diff --git "a/openwordnet-to-categoricals.ipynb" "b/openwordnet-to-categoricals.ipynb"
deleted file mode 100644--- "a/openwordnet-to-categoricals.ipynb"
+++ /dev/null
@@ -1,5105 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "view-in-github",
- "colab_type": "text"
- },
- "source": [
- "
"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "2FzBzmpBRkV3"
- },
- "source": [
- "# Checking Embeddings of Terms (Noun/Verb/Adj/etc.) from Tagged Wordnet Gloss\n",
- "\n",
- "I discovered there's a more active fork of wordnet and bumped this analysis over to that."
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "!pip install datasets"
- ],
- "metadata": {
- "id": "K5C1kaWhXnJf",
- "outputId": "74e1d307-5ca7-4501-ded9-64e83b1074db",
- "colab": {
- "base_uri": "https://localhost:8080/"
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Collecting datasets\n",
- " Downloading datasets-2.18.0-py3-none-any.whl (510 kB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m510.5/510.5 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets) (3.13.1)\n",
- "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (1.25.2)\n",
- "Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (14.0.2)\n",
- "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets) (0.6)\n",
- "Collecting dill<0.3.9,>=0.3.0 (from datasets)\n",
- " Downloading dill-0.3.8-py3-none-any.whl (116 kB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m15.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (1.5.3)\n",
- "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2.31.0)\n",
- "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (4.66.2)\n",
- "Collecting xxhash (from datasets)\n",
- " Downloading xxhash-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m19.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hCollecting multiprocess (from datasets)\n",
- " Downloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n",
- "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m16.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
- "\u001b[?25hRequirement already satisfied: fsspec[http]<=2024.2.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n",
- "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.9.3)\n",
- "Requirement already satisfied: huggingface-hub>=0.19.4 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.20.3)\n",
- "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (24.0)\n",
- "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (6.0.1)\n",
- "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n",
- "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.2.0)\n",
- "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.1)\n",
- "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.5)\n",
- "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.4)\n",
- "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n",
- "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.19.4->datasets) (4.10.0)\n",
- "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.3.2)\n",
- "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.6)\n",
- "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2.0.7)\n",
- "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2024.2.2)\n",
- "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
- "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.4)\n",
- "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->datasets) (1.16.0)\n",
- "Installing collected packages: xxhash, dill, multiprocess, datasets\n",
- "Successfully installed datasets-2.18.0 dill-0.3.8 multiprocess-0.70.16 xxhash-3.4.1\n"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "from datasets import load_dataset\n",
- "\n",
- "# Load the dataset\n",
- "dataset = load_dataset(\"jon-tow/open-english-wordnet-synset-2023\")"
- ],
- "metadata": {
- "id": "n12stD5MRnek",
- "outputId": "6bb43252-23d5-4348-8e9b-e90873e2edfd",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 217,
- "referenced_widgets": [
- "cd83d7589dd94022844be6625ddc6c70",
- "5c6674e877b045aa9b8c93a949113b7e",
- "0e87567035c34bbd836458b5399884bb",
- "2d1063b0078840009dc811d03def1d3e",
- "1bc984d5ee58432d9e2457a8b5ad8273",
- "5412bcc57b9540189d856e2bd0d2c33c",
- "defe66b6c703472c84faf01cd7040f2e",
- "afe19112e372424086988965f0f34e14",
- "19d29f06a0224528b958ff1343227823",
- "55d46c4e9ad04fb9ad0e09ec974124de",
- "6efc128c6a6049b0bdc45b0f025e20b1",
- "6be48d20681440488a7106ce7ff8e262",
- "5e92cc16fc09441a92e64ccef09f1ce7",
- "3739c6c8081642f1b9ec2b6ff13d924a",
- "9255806cdfa94d7e995a8c44a97f192d",
- "ab5c63323f7346529c94f1fb69f724d3",
- "a6db4efd7025410fa6e5d1532e234eec",
- "11c8e1f50ec24b549c08328f41872fe7",
- "b97f9428fd484c5c91fcc004d77a6470",
- "3bf0e6cd62c643838cd4cbe0f56dc1bd",
- "fa742c0c6a0c4a77a4628bd4168d5f96",
- "ed1955550f164dce97ad7e4c37e202bb",
- "9f04057c52d1494b92c305078faf9488",
- "51d41e64a4f049e58be20303601b135d",
- "ec6bd7afcc254bc88b6ea1034deabfc7",
- "f3927d5cbee44700960812117b897ea6",
- "152f8b11637749daaf645f4f25c929f1",
- "3cb439a513e04220853ac6c1a7f384a4",
- "fb0f5cbcc929459ba9f596a8621caa36",
- "da6c5d35317648b8862bb6acf6206bf3",
- "ff8eee65477f4a89bfca6a2c7229e9e0",
- "83b8acabcda84ad692f0995cda06836a",
- "e9f599718f694a0e83bbcaee1e7841e2"
- ]
