Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,43 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: link-attribution
|
4 |
-
license_link: https://dejanmarketing.com/link-attribution/
|
5 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: link-attribution
|
4 |
+
license_link: https://dejanmarketing.com/link-attribution/
|
5 |
+
---
|
6 |
+
|
7 |
+
# Model Card: dejanseo/ecommerce-taxonomy-classifier
|
8 |
+
|
9 |
+
## Model Description
|
10 |
+
**dejanseo/ecommerce-taxonomy-classifier** is a multi-level text classification model designed to categorize ecommerce product descriptions (or similar text) into a hierarchical taxonomy. It uses a pretrained ALBERT (albert-base-v2) backbone and a custom classification head that leverages parent-level one-hot encodings for deeper levels in the taxonomy.
|
11 |
+
|
12 |
+
### Model Architecture
|
13 |
+
- **Base Model**: [ALBERT (albert-base-v2)](https://huggingface.co/albert-base-v2)
|
14 |
+
- **Classification Head**: A linear layer (or multi-layer head) on top of the ALBERT pooled output, concatenated with a parent-level one-hot vector representing the higher-level class.
|
15 |
+
|
16 |
+
### Intended Use
|
17 |
+
- **Primary Application**: Categorizing product descriptions in online retail or marketplace scenarios.
|
18 |
+
- **Potential Use Cases**:
|
19 |
+
- E-commerce product listing
|
20 |
+
- Product categorization for inventory management
|
21 |
+
- Enriching product feeds for better search/discovery
|
22 |
+
|
23 |
+
### How to Use
|
24 |
+
1. **Installation**: Install `transformers`, `torch`, etc.
|
25 |
+
2. **Pipeline Example**:
|
26 |
+
```python
|
27 |
+
from transformers import AlbertTokenizer, AlbertForSequenceClassification
|
28 |
+
import torch
|
29 |
+
|
30 |
+
# Load tokenizer and model from the Hugging Face Hub
|
31 |
+
tokenizer = AlbertTokenizer.from_pretrained("dejanseo/ecommerce-taxonomy-classifier")
|
32 |
+
model = AlbertForSequenceClassification.from_pretrained("dejanseo/ecommerce-taxonomy-classifier")
|
33 |
+
model.eval()
|
34 |
+
|
35 |
+
text = "Experience the magic of music with the Clavinova CLP-800 series digital pianos."
|
36 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
37 |
+
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model(**inputs)
|
40 |
+
logits = outputs.logits
|
41 |
+
predicted_class = torch.argmax(logits, dim=-1).item()
|
42 |
+
|
43 |
+
print("Predicted Class:", predicted_class)
|