
+
total_train_loss += loss.item()
|
175 |
+
loss.backward()
|
176 |
+
optimizer.step()
|
177 |
+
scheduler.step()
|
178 |
+
global_step += 1
|
179 |
+
|
180 |
+
train_losses.append(loss.item())
|
181 |
+
|
182 |
+
if LOG_EVERY_STEP:
|
183 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
|
184 |
+
update_loss_charts()
|
185 |
+
|
186 |
+
if global_step % VAL_EVERY_STEPS == 0:
|
187 |
+
model.eval()
|
188 |
+
total_val_loss = 0
|
189 |
+
with torch.no_grad():
|
190 |
+
for val_batch in val_dataloader:
|
191 |
+
input_ids = val_batch['input_ids'].to(device)
|
192 |
+
attention_mask = val_batch['attention_mask'].to(device)
|
193 |
+
parent_ids = val_batch['parent_ids'].to(device)
|
194 |
+
labels = val_batch['labels'].to(device)
|
195 |
+
outputs = model(input_ids, attention_mask, parent_ids)
|
196 |
+
loss = loss_fn(outputs, labels)
|
197 |
+
total_val_loss += loss.item()
|
198 |
+
|
199 |
+
avg_val_loss = total_val_loss / len(val_dataloader)
|
200 |
+
val_losses.append(avg_val_loss)
|
201 |
+
val_steps.append(global_step)
|
202 |
+
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
|
203 |
+
update_loss_charts()
|
204 |
+
|
205 |
+
if SAVE_CHECKPOINTS:
|
206 |
+
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
|
207 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
208 |
+
torch.save(model.state_dict(), os.path.join(checkpoint_dir, 'model.safetensors'))
|
209 |
+
tokenizer.save_pretrained(checkpoint_dir)
|
210 |
+
status_text.text(f"Checkpoint saved at step {global_step}")
|
211 |
+
|
212 |
+
if avg_val_loss < best_val_loss:
|
213 |
+
best_val_loss = avg_val_loss
|
214 |
+
early_stopping_counter = 0
|
215 |
+
else:
|
216 |
+
early_stopping_counter += 1
|
217 |
+
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
|
218 |
+
status_text.text(f"Early stopping triggered at step {global_step}")
|
219 |
+
progress_bar.progress(100)
|
220 |
+
# Save final model before stopping
|
221 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
222 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
223 |
+
exit() # Stop training
|
224 |
+
progress_bar.progress(int((global_step / total_steps) * 100))
|
225 |
+
|
226 |
+
avg_train_loss = total_train_loss / len(train_dataloader)
|
227 |
+
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
|
228 |
+
|
229 |
+
# Save final model
|
230 |
+
torch.save(model.state_dict(), os.path.join(OUTPUT_DIR, 'model.safetensors'))
|
231 |
+
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
|
232 |
+
status_text.success("Training complete!")
|