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:88: UserWarning: \n",
- "The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
- "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
- "You will be able to reuse this secret in all of your notebooks.\n",
- "Please note that authentication is recommended but still optional to access public models or datasets.\n",
- " warnings.warn(\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Downloading readme: 0%| | 0.00/2.27k [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "cd83d7589dd94022844be6625ddc6c70"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Downloading data: 0%| | 0.00/49.0M [00:00, ?B/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "6be48d20681440488a7106ce7ff8e262"
- }
- },
- "metadata": {}
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "Generating train split: 0 examples [00:00, ? examples/s]"
- ],
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "9f04057c52d1494b92c305078faf9488"
- }
- },
- "metadata": {}
- }
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "_D-Y5nf6RkV4",
- "outputId": "f8b48922-5cfa-42e4-9c4b-3769f755b689",
- "colab": {
- "base_uri": "https://localhost:8080/"
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "{'@id': 'oewn-03159292-a',\n",
- " '@ili': 'i18097',\n",
- " '@members': 'oewn-avenged-a',\n",
- " '@partOfSpeech': 'a',\n",
- " '@lexfile': 'adj.ppl',\n",
- " 'Definition': 'for which vengeance has been taken',\n",
- " 'SynsetRelation': [],\n",
- " 'Example': 'an avenged injury',\n",
- " 'ILIDefinition': None,\n",
- " '@dc:source': None}"
- ]
- },
- "metadata": {},
- "execution_count": 3
- }
- ],
- "source": [
- "dataset['train'][0]"
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "import pandas as pd"
- ],
- "metadata": {
- "id": "ioCtYnx7gDo6"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "source": [
- "df = pd.DataFrame(dataset['train'])"
- ],
- "metadata": {
- "id": "g6voyMIugE4c"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "source": [
- "df.head()"
- ],
- "metadata": {
- "id": "WNmdjublgIXz",
- "outputId": "d32af694-8927-453a-d007-89b33e34e40b",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 206
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " @id @ili @members @partOfSpeech \\\n",
- "0 oewn-03159292-a i18097 oewn-avenged-a a \n",
- "1 oewn-03159419-a i18098 oewn-unavenged-a a \n",
- "2 oewn-03159554-a i18099 oewn-beaten-a a \n",
- "3 oewn-03159654-a i18100 oewn-calibrated-a oewn-graduated-a a \n",
- "4 oewn-03159804-a i18101 oewn-cantering-a a \n",
- "\n",
- " @lexfile Definition SynsetRelation \\\n",
- "0 adj.ppl for which vengeance has been taken [] \n",
- "1 adj.ppl for which vengeance has not been taken [] \n",
- "2 adj.ppl formed or made thin by hammering [] \n",
- "3 adj.ppl marked with or divided into degrees [] \n",
- "4 adj.ppl riding at a gait between a trot and a gallop [] \n",
- "\n",
- " Example ILIDefinition @dc:source \n",
- "0 an avenged injury None None \n",
- "1 an unavenged murder None None \n",
- "2 beaten gold None None \n",
- "3 a calibrated thermometer None None \n",
- "4 the cantering soldiers None None "
- ],
- "text/html": [
- "\n",
- "
\n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " @id | \n",
- " @ili | \n",
- " @members | \n",
- " @partOfSpeech | \n",
- " @lexfile | \n",
- " Definition | \n",
- " SynsetRelation | \n",
- " Example | \n",
- " ILIDefinition | \n",
- " @dc:source | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " oewn-03159292-a | \n",
- " i18097 | \n",
- " oewn-avenged-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " for which vengeance has been taken | \n",
- " [] | \n",
- " an avenged injury | \n",
- " None | \n",
- " None | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " oewn-03159419-a | \n",
- " i18098 | \n",
- " oewn-unavenged-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " for which vengeance has not been taken | \n",
- " [] | \n",
- " an unavenged murder | \n",
- " None | \n",
- " None | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " oewn-03159554-a | \n",
- " i18099 | \n",
- " oewn-beaten-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " formed or made thin by hammering | \n",
- " [] | \n",
- " beaten gold | \n",
- " None | \n",
- " None | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " oewn-03159654-a | \n",
- " i18100 | \n",
- " oewn-calibrated-a oewn-graduated-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " marked with or divided into degrees | \n",
- " [] | \n",
- " a calibrated thermometer | \n",
- " None | \n",
- " None | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " oewn-03159804-a | \n",
- " i18101 | \n",
- " oewn-cantering-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " riding at a gait between a trot and a gallop | \n",
- " [] | \n",
- " the cantering soldiers | \n",
- " None | \n",
- " None | \n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- "
\n"
- ],
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "dataframe",
- "variable_name": "df"
- }
- },
- "metadata": {},
- "execution_count": 6
- }
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "Getting the @members into a reasonable format is about to take a bunch of cells and most of my patience for the day."
