diff --git "a/openwordnet-to-categoricals.ipynb" "b/openwordnet-to-categoricals.ipynb" deleted file mode 100644--- "a/openwordnet-to-categoricals.ipynb" +++ /dev/null @@ -1,5105 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "view-in-github", - "colab_type": "text" - }, - "source": [ - "\"Open" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2FzBzmpBRkV3" - }, - "source": [ - "# Checking Embeddings of Terms (Noun/Verb/Adj/etc.) from Tagged Wordnet Gloss\n", - "\n", - "I discovered there's a more active fork of wordnet and bumped this analysis over to that." - ] - }, - { - "cell_type": "code", - "source": [ - "!pip install datasets" - ], - "metadata": { - "id": "K5C1kaWhXnJf", - "outputId": "74e1d307-5ca7-4501-ded9-64e83b1074db", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Collecting datasets\n", - " Downloading datasets-2.18.0-py3-none-any.whl (510 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m510.5/510.5 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets) (3.13.1)\n", - "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (1.25.2)\n", - "Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (14.0.2)\n", - "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets) (0.6)\n", - "Collecting dill<0.3.9,>=0.3.0 (from datasets)\n", - " Downloading dill-0.3.8-py3-none-any.whl (116 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m15.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n", - "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2.31.0)\n", - "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (4.66.2)\n", - "Collecting xxhash (from datasets)\n", - " Downloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m19.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting multiprocess (from datasets)\n", - " Downloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m16.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: fsspec[http]<=2024.2.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n", - "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.9.3)\n", - "Requirement already satisfied: huggingface-hub>=0.19.4 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.20.3)\n", - "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (24.0)\n", - "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (6.0.1)\n", - "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n", - "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.2.0)\n", - "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.1)\n", - "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.5)\n", - "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.4)\n", - "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n", - "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.19.4->datasets) (4.10.0)\n", - "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.3.2)\n", - "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.6)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2.0.7)\n", - "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2024.2.2)\n", - "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.4)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n", - "Installing collected packages: xxhash, dill, multiprocess, datasets\n", - "Successfully installed datasets-2.18.0 dill-0.3.8 multiprocess-0.70.16 xxhash-3.4.1\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "from datasets import load_dataset\n", - "\n", - "# Load the dataset\n", - "dataset = load_dataset(\"jon-tow/open-english-wordnet-synset-2023\")" - ], - "metadata": { - "id": "n12stD5MRnek", - "outputId": "6bb43252-23d5-4348-8e9b-e90873e2edfd", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 217, - "referenced_widgets": [ - "cd83d7589dd94022844be6625ddc6c70", - "5c6674e877b045aa9b8c93a949113b7e", - "0e87567035c34bbd836458b5399884bb", - "2d1063b0078840009dc811d03def1d3e", - "1bc984d5ee58432d9e2457a8b5ad8273", - "5412bcc57b9540189d856e2bd0d2c33c", - "defe66b6c703472c84faf01cd7040f2e", - "afe19112e372424086988965f0f34e14", - "19d29f06a0224528b958ff1343227823", - "55d46c4e9ad04fb9ad0e09ec974124de", - "6efc128c6a6049b0bdc45b0f025e20b1", - "6be48d20681440488a7106ce7ff8e262", - "5e92cc16fc09441a92e64ccef09f1ce7", - "3739c6c8081642f1b9ec2b6ff13d924a", - "9255806cdfa94d7e995a8c44a97f192d", - "ab5c63323f7346529c94f1fb69f724d3", - "a6db4efd7025410fa6e5d1532e234eec", - "11c8e1f50ec24b549c08328f41872fe7", - "b97f9428fd484c5c91fcc004d77a6470", - "3bf0e6cd62c643838cd4cbe0f56dc1bd", - "fa742c0c6a0c4a77a4628bd4168d5f96", - "ed1955550f164dce97ad7e4c37e202bb", - "9f04057c52d1494b92c305078faf9488", - "51d41e64a4f049e58be20303601b135d", - "ec6bd7afcc254bc88b6ea1034deabfc7", - "f3927d5cbee44700960812117b897ea6", - "152f8b11637749daaf645f4f25c929f1", - "3cb439a513e04220853ac6c1a7f384a4", - "fb0f5cbcc929459ba9f596a8621caa36", - "da6c5d35317648b8862bb6acf6206bf3", - "ff8eee65477f4a89bfca6a2c7229e9e0", - "83b8acabcda84ad692f0995cda06836a", - "e9f599718f694a0e83bbcaee1e7841e2" - ] - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:88: UserWarning: \n", - "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", - "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", - "You will be able to reuse this secret in all of your notebooks.\n", - "Please note that authentication is recommended but still optional to access public models or datasets.\n", - " warnings.warn(\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Downloading readme: 0%| | 0.00/2.27k [00:00\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
@id@ili@members@partOfSpeech@lexfileDefinitionSynsetRelationExampleILIDefinition@dc:source
0oewn-03159292-ai18097oewn-avenged-aaadj.pplfor which vengeance has been taken[]an avenged injuryNoneNone
1oewn-03159419-ai18098oewn-unavenged-aaadj.pplfor which vengeance has not been taken[]an unavenged murderNoneNone
2oewn-03159554-ai18099oewn-beaten-aaadj.pplformed or made thin by hammering[]beaten goldNoneNone
3oewn-03159654-ai18100oewn-calibrated-a oewn-graduated-aaadj.pplmarked with or divided into degrees[]a calibrated thermometerNoneNone
4oewn-03159804-ai18101oewn-cantering-aaadj.pplriding at a gait between a trot and a gallop[]the cantering soldiersNoneNone
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - " \n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "df" - } - }, - "metadata": {}, - "execution_count": 6 - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "Getting the @members into a reasonable format is about to take a bunch of cells and most of my patience for the day." - ], - "metadata": { - "id": "vJM-9DJE1Oaq" - } - }, - { - "cell_type": "code", - "source": [ - "df.shape" - ], - "metadata": { - "id": "L9zrnh6Urqco", - "outputId": "05d83662-f60d-4db7-cfdc-35065101d73e", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "(120135, 10)" - ] - }, - "metadata": {}, - "execution_count": 7 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df[['@members', '@partOfSpeech', '@lexfile']].head()" - ], - "metadata": { - "id": "z8c4VmJ6lYwa", - "outputId": "f564245c-3f02-42bf-9726-e2e737e27529", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 206 - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " @members @partOfSpeech @lexfile\n", - "0 oewn-avenged-a a adj.ppl\n", - "1 oewn-unavenged-a a adj.ppl\n", - "2 oewn-beaten-a a adj.ppl\n", - "3 oewn-calibrated-a oewn-graduated-a a adj.ppl\n", - "4 oewn-cantering-a a adj.ppl" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
@members@partOfSpeech@lexfile
0oewn-avenged-aaadj.ppl
1oewn-unavenged-aaadj.ppl
2oewn-beaten-aaadj.ppl
3oewn-calibrated-a oewn-graduated-aaadj.ppl
4oewn-cantering-aaadj.ppl
