File size: 8,434 Bytes
3fbabfa 7dd6183 3fbabfa 7dd6183 3fbabfa 7dd6183 3fbabfa 7dd6183 3fbabfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import json
import os
import datasets
class COCOBuilderConfig(datasets.BuilderConfig):
def __init__(self, name, splits, **kwargs):
super().__init__(name, **kwargs)
self.splits = splits
# Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{DBLP:journals/corr/LinMBHPRDZ14,
author = {Tsung{-}Yi Lin and
Michael Maire and
Serge J. Belongie and
Lubomir D. Bourdev and
Ross B. Girshick and
James Hays and
Pietro Perona and
Deva Ramanan and
Piotr Doll{'{a} }r and
C. Lawrence Zitnick},
title = {Microsoft {COCO:} Common Objects in Context},
journal = {CoRR},
volume = {abs/1405.0312},
year = {2014},
url = {http://arxiv.org/abs/1405.0312},
archivePrefix = {arXiv},
eprint = {1405.0312},
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
# Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
COCO is a large-scale object detection, segmentation, and captioning dataset.
"""
# Add a link to an official homepage for the dataset here
_HOMEPAGE = "http://cocodataset.org/#home"
# Add the licence for the dataset here if you can find it
_LICENSE = ""
# Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# This script is supposed to work with local (downloaded) COCO dataset.
_URLs = {}
# Name of the dataset usually match the script name with CamelCase instead of snake_case
class COCODataset(datasets.GeneratorBasedBuilder):
"""An example dataset script to work with the local (downloaded) COCO dataset"""
VERSION = datasets.Version("0.0.0")
BUILDER_CONFIG_CLASS = COCOBuilderConfig
BUILDER_CONFIGS = [
COCOBuilderConfig(name='2017', splits=['train', 'valid', 'test']),
]
DEFAULT_CONFIG_NAME = "2017"
def _info(self):
# This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
feature_dict = {
"image_id": datasets.Value("int64"),
"caption_id": datasets.Value("int64"),
"caption": datasets.Value("string"),
"height": datasets.Value("int64"),
"width": datasets.Value("int64"),
"file_name": datasets.Value("string"),
"coco_url": datasets.Value("string"),
"image_path": datasets.Value("string"),
}
features = datasets.Features(feature_dict)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
data_dir = self.config.data_dir
if not data_dir:
raise ValueError(
"This script is supposed to work with local (downloaded) COCO dataset. The argument `data_dir` in `load_dataset()` is required."
)
_DL_URLS = {
"train": os.path.join(data_dir, "train2017.zip"),
"val": os.path.join(data_dir, "val2017.zip"),
"test": os.path.join(data_dir, "test2017.zip"),
"annotations_trainval": os.path.join(data_dir, "annotations_trainval2017.zip"),
"image_info_test": os.path.join(data_dir, "image_info_test2017.zip"),
}
archive_path = dl_manager.download_and_extract(_DL_URLS)
splits = []
for split in self.config.splits:
if split == 'train':
dataset = datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"json_path": os.path.join(archive_path["annotations_trainval"], "annotations", "captions_train2017.json"),
"image_dir": os.path.join(archive_path["train"], "train2017"),
"split": "train",
}
)
elif split in ['val', 'valid', 'validation', 'dev']:
dataset = datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"json_path": os.path.join(archive_path["annotations_trainval"], "annotations", "captions_val2017.json"),
"image_dir": os.path.join(archive_path["val"], "val2017"),
"split": "valid",
},
)
elif split == 'test':
dataset = datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"json_path": os.path.join(archive_path["image_info_test"], "annotations", "image_info_test2017.json"),
"image_dir": os.path.join(archive_path["test"], "test2017"),
"split": "test",
},
)
else:
continue
splits.append(dataset)
return splits
def _generate_examples(
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
self, json_path, image_dir, split
):
""" Yields examples as (key, example) tuples. """
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
_features = ["image_id", "caption_id", "caption", "height", "width", "file_name", "coco_url", "image_path", "id"]
features = list(_features)
if split in "valid":
split = "val"
with open(json_path, 'r', encoding='UTF-8') as fp:
data = json.load(fp)
# list of dict
images = data["images"]
entries = images
# build a dict of image_id -> image info dict
d = {image["id"]: image for image in images}
# list of dict
if split in ["train", "val"]:
annotations = data["annotations"]
# build a dict of image_id ->
for annotation in annotations:
_id = annotation["id"]
image_info = d[annotation["image_id"]]
annotation.update(image_info)
annotation["id"] = _id
entries = annotations
for id_, entry in enumerate(entries):
entry = {k: v for k, v in entry.items() if k in features}
if split == "test":
entry["image_id"] = entry["id"]
entry["id"] = -1
entry["caption"] = -1
entry["caption_id"] = entry.pop("id")
entry["image_path"] = os.path.join(image_dir, entry["file_name"])
entry = {k: entry[k] for k in _features if k in entry}
yield str((entry["image_id"], entry["caption_id"])), entry
|