- ],
- "metadata": {
- "id": "vJM-9DJE1Oaq"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "df.shape"
- ],
- "metadata": {
- "id": "L9zrnh6Urqco",
- "outputId": "05d83662-f60d-4db7-cfdc-35065101d73e",
- "colab": {
- "base_uri": "https://localhost:8080/"
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "(120135, 10)"
- ]
- },
- "metadata": {},
- "execution_count": 7
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "df[['@members', '@partOfSpeech', '@lexfile']].head()"
- ],
- "metadata": {
- "id": "z8c4VmJ6lYwa",
- "outputId": "f564245c-3f02-42bf-9726-e2e737e27529",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 206
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " @members @partOfSpeech @lexfile\n",
- "0 oewn-avenged-a a adj.ppl\n",
- "1 oewn-unavenged-a a adj.ppl\n",
- "2 oewn-beaten-a a adj.ppl\n",
- "3 oewn-calibrated-a oewn-graduated-a a adj.ppl\n",
- "4 oewn-cantering-a a adj.ppl"
- ],
- "text/html": [
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " @members | \n",
- " @partOfSpeech | \n",
- " @lexfile | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " oewn-avenged-a | \n",
- " a | \n",
- " adj.ppl | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " oewn-unavenged-a | \n",
- " a | \n",
- " adj.ppl | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " oewn-beaten-a | \n",
- " a | \n",
- " adj.ppl | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " oewn-calibrated-a oewn-graduated-a | \n",
- " a | \n",
- " adj.ppl | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " oewn-cantering-a | \n",
- " a | \n",
- " adj.ppl | \n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- "
\n"
- ],
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "dataframe",
- "summary": "{\n \"name\": \"df[['@members', '@partOfSpeech', '@lexfile']]\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"@members\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"oewn-unavenged-a\",\n \"oewn-cantering-a\",\n \"oewn-beaten-a\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"@partOfSpeech\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"a\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"@lexfile\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"adj.ppl\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
- }
- },
- "metadata": {},
- "execution_count": 8
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "df = df[['@members', '@partOfSpeech', '@lexfile']]"
- ],
- "metadata": {
- "id": "bobEK-ZsllHr"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "source": [
- "pattern = r'^(\\w+-\\w+-\\w+ *)*$'\n",
- "\n",
- "matches_pattern = df['@members'].str.match(pattern)\n",
- "\n",
- "all_match_pattern = matches_pattern.all()\n",
- "all_match_pattern"
- ],
- "metadata": {
- "id": "LqERc6pcFyao",
- "outputId": "5ad91eea-b6ce-4b52-8e31-bb28eacd7f84",
- "colab": {
- "base_uri": "https://localhost:8080/"
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "False"
- ]
- },
- "metadata": {},
- "execution_count": 10
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "members_not_matching_pattern = df[~matches_pattern]\n",
- "members_not_matching_pattern"
- ],
- "metadata": {
- "id": "jLvqtPRvGeqN",
- "outputId": "6eca4f82-bf5f-4e7a-f0a3-16cc3573097a",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 424
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " @members @partOfSpeech \\\n",
- "13 oewn-hand-held-a oewn-handheld-a a \n",
- "42 oewn-re-created-a a \n",
- "49 oewn-spray-dried-a a \n",
- "57 oewn-closed-captioned-a a \n",
- "116 oewn-plane_figure-n oewn-two-dimensional_figure-n n \n",
- "... ... ... \n",
- "119954 oewn-real-time_processing-n oewn-real-time_ope... n \n",
- "119976 oewn-reuptake-n oewn-re-uptake-n n \n",
- "120005 oewn-slump-n oewn-slack-n oewn-drop-off-n oewn... n \n",
- "120123 oewn-constant-volume_process-n oewn-isometric_... n \n",
- "120127 oewn-anti-selection-n oewn-adverse_selection-n n \n",
- "\n",
- " @lexfile \n",
- "13 adj.ppl \n",
- "42 adj.ppl \n",
- "49 adj.ppl \n",
- "57 adj.ppl \n",
- "116 noun.shape \n",
- "... ... \n",
- "119954 noun.process \n",
- "119976 noun.process \n",
- "120005 noun.process \n",
- "120123 noun.process \n",
- "120127 noun.process \n",
- "\n",
- "[6987 rows x 3 columns]"
- ],
- "text/html": [
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " @members | \n",
- " @partOfSpeech | \n",
- " @lexfile | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 13 | \n",
- " oewn-hand-held-a oewn-handheld-a | \n",
- " a | \n",
- " adj.ppl | \n",
- "
\n",
- " \n",
- " 42 | \n",
- " oewn-re-created-a | \n",
- " a | \n",
- " adj.ppl | \n",
- "
\n",
- " \n",
- " 49 | \n",
- " oewn-spray-dried-a | \n",
- " a | \n",
- " adj.ppl | \n",
- "
\n",
- " \n",
- " 57 | \n",
- " oewn-closed-captioned-a | \n",
- " a | \n",
- " adj.ppl | \n",
- "
\n",
- " \n",
- " 116 | \n",
- " oewn-plane_figure-n oewn-two-dimensional_figure-n | \n",
- " n | \n",
- " noun.shape | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 119954 | \n",
- " oewn-real-time_processing-n oewn-real-time_ope... | \n",
- " n | \n",
- " noun.process | \n",
- "
\n",
- " \n",
- " 119976 | \n",
- " oewn-reuptake-n oewn-re-uptake-n | \n",
- " n | \n",
- " noun.process | \n",
- "
\n",
- " \n",
- " 120005 | \n",
- " oewn-slump-n oewn-slack-n oewn-drop-off-n oewn... | \n",
- " n | \n",
- " noun.process | \n",
- "
\n",
- " \n",
- " 120123 | \n",
- " oewn-constant-volume_process-n oewn-isometric_... | \n",
- " n | \n",
- " noun.process | \n",
- "
\n",
- " \n",