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "summary": "{\n \"name\": \"df[['@members', '@partOfSpeech', '@lexfile']]\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"@members\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"oewn-unavenged-a\",\n \"oewn-cantering-a\",\n \"oewn-beaten-a\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"@partOfSpeech\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"a\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"@lexfile\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"adj.ppl\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" - } - }, - "metadata": {}, - "execution_count": 8 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df = df[['@members', '@partOfSpeech', '@lexfile']]" - ], - "metadata": { - "id": "bobEK-ZsllHr" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "pattern = r'^(\\w+-\\w+-\\w+ *)*$'\n", - "\n", - "matches_pattern = df['@members'].str.match(pattern)\n", - "\n", - "all_match_pattern = matches_pattern.all()\n", - "all_match_pattern" - ], - "metadata": { - "id": "LqERc6pcFyao", - "outputId": "5ad91eea-b6ce-4b52-8e31-bb28eacd7f84", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "False" - ] - }, - "metadata": {}, - "execution_count": 10 - } - ] - }, - { - "cell_type": "code", - "source": [ - "members_not_matching_pattern = df[~matches_pattern]\n", - "members_not_matching_pattern" - ], - "metadata": { - "id": "jLvqtPRvGeqN", - "outputId": "6eca4f82-bf5f-4e7a-f0a3-16cc3573097a", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 424 - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " @members @partOfSpeech \\\n", - "13 oewn-hand-held-a oewn-handheld-a a \n", - "42 oewn-re-created-a a \n", - "49 oewn-spray-dried-a a \n", - "57 oewn-closed-captioned-a a \n", - "116 oewn-plane_figure-n oewn-two-dimensional_figure-n n \n", - "... ... ... \n", - "119954 oewn-real-time_processing-n oewn-real-time_ope... n \n", - "119976 oewn-reuptake-n oewn-re-uptake-n n \n", - "120005 oewn-slump-n oewn-slack-n oewn-drop-off-n oewn... n \n", - "120123 oewn-constant-volume_process-n oewn-isometric_... n \n", - "120127 oewn-anti-selection-n oewn-adverse_selection-n n \n", - "\n", - " @lexfile \n", - "13 adj.ppl \n", - "42 adj.ppl \n", - "49 adj.ppl \n", - "57 adj.ppl \n", - "116 noun.shape \n", - "... ... \n", - "119954 noun.process \n", - "119976 noun.process \n", - "120005 noun.process \n", - "120123 noun.process \n", - "120127 noun.process \n", - "\n", - "[6987 rows x 3 columns]" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
@members@partOfSpeech@lexfile
13oewn-hand-held-a oewn-handheld-aaadj.ppl
42oewn-re-created-aaadj.ppl
49oewn-spray-dried-aaadj.ppl
57oewn-closed-captioned-aaadj.ppl
116oewn-plane_figure-n oewn-two-dimensional_figure-nnnoun.shape
............
119954oewn-real-time_processing-n oewn-real-time_ope...nnoun.process
119976oewn-reuptake-n oewn-re-uptake-nnnoun.process
120005oewn-slump-n oewn-slack-n oewn-drop-off-n oewn...nnoun.process
120123oewn-constant-volume_process-n oewn-isometric_...nnoun.process
120127oewn-anti-selection-n oewn-adverse_selection-nnnoun.process
\n", - "

6987 rows × 3 columns

\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - " \n", - " \n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "members_not_matching_pattern", - "summary": "{\n \"name\": \"members_not_matching_pattern\",\n \"rows\": 6987,\n \"fields\": [\n {\n \"column\": \"@members\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 6837,\n \"samples\": [\n \"oewn-ichthyolatry-n oewn-fish-worship-n\",\n \"oewn-record-breaker-n oewn-record-holder-n\",\n \"oewn-green-white-a oewn-greenish-white-a\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"@partOfSpeech\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"n\",\n \"r\",\n \"s\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"@lexfile\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 43,\n \"samples\": [\n \"noun.possession\",\n \"noun.substance\",\n \"noun.location\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" - } - }, - "metadata": {}, - "execution_count": 11 - } - ] - }, - { - "cell_type": "code", - "source": [ - "pattern = r'^(\\w+-[\\w_\\-.]