File size: 3,167 Bytes
9cff97d eae7258 9cff97d eae7258 9cff97d e30c9cf 9cff97d e30c9cf 9cff97d e30c9cf 9cff97d e30c9cf 9cff97d e30c9cf 9cff97d e30c9cf 9cff97d e30c9cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
language: en
datasets:
- squad_v2
license: cc-by-4.0
---
# roberta-base distilled into tinyroberta
## Overview
**Language model:** roberta-base
**Language:** English
**Training data:** The PILE
**Infrastructure**: 4x Tesla v100
## Hyperparameters
```
batch_size = 96
n_epochs = 4
max_seq_len = 384
learning_rate = 1e-4
lr_schedule = LinearWarmup
warmup_proportion = 0.2
teacher = "deepset/roberta-base"
```
## Distillation
This model was distilled using the TinyBERT approach described in [this paper](https://arxiv.org/pdf/1909.10351.pdf) and implemented in [haystack](https://github.com/deepset-ai/haystack).
We have performed intermediate layer distillation with roberta-base as the teacher which resulted in [deepset/tinyroberta-6l-768d](https://huggingface.co/deepset/tinyroberta-6l-768d).
This model has not been distilled for any specific task. If you are interested in using distillation to improve its performance on a downstream task, you can take advantage of haystack's new [distillation functionality](https://haystack.deepset.ai/guides/model-distillation). You can also check out [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2) for a model that is already distilled on an extractive QA downstream task.
## About us
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
</div>
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
</div>
</div>
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).
Some of our other work:
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1)
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio)
## Get in touch and join the Haystack community
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai)
By the way: [we're hiring!](http://www.deepset.ai/jobs) |