- " 120127 | \n",
- " oewn-anti-selection-n oewn-adverse_selection-n | \n",
- " n | \n",
- " noun.process | \n",
- "
\n",
- " \n",
- "
\n",
- "
6987 rows × 3 columns
\n",
- "
\n",
- "
\n",
- "
\n"
- ],
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "dataframe",
- "variable_name": "members_not_matching_pattern",
- "summary": "{\n \"name\": \"members_not_matching_pattern\",\n \"rows\": 6987,\n \"fields\": [\n {\n \"column\": \"@members\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 6837,\n \"samples\": [\n \"oewn-ichthyolatry-n oewn-fish-worship-n\",\n \"oewn-record-breaker-n oewn-record-holder-n\",\n \"oewn-green-white-a oewn-greenish-white-a\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"@partOfSpeech\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"n\",\n \"r\",\n \"s\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"@lexfile\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 43,\n \"samples\": [\n \"noun.possession\",\n \"noun.substance\",\n \"noun.location\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
- }
- },
- "metadata": {},
- "execution_count": 11
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "pattern = r'^(\\w+-[\\w_\\-.]+-\\w+ *)*$' # This took a couple of iterations not represented\n",
- "\n",
- "matches_pattern = df['@members'].str.match(pattern)\n",
- "\n",
- "all_match_pattern = matches_pattern.all()\n",
- "all_match_pattern"
- ],
- "metadata": {
- "id": "m8Jo9CRfOANO",
- "outputId": "ae4737e6-4294-4589-80ff-06329a9dd318",
- "colab": {
- "base_uri": "https://localhost:8080/"
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "True"
- ]
- },
- "metadata": {},
- "execution_count": 12
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "# I found this problem later on\n",
- "oddball = df['@members'].str.match('.*Gravenhage.*')\n",
- "oddball_member = df[oddball]['@members']"
- ],
- "metadata": {
- "id": "jsFdSy6qmhmG"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "source": [
- "oddball_member.iloc[0]"
- ],
- "metadata": {
- "id": "AzVbuHXGnSkK",
- "outputId": "0bbd7121-73f6-4b52-b16f-932eaa0c6692",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 36
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "'oewn-The_Hague-n oewn--ap-s_Gravenhage-n oewn-Den_Haag-n'"
- ],
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "string"
- }
- },
- "metadata": {},
- "execution_count": 14
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "df = df.assign(members=df['@members'].str.split()).explode('members')"
- ],
- "metadata": {
- "id": "J9uuPTGBqeVe"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "source": [
- "df.head()"
- ],
- "metadata": {
- "id": "rNbH6RL4rRPG",
- "outputId": "62ad47ea-f267-4b35-9677-e2f1fdc8703f",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 206
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " @members @partOfSpeech @lexfile \\\n",
- "0 oewn-avenged-a a adj.ppl \n",
- "1 oewn-unavenged-a a adj.ppl \n",
- "2 oewn-beaten-a a adj.ppl \n",
- "3 oewn-calibrated-a oewn-graduated-a a adj.ppl \n",
- "3 oewn-calibrated-a oewn-graduated-a a adj.ppl \n",
- "\n",
- " members \n",
- "0 oewn-avenged-a \n",
- "1 oewn-unavenged-a \n",
- "2 oewn-beaten-a \n",
- "3 oewn-calibrated-a \n",
- "3 oewn-graduated-a "
- ],
- "text/html": [
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " @members | \n",
- " @partOfSpeech | \n",
- " @lexfile | \n",
- " members | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " oewn-avenged-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " oewn-avenged-a | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " oewn-unavenged-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " oewn-unavenged-a | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " oewn-beaten-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " oewn-beaten-a | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " oewn-calibrated-a oewn-graduated-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " oewn-calibrated-a | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " oewn-calibrated-a oewn-graduated-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " oewn-graduated-a | \n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- "
\n"
- ],
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "dataframe",
- "variable_name": "df"
- }
- },
- "metadata": {},
- "execution_count": 16
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "df.shape"
- ],
- "metadata": {
- "id": "TTdfz_HkrT4r",
- "outputId": "5e5106eb-5a4c-49e8-c726-1dd2988b906c",
- "colab": {
- "base_uri": "https://localhost:8080/"
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "(212071, 4)"
- ]
- },
- "metadata": {},
- "execution_count": 17
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "prefixes = df['members'].str.split('-', expand=True)[0]\n",
- "prefix_freq = prefixes.value_counts().reset_index()\n",
- "prefix_freq.columns = ['Prefix', 'Frequency']\n",
- "\n",
- "prefix_freq = prefix_freq.sort_values(by='Frequency', ascending=False)\n",
- "\n",
- "print(prefix_freq)"
- ],
- "metadata": {
- "id": "A6zydv3gq4IZ",
- "outputId": "35782af6-e6bb-46f2-e605-3e160a5a7f4c",
- "colab": {
- "base_uri": "https://localhost:8080/"
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- " Prefix Frequency\n",
- "0 oewn 212071\n"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "to_remove = 'oewn-'\n",
- "\n",
- "df['members'] = df['members'].apply(lambda x: x.replace(to_remove, '') if x.startswith(to_remove) else x)"
- ],
- "metadata": {