+-\\w+ *)*$' # This took a couple of iterations not represented\n", - "\n", - "matches_pattern = df['@members'].str.match(pattern)\n", - "\n", - "all_match_pattern = matches_pattern.all()\n", - "all_match_pattern" - ], - "metadata": { - "id": "m8Jo9CRfOANO", - "outputId": "ae4737e6-4294-4589-80ff-06329a9dd318", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "True" - ] - }, - "metadata": {}, - "execution_count": 12 - } - ] - }, - { - "cell_type": "code", - "source": [ - "# I found this problem later on\n", - "oddball = df['@members'].str.match('.*Gravenhage.*')\n", - "oddball_member = df[oddball]['@members']" - ], - "metadata": { - "id": "jsFdSy6qmhmG" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "oddball_member.iloc[0]" - ], - "metadata": { - "id": "AzVbuHXGnSkK", - "outputId": "0bbd7121-73f6-4b52-b16f-932eaa0c6692", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 36 - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "'oewn-The_Hague-n oewn--ap-s_Gravenhage-n oewn-Den_Haag-n'" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" - } - }, - "metadata": {}, - "execution_count": 14 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df = df.assign(members=df['@members'].str.split()).explode('members')" - ], - "metadata": { - "id": "J9uuPTGBqeVe" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "df.head()" - ], - "metadata": { - "id": "rNbH6RL4rRPG", - "outputId": "62ad47ea-f267-4b35-9677-e2f1fdc8703f", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 206 - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " @members @partOfSpeech @lexfile \\\n", - "0 oewn-avenged-a a adj.ppl \n", - "1 oewn-unavenged-a a adj.ppl \n", - "2 oewn-beaten-a a adj.ppl \n", - "3 oewn-calibrated-a oewn-graduated-a a adj.ppl \n", - "3 oewn-calibrated-a oewn-graduated-a a adj.ppl \n", - "\n", - " members \n", - "0 oewn-avenged-a \n", - "1 oewn-unavenged-a \n", - "2 oewn-beaten-a \n", - "3 oewn-calibrated-a \n", - "3 oewn-graduated-a " - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
@members@partOfSpeech@lexfilemembers
0oewn-avenged-aaadj.pploewn-avenged-a
1oewn-unavenged-aaadj.pploewn-unavenged-a
2oewn-beaten-aaadj.pploewn-beaten-a
3oewn-calibrated-a oewn-graduated-aaadj.pploewn-calibrated-a
3oewn-calibrated-a oewn-graduated-aaadj.pploewn-graduated-a
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "df" - } - }, - "metadata": {}, - "execution_count": 16 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df.shape" - ], - "metadata": { - "id": "TTdfz_HkrT4r", - "outputId": "5e5106eb-5a4c-49e8-c726-1dd2988b906c", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "(212071, 4)" - ] - }, - "metadata": {}, - "execution_count": 17 - } - ] - }, - { - "cell_type": "code", - "source": [ - "prefixes = df['members'].str.split('-', expand=True)[0]\n", - "prefix_freq = prefixes.value_counts().reset_index()\n", - "prefix_freq.columns = ['Prefix', 'Frequency']\n", - "\n", - "prefix_freq = prefix_freq.sort_values(by='Frequency', ascending=False)\n", - "\n", - "print(prefix_freq)" - ], - "metadata": { - "id": "A6zydv3gq4IZ", - "outputId": "35782af6-e6bb-46f2-e605-3e160a5a7f4c", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " Prefix Frequency\n", - "0 oewn 212071\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "to_remove = 'oewn-'\n", - "\n", - "df['members'] = df['members'].apply(lambda x: x.replace(to_remove, '') if x.startswith(to_remove) else x)" - ], - "metadata": { - "id": "orcYSJC-rL_d" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "prefixes = df['members'].str.split('-', expand=True)[0]\n", - "prefix_freq = prefixes.value_counts().reset_index()\n", - "prefix_freq.columns = ['Prefix', 'Frequency']\n", - "\n", - "prefix_freq = prefix_freq.sort_values(by='Frequency', ascending=False)\n", - "\n", - "print(prefix_freq)" - ], - "metadata": { - "id": "Zne276Jardwg", - "outputId": "f5f935f5-2623-486f-e7b2-49b7d1c67309", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " Prefix Frequency\n", - "0 self 252\n", - "1 high 102\n", - "2 well 98\n", - "3 one 85\n", - "4 cut 79\n", - "... ... ...