- "id": "orcYSJC-rL_d"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "source": [
- "prefixes = df['members'].str.split('-', expand=True)[0]\n",
- "prefix_freq = prefixes.value_counts().reset_index()\n",
- "prefix_freq.columns = ['Prefix', 'Frequency']\n",
- "\n",
- "prefix_freq = prefix_freq.sort_values(by='Frequency', ascending=False)\n",
- "\n",
- "print(prefix_freq)"
- ],
- "metadata": {
- "id": "Zne276Jardwg",
- "outputId": "f5f935f5-2623-486f-e7b2-49b7d1c67309",
- "colab": {
- "base_uri": "https://localhost:8080/"
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- " Prefix Frequency\n",
- "0 self 252\n",
- "1 high 102\n",
- "2 well 98\n",
- "3 one 85\n",
- "4 cut 79\n",
- "... ... ...\n",
- "66494 CIA 1\n",
- "66493 National_Institute_of_Standards_and_Technology 1\n",
- "66492 Counterterrorist_Center 1\n",
- "66491 Nonproliferation_Center 1\n",
- "145809 grammatical_cohesion 1\n",
- "\n",
- "[145810 rows x 2 columns]\n"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "# Check for values starting with \"-\"\n",
- "values_starting_with_dash = df[df['members'].str.startswith('-')]\n",
- "\n",
- "# Display the values starting with \"-\"\n",
- "print(values_starting_with_dash)"
- ],
- "metadata": {
- "id": "sk2wdpTRsKhT",
- "outputId": "ae7316c8-02c9-4523-a1dc-2a8635f858bb",
- "colab": {
- "base_uri": "https://localhost:8080/"
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- " @members @partOfSpeech \\\n",
- "81633 oewn-The_Hague-n oewn--ap-s_Gravenhage-n oewn-... n \n",
- "106115 oewn-between-r oewn--ap-tween-r r \n",
- "107858 oewn-between_decks-r oewn--ap-tween_decks-r r \n",
- "114349 oewn-hood-n oewn--ap-hood-n n \n",
- "\n",
- " @lexfile members \n",
- "81633 noun.location -ap-s_Gravenhage-n \n",
- "106115 adv.all -ap-tween-r \n",
- "107858 adv.all -ap-tween_decks-r \n",
- "114349 noun.group -ap-hood-n \n"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "df.head()"
- ],
- "metadata": {
- "id": "I1ihnJ0RrmHy",
- "outputId": "c171d8f4-9194-4d6c-a813-9b9c48faa53e",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 206
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " @members @partOfSpeech @lexfile members\n",
- "0 oewn-avenged-a a adj.ppl avenged-a\n",
- "1 oewn-unavenged-a a adj.ppl unavenged-a\n",
- "2 oewn-beaten-a a adj.ppl beaten-a\n",
- "3 oewn-calibrated-a oewn-graduated-a a adj.ppl calibrated-a\n",
- "3 oewn-calibrated-a oewn-graduated-a a adj.ppl graduated-a"
- ],
- "text/html": [
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " @members | \n",
- " @partOfSpeech | \n",
- " @lexfile | \n",
- " members | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " oewn-avenged-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " avenged-a | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " oewn-unavenged-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " unavenged-a | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " oewn-beaten-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " beaten-a | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " oewn-calibrated-a oewn-graduated-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " calibrated-a | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " oewn-calibrated-a oewn-graduated-a | \n",
- " a | \n",
- " adj.ppl | \n",
- " graduated-a | \n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- "
\n"
- ],
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "dataframe",
- "variable_name": "df"
- }
- },
- "metadata": {},
- "execution_count": 22
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "df['members'] = df['members'].apply(lambda x: x[4:] if x.startswith('-ap-') else x)"
- ],
- "metadata": {
- "id": "-6a_qlCUsvh4"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "source": [
- "df.drop(columns=['@members'], inplace=True)"
- ],
- "metadata": {
- "id": "SXHfgstpsyJi"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "source": [
- "suffixes = df['members'].str.split('-').str[-1]\n",
- "\n",
- "# Count frequencies of suffixes\n",
- "suffix_freq = suffixes.value_counts().reset_index()\n",
- "suffix_freq.columns = ['Suffix', 'Frequency']\n",
- "\n",
- "# Sort by frequency\n",
- "suffix_freq = suffix_freq.sort_values(by='Frequency', ascending=False)\n",
- "\n",
- "# Display suffixes ordered by frequency\n",
- "print(suffix_freq[:40])"
- ],
- "metadata": {
- "id": "m3qrn1yrtDHT",
- "outputId": "b62de8cb-2b3d-4400-924b-7280f9fc702c",
- "colab": {
- "base_uri": "https://localhost:8080/"
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- " Suffix Frequency\n",
- "0 n 151001\n",
- "1 a 30150\n",
- "2 v 25098\n",
- "3 r 5595\n",
- "4 1 146\n",
- "5 2 69\n",
- "6 s 12\n"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "filtered_df = df[df['members'].str.endswith(('1', '2', 's'))]\n",
- "\n",
- "print(filtered_df)"
- ],
- "metadata": {
- "id": "zZf0TzcLxKhe",
- "outputId": "04bc8527-2c57-4944-ec5e-ccf355070200",
- "colab": {
- "base_uri": "https://localhost:8080/"
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- " @partOfSpeech @lexfile members\n",
- "286 n noun.shape lead-n-1\n",
- "301 n noun.shape bow-n-1\n",
- "325 n noun.shape tower-n-1\n",
- "782 s adj.all panelled-s\n",
- "2303 s adj.all centre-s\n",
- "... ... ... ...\n",
- "117472 v verb.body tear-v-2\n",
- "117596 v verb.body recover-v-1\n",
- "118299 v verb.communication bow-v-1\n",
- "118397 v verb.communication bow-v-1\n",
- "118473 v verb.communication whoop-v-1\n",
- "\n",
- "[227 rows x 3 columns]\n"