\n", - "66494 CIA 1\n", - "66493 National_Institute_of_Standards_and_Technology 1\n", - "66492 Counterterrorist_Center 1\n", - "66491 Nonproliferation_Center 1\n", - "145809 grammatical_cohesion 1\n", - "\n", - "[145810 rows x 2 columns]\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "# Check for values starting with \"-\"\n", - "values_starting_with_dash = df[df['members'].str.startswith('-')]\n", - "\n", - "# Display the values starting with \"-\"\n", - "print(values_starting_with_dash)" - ], - "metadata": { - "id": "sk2wdpTRsKhT", - "outputId": "ae7316c8-02c9-4523-a1dc-2a8635f858bb", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " @members @partOfSpeech \\\n", - "81633 oewn-The_Hague-n oewn--ap-s_Gravenhage-n oewn-... n \n", - "106115 oewn-between-r oewn--ap-tween-r r \n", - "107858 oewn-between_decks-r oewn--ap-tween_decks-r r \n", - "114349 oewn-hood-n oewn--ap-hood-n n \n", - "\n", - " @lexfile members \n", - "81633 noun.location -ap-s_Gravenhage-n \n", - "106115 adv.all -ap-tween-r \n", - "107858 adv.all -ap-tween_decks-r \n", - "114349 noun.group -ap-hood-n \n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "df.head()" - ], - "metadata": { - "id": "I1ihnJ0RrmHy", - "outputId": "c171d8f4-9194-4d6c-a813-9b9c48faa53e", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 206 - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " @members @partOfSpeech @lexfile members\n", - "0 oewn-avenged-a a adj.ppl avenged-a\n", - "1 oewn-unavenged-a a adj.ppl unavenged-a\n", - "2 oewn-beaten-a a adj.ppl beaten-a\n", - "3 oewn-calibrated-a oewn-graduated-a a adj.ppl calibrated-a\n", - "3 oewn-calibrated-a oewn-graduated-a a adj.ppl graduated-a" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
@members@partOfSpeech@lexfilemembers
0oewn-avenged-aaadj.pplavenged-a
1oewn-unavenged-aaadj.pplunavenged-a
2oewn-beaten-aaadj.pplbeaten-a
3oewn-calibrated-a oewn-graduated-aaadj.pplcalibrated-a
3oewn-calibrated-a oewn-graduated-aaadj.pplgraduated-a
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "df" - } - }, - "metadata": {}, - "execution_count": 22 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df['members'] = df['members'].apply(lambda x: x[4:] if x.startswith('-ap-') else x)" - ], - "metadata": { - "id": "-6a_qlCUsvh4" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "df.drop(columns=['@members'], inplace=True)" - ], - "metadata": { - "id": "SXHfgstpsyJi" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "suffixes = df['members'].str.split('-').str[-1]\n", - "\n", - "# Count frequencies of suffixes\n", - "suffix_freq = suffixes.value_counts().reset_index()\n", - "suffix_freq.columns = ['Suffix', 'Frequency']\n", - "\n", - "# Sort by frequency\n", - "suffix_freq = suffix_freq.sort_values(by='Frequency', ascending=False)\n", - "\n", - "# Display suffixes ordered by frequency\n", - "print(suffix_freq[:40])" - ], - "metadata": { - "id": "m3qrn1yrtDHT", - "outputId": "b62de8cb-2b3d-4400-924b-7280f9fc702c", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " Suffix Frequency\n", - "0 n 151001\n", - "1 a 30150\n", - "2 v 25098\n", - "3 r 5595\n", - "4 1 146\n", - "5 2 69\n", - "6 s 12\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "filtered_df = df[df['members'].str.endswith(('1', '2', 's'))]\n", - "\n", - "print(filtered_df)" - ], - "metadata": { - "id": "zZf0TzcLxKhe", - "outputId": "04bc8527-2c57-4944-ec5e-ccf355070200", - "colab": { - "base_uri": "https://localhost:8080/" - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " @partOfSpeech @lexfile members\n", - "286 n noun.shape lead-n-1\n", - "301 n noun.shape bow-n-1\n", - "325 n noun.shape tower-n-1\n", - "782 s adj.all panelled-s\n", - "2303 s adj.all centre-s\n", - "... ... ... ...\n", - "117472 v verb.body tear-v-2\n", - "117596 v verb.body recover-v-1\n", - "118299 v verb.communication bow-v-1\n", - "118397 v verb.communication bow-v-1\n", - "118473 v verb.communication whoop-v-1\n", - "\n", - "[227 rows x 3 columns]\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "df['members'] = df['members'].apply(lambda x: x.replace('-ap-', \"'\")) # They use this for apostrophe for some reason, probably because it was stored as yaml" - ], - "metadata": { - "id": "LRCd0Zy_trIB" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# List of suffixes to remove\n", - "suffixes_to_remove = ['-n', '-a', '-v', '-r', '-1', '-2', '-s']\n", - "\n", - "# Function to remove suffixes\n", - "def remove_suffixes(member):\n", - " # Iterate until no suffixes are left\n", - " while any(member.endswith(suffix) for suffix in suffixes_to_remove):\n", - " for suffix in suffixes_to_remove:\n", - " if member.endswith(suffix):\n", - " member = member[:-len(suffix)] # Remove the suffix\n", - " return member\n", - "\n", - "# Apply the function to each member in the DataFrame\n", - "df['members'] = df['members'].apply(remove_suffixes)\n", - "\n", - "# Display the updated DataFrame\n", - "df.head()" - ], - "metadata": { - "id": "_dmFfqOwx3X4", - "outputId": "0dab9c69-740b-4561-91b0-73cfe68ea050", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 206 - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " @partOfSpeech @lexfile members\n", - "0 a adj.ppl avenged\n", - "1 a adj.ppl unavenged\n", - "2 a adj.ppl beaten\n", - "3 a adj.ppl calibrated\n", - "3 a adj.ppl graduated" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
@partOfSpeech@lexfilemembers
0aadj.pplavenged
1aadj.pplunavenged
2aadj.pplbeaten
3aadj.pplcalibrated
3aadj.pplgraduated
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "df" - } - }, - "metadata": {}, - "execution_count": 28 - } - ] - }, - { - "cell_type": "code", - "source": [ - "df['members'] = df['members'].apply(lambda x: \" \".join(x.split(\"_\")))" - ], - "metadata": { - "id": "1XbVExgWwaVo" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "df.head()" - ], - "metadata": { - "id": "e4u-FcGRwkbM", - "outputId": "309f9373-f7d2-426d-9b22-321bfdb8b22b", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 206 - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " @partOfSpeech @lexfile members\n", - "0 a adj.ppl avenged\n", - "1 a adj.ppl unavenged\n", - "2 a adj.ppl beaten\n", - "3 a adj.ppl calibrated\n", - "3 a adj.ppl graduated" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
@partOfSpeech@lexfilemembers
0aadj.pplavenged
1aadj.pplunavenged
2aadj.pplbeaten
3aadj.pplcalibrated
3aadj.pplgraduated
\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe", - "variable_name": "df" - } - }, - "metadata": {}, - "execution_count": 30 - } - ] - }, - { - "cell_type": "code", - "source": [ - "pd.get_dummies(df['@partOfSpeech'])" - ], - "metadata": { - "id": "3VmUnWJel5CK", - "outputId": "cf9f3468-1c51-4536-e2ba-5afa3a66866b", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 424 - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " a n r s v\n", - "0 1 0 0 0 0\n", - "1 1 0 0 0 0\n", - "2 1 0 0 0 0\n", - "3 1 0 0 0 0\n", - "3 1 0 0 0 0\n", - "... .. .. .. .. ..\n", - "120130 0 1 0 0 0\n", - "120131 0 1 0 0 0\n", - "120132 0 1 0 0 0\n", - "120133 0 1 0 0 0\n", - "120134 0 1 0 0 0\n", - "\n", - "[212071 rows x 5 columns]" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
anrsv
010000
110000
210000
310000
310000
..................
12013001000
12013101000
12013201000
12013301000
12013401000
\n", - "

212071 rows × 5 columns

\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe" - } - }, - "metadata": {}, - "execution_count": 31 - } - ] - }, - { - "cell_type": "code", - "source": [ - "pd.get_dummies(df['@lexfile'])" - ], - "metadata": { - "id": "-ypW9xpkmC1W", - "outputId": "999bd669-f9db-425a-a808-2b826a715088", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 444 - } - }, - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " adj.all adj.pert adj.ppl adv.all noun.Tops noun.act noun.animal \\\n", - "0 0 0 1 0 0 0 0 \n", - "1 0 0 1 0 0 0 0 \n", - "2 0 0 1 0 0 0 0 \n", - "3 0 0 1 0 0 0 0 \n", - "3 0 0 1 0 0 0 0 \n", - "... ... ... ... ... ... ... ... \n", - "120130 0 0 0 0 0 0 0 \n", - "120131 0 0 0 0 0 0 0 \n", - "120132 0 0 0 0 0 0 0 \n", - "120133 0 0 0 0 0 0 0 \n", - "120134 0 0 0 0 0 0 0 \n", - "\n", - " noun.artifact noun.attribute noun.body ... verb.consumption \\\n", - "0 0 0 0 ... 