- ]
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "df['members'] = df['members'].apply(lambda x: x.replace('-ap-', \"'\")) # They use this for apostrophe for some reason, probably because it was stored as yaml"
- ],
- "metadata": {
- "id": "LRCd0Zy_trIB"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "source": [
- "# List of suffixes to remove\n",
- "suffixes_to_remove = ['-n', '-a', '-v', '-r', '-1', '-2', '-s']\n",
- "\n",
- "# Function to remove suffixes\n",
- "def remove_suffixes(member):\n",
- " # Iterate until no suffixes are left\n",
- " while any(member.endswith(suffix) for suffix in suffixes_to_remove):\n",
- " for suffix in suffixes_to_remove:\n",
- " if member.endswith(suffix):\n",
- " member = member[:-len(suffix)] # Remove the suffix\n",
- " return member\n",
- "\n",
- "# Apply the function to each member in the DataFrame\n",
- "df['members'] = df['members'].apply(remove_suffixes)\n",
- "\n",
- "# Display the updated DataFrame\n",
- "df.head()"
- ],
- "metadata": {
- "id": "_dmFfqOwx3X4",
- "outputId": "0dab9c69-740b-4561-91b0-73cfe68ea050",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 206
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " @partOfSpeech @lexfile members\n",
- "0 a adj.ppl avenged\n",
- "1 a adj.ppl unavenged\n",
- "2 a adj.ppl beaten\n",
- "3 a adj.ppl calibrated\n",
- "3 a adj.ppl graduated"
- ],
- "text/html": [
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " @partOfSpeech | \n",
- " @lexfile | \n",
- " members | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " a | \n",
- " adj.ppl | \n",
- " avenged | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " a | \n",
- " adj.ppl | \n",
- " unavenged | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " a | \n",
- " adj.ppl | \n",
- " beaten | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " a | \n",
- " adj.ppl | \n",
- " calibrated | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " a | \n",
- " adj.ppl | \n",
- " graduated | \n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- "
\n"
- ],
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "dataframe",
- "variable_name": "df"
- }
- },
- "metadata": {},
- "execution_count": 28
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "df['members'] = df['members'].apply(lambda x: \" \".join(x.split(\"_\")))"
- ],
- "metadata": {
- "id": "1XbVExgWwaVo"
- },
- "execution_count": null,
- "outputs": []
- },
- {
- "cell_type": "code",
- "source": [
- "df.head()"
- ],
- "metadata": {
- "id": "e4u-FcGRwkbM",
- "outputId": "309f9373-f7d2-426d-9b22-321bfdb8b22b",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 206
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " @partOfSpeech @lexfile members\n",
- "0 a adj.ppl avenged\n",
- "1 a adj.ppl unavenged\n",
- "2 a adj.ppl beaten\n",
- "3 a adj.ppl calibrated\n",
- "3 a adj.ppl graduated"
- ],
- "text/html": [
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " @partOfSpeech | \n",
- " @lexfile | \n",
- " members | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " a | \n",
- " adj.ppl | \n",
- " avenged | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " a | \n",
- " adj.ppl | \n",
- " unavenged | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " a | \n",
- " adj.ppl | \n",
- " beaten | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " a | \n",
- " adj.ppl | \n",
- " calibrated | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " a | \n",
- " adj.ppl | \n",
- " graduated | \n",
- "
\n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- "
\n"
- ],
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "dataframe",
- "variable_name": "df"
- }
- },
- "metadata": {},
- "execution_count": 30
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "pd.get_dummies(df['@partOfSpeech'])"
- ],
- "metadata": {
- "id": "3VmUnWJel5CK",
- "outputId": "cf9f3468-1c51-4536-e2ba-5afa3a66866b",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 424
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " a n r s v\n",
- "0 1 0 0 0 0\n",
- "1 1 0 0 0 0\n",
- "2 1 0 0 0 0\n",
- "3 1 0 0 0 0\n",
- "3 1 0 0 0 0\n",
- "... .. .. .. .. ..\n",
- "120130 0 1 0 0 0\n",
- "120131 0 1 0 0 0\n",
- "120132 0 1 0 0 0\n",
- "120133 0 1 0 0 0\n",
- "120134 0 1 0 0 0\n",
- "\n",
- "[212071 rows x 5 columns]"
- ],
- "text/html": [
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " a | \n",
- " n | \n",
- " r | \n",
- " s | \n",
- " v | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 120130 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 120131 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 120132 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 120133 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 120134 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
212071 rows × 5 columns
\n",
- "
\n",
- "
\n",
- "
\n"
- ],
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "dataframe"
- }
- },
- "metadata": {},
- "execution_count": 31
- }
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "pd.get_dummies(df['@lexfile'])"
- ],
- "metadata": {
- "id": "-ypW9xpkmC1W",
- "outputId": "999bd669-f9db-425a-a808-2b826a715088",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 444
- }
- },
- "execution_count": null,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " adj.all adj.pert adj.ppl adv.all noun.Tops noun.act noun.animal \\\n",
- "0 0 0 1 0 0 0 0 \n",
- "1 0 0 1 0 0 0 0 \n",
- "2 0 0 1 0 0 0 0 \n",
- "3 0 0 1 0 0 0 0 \n",
- "3 0 0 1 0 0 0 0 \n",