0 \n", - "1 0 0 0 ... 0 \n", - "2 0 0 0 ... 0 \n", - "3 0 0 0 ... 0 \n", - "3 0 0 0 ... 0 \n", - "... ... ... ... ... ... \n", - "120130 0 0 0 ... 0 \n", - "120131 0 0 0 ... 0 \n", - "120132 0 0 0 ... 0 \n", - "120133 0 0 0 ... 0 \n", - "120134 0 0 0 ... 0 \n", - "\n", - " verb.contact verb.creation verb.emotion verb.motion \\\n", - "0 0 0 0 0 \n", - "1 0 0 0 0 \n", - "2 0 0 0 0 \n", - "3 0 0 0 0 \n", - "3 0 0 0 0 \n", - "... ... ... ... ... \n", - "120130 0 0 0 0 \n", - "120131 0 0 0 0 \n", - "120132 0 0 0 0 \n", - "120133 0 0 0 0 \n", - "120134 0 0 0 0 \n", - "\n", - " verb.perception verb.possession verb.social verb.stative \\\n", - "0 0 0 0 0 \n", - "1 0 0 0 0 \n", - "2 0 0 0 0 \n", - "3 0 0 0 0 \n", - "3 0 0 0 0 \n", - "... ... ... ... ... \n", - "120130 0 0 0 0 \n", - "120131 0 0 0 0 \n", - "120132 0 0 0 0 \n", - "120133 0 0 0 0 \n", - "120134 0 0 0 0 \n", - "\n", - " verb.weather \n", - "0 0 \n", - "1 0 \n", - "2 0 \n", - "3 0 \n", - "3 0 \n", - "... ... \n", - "120130 0 \n", - "120131 0 \n", - "120132 0 \n", - "120133 0 \n", - "120134 0 \n", - "\n", - "[212071 rows x 45 columns]" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
adj.alladj.pertadj.ppladv.allnoun.Topsnoun.actnoun.animalnoun.artifactnoun.attributenoun.body...verb.consumptionverb.contactverb.creationverb.emotionverb.motionverb.perceptionverb.possessionverb.socialverb.stativeverb.weather
00010000000...0000000000
10010000000...0000000000
20010000000...0000000000
30010000000...0000000000
30010000000...0000000000
..................................................................
1201300000000000...0000000000
1201310000000000...0000000000
1201320000000000...0000000000
1201330000000000...0000000000
1201340000000000...0000000000
\n", - "

212071 rows × 45 columns

\n", - "
\n", - "
\n", - "\n", - "
\n", - " \n", - "\n", - " \n", - "\n", - " \n", - "
\n", - "\n", - "\n", - "
\n", - " \n", - "\n", - "\n", - "\n", - " \n", - "
\n", - "\n", - "
\n", - "
\n" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "dataframe" - } - }, - "metadata": {}, - "execution_count": 32 - } - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "tC1ZbcL9RkV6" - }, - "outputs": [], - "source": [ - "df_to_upload = df_pos = pd.concat([df['members'], pd.get_dummies(df['@partOfSpeech'], pd.get_dummies(df['@lexfile']))], axis=1)" - ] - }, - { - "cell_type": "code", - "source": [ - "df_to_upload = df_to_upload.groupby('members').max().reset_index()\n", - "df_to_upload.to_csv(\"openwordnet-categoricals.csv\")" - ], - "metadata": { - "id": "WLXGuobjAIQZ" - }, - "execution_count": null, - "outputs": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.18" - }, - "colab": { - "provenance": [], - "gpuType": "T4", - "name": "openwordnet-categorical-processor.ipynb", - "include_colab_link": true - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "cd83d7589dd94022844be6625ddc6c70": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5c6674e877b045aa9b8c93a949113b7e", - "IPY_MODEL_0e87567035c34bbd836458b5399884bb", - "IPY_MODEL_2d1063b0078840009dc811d03def1d3e" - ], - "layout": "IPY_MODEL_1bc984d5ee58432d9e2457a8b5ad8273" - } - }, - "5c6674e877b045aa9b8c93a949113b7e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5412bcc57b9540189d856e2bd0d2c33c", - "placeholder": "​", - "style": "IPY_MODEL_defe66b6c703472c84faf01cd7040f2e", - "value": "Downloading readme: 100%" - } - }, - "0e87567035c34bbd836458b5399884bb": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_afe19112e372424086988965f0f34e14", - "max": 2267, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_19d29f06a0224528b958ff1343227823", - "value": 2267 - } - }, - "2d1063b0078840009dc811d03def1d3e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_55d46c4e9ad04fb9ad0e09ec974124de", - "placeholder": "​", - "style": "IPY_MODEL_6efc128c6a6049b0bdc45b0f025e20b1", - "value": " 2.27k/2.27k [00:00<00:00, 