- "... ... ... ... ... ... ... ... \n",
- "120130 0 0 0 0 0 0 0 \n",
- "120131 0 0 0 0 0 0 0 \n",
- "120132 0 0 0 0 0 0 0 \n",
- "120133 0 0 0 0 0 0 0 \n",
- "120134 0 0 0 0 0 0 0 \n",
- "\n",
- " noun.artifact noun.attribute noun.body ... verb.consumption \\\n",
- "0 0 0 0 ... 0 \n",
- "1 0 0 0 ... 0 \n",
- "2 0 0 0 ... 0 \n",
- "3 0 0 0 ... 0 \n",
- "3 0 0 0 ... 0 \n",
- "... ... ... ... ... ... \n",
- "120130 0 0 0 ... 0 \n",
- "120131 0 0 0 ... 0 \n",
- "120132 0 0 0 ... 0 \n",
- "120133 0 0 0 ... 0 \n",
- "120134 0 0 0 ... 0 \n",
- "\n",
- " verb.contact verb.creation verb.emotion verb.motion \\\n",
- "0 0 0 0 0 \n",
- "1 0 0 0 0 \n",
- "2 0 0 0 0 \n",
- "3 0 0 0 0 \n",
- "3 0 0 0 0 \n",
- "... ... ... ... ... \n",
- "120130 0 0 0 0 \n",
- "120131 0 0 0 0 \n",
- "120132 0 0 0 0 \n",
- "120133 0 0 0 0 \n",
- "120134 0 0 0 0 \n",
- "\n",
- " verb.perception verb.possession verb.social verb.stative \\\n",
- "0 0 0 0 0 \n",
- "1 0 0 0 0 \n",
- "2 0 0 0 0 \n",
- "3 0 0 0 0 \n",
- "3 0 0 0 0 \n",
- "... ... ... ... ... \n",
- "120130 0 0 0 0 \n",
- "120131 0 0 0 0 \n",
- "120132 0 0 0 0 \n",
- "120133 0 0 0 0 \n",
- "120134 0 0 0 0 \n",
- "\n",
- " verb.weather \n",
- "0 0 \n",
- "1 0 \n",
- "2 0 \n",
- "3 0 \n",
- "3 0 \n",
- "... ... \n",
- "120130 0 \n",
- "120131 0 \n",
- "120132 0 \n",
- "120133 0 \n",
- "120134 0 \n",
- "\n",
- "[212071 rows x 45 columns]"
- ],
- "text/html": [
- "\n",
- " \n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " adj.all | \n",
- " adj.pert | \n",
- " adj.ppl | \n",
- " adv.all | \n",
- " noun.Tops | \n",
- " noun.act | \n",
- " noun.animal | \n",
- " noun.artifact | \n",
- " noun.attribute | \n",
- " noun.body | \n",
- " ... | \n",
- " verb.consumption | \n",
- " verb.contact | \n",
- " verb.creation | \n",
- " verb.emotion | \n",
- " verb.motion | \n",
- " verb.perception | \n",
- " verb.possession | \n",
- " verb.social | \n",
- " verb.stative | \n",
- " verb.weather | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 0 | \n",
- " 0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 120130 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 120131 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 120132 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 120133 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 120134 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " ... | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
212071 rows × 45 columns
\n",
- "
\n",
- "
\n",
- "
\n"
- ],
- "application/vnd.google.colaboratory.intrinsic+json": {
- "type": "dataframe"
- }
- },
- "metadata": {},
- "execution_count": 32
- }
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "id": "tC1ZbcL9RkV6"
- },
- "outputs": [],
- "source": [
- "df_to_upload = df_pos = pd.concat([df['members'], pd.get_dummies(df['@partOfSpeech'], pd.get_dummies(df['@lexfile']))], axis=1)"
- ]
- },
- {
- "cell_type": "code",
- "source": [
- "df_to_upload = df_to_upload.groupby('members').max().reset_index()\n",
- "df_to_upload.to_csv(\"openwordnet-categoricals.csv\")"
- ],
- "metadata": {
- "id": "WLXGuobjAIQZ"
- },
- "execution_count": null,
- "outputs": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.18"
- },
- "colab": {
- "provenance": [],
- "gpuType": "T4",
- "name": "openwordnet-categorical-processor.ipynb",
- "include_colab_link": true
- },
- "widgets": {
- "application/vnd.jupyter.widget-state+json": {
- "cd83d7589dd94022844be6625ddc6c70": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_5c6674e877b045aa9b8c93a949113b7e",
- "IPY_MODEL_0e87567035c34bbd836458b5399884bb",
- "IPY_MODEL_2d1063b0078840009dc811d03def1d3e"
- ],
- "layout": "IPY_MODEL_1bc984d5ee58432d9e2457a8b5ad8273"
- }
- },
- "5c6674e877b045aa9b8c93a949113b7e": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_5412bcc57b9540189d856e2bd0d2c33c",
- "placeholder": "",
- "style": "IPY_MODEL_defe66b6c703472c84faf01cd7040f2e",
- "value": "Downloading readme: 100%"
- }
- },
- "0e87567035c34bbd836458b5399884bb": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_afe19112e372424086988965f0f34e14",
- "max": 2267,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_19d29f06a0224528b958ff1343227823",
- "value": 2267
- }
- },
- "2d1063b0078840009dc811d03def1d3e": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_55d46c4e9ad04fb9ad0e09ec974124de",
- "placeholder": "",
- "style": "IPY_MODEL_6efc128c6a6049b0bdc45b0f025e20b1",
- "value": " 2.27k/2.27k [00:00<00:00, 62.7kB/s]"
- }
- },
- "1bc984d5ee58432d9e2457a8b5ad8273": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "5412bcc57b9540189d856e2bd0d2c33c": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "defe66b6c703472c84faf01cd7040f2e": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "afe19112e372424086988965f0f34e14": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "19d29f06a0224528b958ff1343227823": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "55d46c4e9ad04fb9ad0e09ec974124de": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "6efc128c6a6049b0bdc45b0f025e20b1": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "6be48d20681440488a7106ce7ff8e262": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_5e92cc16fc09441a92e64ccef09f1ce7",
- "IPY_MODEL_3739c6c8081642f1b9ec2b6ff13d924a",
- "IPY_MODEL_9255806cdfa94d7e995a8c44a97f192d"
- ],
- "layout": "IPY_MODEL_ab5c63323f7346529c94f1fb69f724d3"
- }
- },
- "5e92cc16fc09441a92e64ccef09f1ce7": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_a6db4efd7025410fa6e5d1532e234eec",
- "placeholder": "",
- "style": "IPY_MODEL_11c8e1f50ec24b549c08328f41872fe7",
- "value": "Downloading data: 100%"
- }
- },
- "3739c6c8081642f1b9ec2b6ff13d924a": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_b97f9428fd484c5c91fcc004d77a6470",
- "max": 49044105,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_3bf0e6cd62c643838cd4cbe0f56dc1bd",
- "value": 49044105
- }
- },
- "9255806cdfa94d7e995a8c44a97f192d": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_fa742c0c6a0c4a77a4628bd4168d5f96",
- "placeholder": "",
- "style": "IPY_MODEL_ed1955550f164dce97ad7e4c37e202bb",
- "value": " 49.0M/49.0M [00:02<00:00, 24.6MB/s]"
- }
- },
- "ab5c63323f7346529c94f1fb69f724d3": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "a6db4efd7025410fa6e5d1532e234eec": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "11c8e1f50ec24b549c08328f41872fe7": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "b97f9428fd484c5c91fcc004d77a6470": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "3bf0e6cd62c643838cd4cbe0f56dc1bd": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "fa742c0c6a0c4a77a4628bd4168d5f96": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "ed1955550f164dce97ad7e4c37e202bb": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "9f04057c52d1494b92c305078faf9488": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HBoxModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HBoxModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HBoxView",
- "box_style": "",
- "children": [
- "IPY_MODEL_51d41e64a4f049e58be20303601b135d",
- "IPY_MODEL_ec6bd7afcc254bc88b6ea1034deabfc7",
- "IPY_MODEL_f3927d5cbee44700960812117b897ea6"
- ],
- "layout": "IPY_MODEL_152f8b11637749daaf645f4f25c929f1"
- }
- },
- "51d41e64a4f049e58be20303601b135d": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_3cb439a513e04220853ac6c1a7f384a4",
- "placeholder": "",
- "style": "IPY_MODEL_fb0f5cbcc929459ba9f596a8621caa36",
- "value": "Generating train split: "
- }
- },
- "ec6bd7afcc254bc88b6ea1034deabfc7": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "FloatProgressModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "FloatProgressModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "ProgressView",
- "bar_style": "success",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_da6c5d35317648b8862bb6acf6206bf3",
- "max": 1,
- "min": 0,
- "orientation": "horizontal",
- "style": "IPY_MODEL_ff8eee65477f4a89bfca6a2c7229e9e0",
- "value": 1
- }
- },
- "f3927d5cbee44700960812117b897ea6": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "HTMLModel",
- "model_module_version": "1.5.0",
- "state": {
- "_dom_classes": [],
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "HTMLModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/controls",
- "_view_module_version": "1.5.0",
- "_view_name": "HTMLView",
- "description": "",
- "description_tooltip": null,
- "layout": "IPY_MODEL_83b8acabcda84ad692f0995cda06836a",
- "placeholder": "",
- "style": "IPY_MODEL_e9f599718f694a0e83bbcaee1e7841e2",
- "value": " 120135/0 [00:01<00:00, 82372.92 examples/s]"
- }
- },
- "152f8b11637749daaf645f4f25c929f1": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "3cb439a513e04220853ac6c1a7f384a4": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "fb0f5cbcc929459ba9f596a8621caa36": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- },
- "da6c5d35317648b8862bb6acf6206bf3": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": "20px"
- }
- },
- "ff8eee65477f4a89bfca6a2c7229e9e0": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "ProgressStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "ProgressStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "bar_color": null,
- "description_width": ""
- }
- },
- "83b8acabcda84ad692f0995cda06836a": {
- "model_module": "@jupyter-widgets/base",
- "model_name": "LayoutModel",
- "model_module_version": "1.2.0",
- "state": {
- "_model_module": "@jupyter-widgets/base",
- "_model_module_version": "1.2.0",
- "_model_name": "LayoutModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "LayoutView",
- "align_content": null,
- "align_items": null,
- "align_self": null,
- "border": null,
- "bottom": null,
- "display": null,
- "flex": null,
- "flex_flow": null,
- "grid_area": null,
- "grid_auto_columns": null,
- "grid_auto_flow": null,
- "grid_auto_rows": null,
- "grid_column": null,
- "grid_gap": null,
- "grid_row": null,
- "grid_template_areas": null,
- "grid_template_columns": null,
- "grid_template_rows": null,
- "height": null,
- "justify_content": null,
- "justify_items": null,
- "left": null,
- "margin": null,
- "max_height": null,
- "max_width": null,
- "min_height": null,
- "min_width": null,
- "object_fit": null,
- "object_position": null,
- "order": null,
- "overflow": null,
- "overflow_x": null,
- "overflow_y": null,
- "padding": null,
- "right": null,
- "top": null,
- "visibility": null,
- "width": null
- }
- },
- "e9f599718f694a0e83bbcaee1e7841e2": {
- "model_module": "@jupyter-widgets/controls",
- "model_name": "DescriptionStyleModel",
- "model_module_version": "1.5.0",
- "state": {
- "_model_module": "@jupyter-widgets/controls",
- "_model_module_version": "1.5.0",
- "_model_name": "DescriptionStyleModel",
- "_view_count": null,
- "_view_module": "@jupyter-widgets/base",
- "_view_module_version": "1.2.0",
- "_view_name": "StyleView",
- "description_width": ""
- }
- }
- }
- },
- "accelerator": "GPU"
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}
\ No newline at end of file