62.7kB/s]" - } - }, - "1bc984d5ee58432d9e2457a8b5ad8273": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5412bcc57b9540189d856e2bd0d2c33c": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "defe66b6c703472c84faf01cd7040f2e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "afe19112e372424086988965f0f34e14": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "19d29f06a0224528b958ff1343227823": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "55d46c4e9ad04fb9ad0e09ec974124de": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6efc128c6a6049b0bdc45b0f025e20b1": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6be48d20681440488a7106ce7ff8e262": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5e92cc16fc09441a92e64ccef09f1ce7", - "IPY_MODEL_3739c6c8081642f1b9ec2b6ff13d924a", - "IPY_MODEL_9255806cdfa94d7e995a8c44a97f192d" - ], - "layout": "IPY_MODEL_ab5c63323f7346529c94f1fb69f724d3" - } - }, - "5e92cc16fc09441a92e64ccef09f1ce7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a6db4efd7025410fa6e5d1532e234eec", - "placeholder": "​", - "style": "IPY_MODEL_11c8e1f50ec24b549c08328f41872fe7", - "value": "Downloading data: 100%" - } - }, - "3739c6c8081642f1b9ec2b6ff13d924a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b97f9428fd484c5c91fcc004d77a6470", - "max": 49044105, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_3bf0e6cd62c643838cd4cbe0f56dc1bd", - "value": 49044105 - } - }, - "9255806cdfa94d7e995a8c44a97f192d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fa742c0c6a0c4a77a4628bd4168d5f96", - "placeholder": "​", - "style": "IPY_MODEL_ed1955550f164dce97ad7e4c37e202bb", - "value": " 49.0M/49.0M [00:02<00:00, 24.6MB/s]" - } - }, - "ab5c63323f7346529c94f1fb69f724d3": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a6db4efd7025410fa6e5d1532e234eec": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "11c8e1f50ec24b549c08328f41872fe7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "b97f9428fd484c5c91fcc004d77a6470": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3bf0e6cd62c643838cd4cbe0f56dc1bd": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fa742c0c6a0c4a77a4628bd4168d5f96": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ed1955550f164dce97ad7e4c37e202bb": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9f04057c52d1494b92c305078faf9488": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_51d41e64a4f049e58be20303601b135d", - "IPY_MODEL_ec6bd7afcc254bc88b6ea1034deabfc7", - "IPY_MODEL_f3927d5cbee44700960812117b897ea6" - ], - "layout": "IPY_MODEL_152f8b11637749daaf645f4f25c929f1" - } - }, - "51d41e64a4f049e58be20303601b135d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_3cb439a513e04220853ac6c1a7f384a4", - "placeholder": "​", - "style": "IPY_MODEL_fb0f5cbcc929459ba9f596a8621caa36", - "value": "Generating train split: " - } - }, - "ec6bd7afcc254bc88b6ea1034deabfc7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_da6c5d35317648b8862bb6acf6206bf3", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_ff8eee65477f4a89bfca6a2c7229e9e0", - "value": 1 - } - }, - "f3927d5cbee44700960812117b897ea6": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_83b8acabcda84ad692f0995cda06836a", - "placeholder": "​", - "style": "IPY_MODEL_e9f599718f694a0e83bbcaee1e7841e2", - "value": " 120135/0 [00:01<00:00, 82372.92 examples/s]" - } - }, - "152f8b11637749daaf645f4f25c929f1": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3cb439a513e04220853ac6c1a7f384a4": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "fb0f5cbcc929459ba9f596a8621caa36": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "da6c5d35317648b8862bb6acf6206bf3": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "20px" - } - }, - "ff8eee65477f4a89bfca6a2c7229e9e0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "83b8acabcda84ad692f0995cda06836a": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e9f599718f694a0e83bbcaee1e7841e2": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - } - } - }, - "accelerator": "GPU" - }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file