Syoy commited on
Commit
bcd1103
·
1 Parent(s): b1c0bc2

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +138 -0
README.md ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - image-classification
5
+ pretty_name: Food-100 Data Set
6
+ size_categories:
7
+ - 100K<n<1M
8
+ tags:
9
+ - image classification
10
+ - food-101
11
+ - food-101-enriched
12
+ - embeddings
13
+ - enhanced
14
+ language:
15
+ - en
16
+ ---
17
+ # Dataset Card for Food-101-Enriched (Enhanced by Renumics)
18
+
19
+ ## Dataset Description
20
+
21
+ - **Homepage:** [Renumics Homepage](https://renumics.com/)
22
+ - **GitHub** [Spotlight](https://github.com/Renumics/spotlight)
23
+ - **Dataset Homepage** [data.vision.ee.ethz.ch](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/)
24
+ - **Paper:** [Food-101 – Mining Discriminative Components with Random Forests](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/static/bossard_eccv14_food-101.pdf)
25
+
26
+ ### Dataset Summary
27
+
28
+ This data set contains 101'000 images from 101 food categories.
29
+ For each class, 250 manually reviewed test images are provided as well as 750 training images.
30
+ On purpose, the training images were not cleaned, and thus still contain some amount of noise.
31
+ This comes mostly in the form of intense colors and sometimes wrong labels.
32
+ All images were rescaled to have a maximum side length of 512 pixels.
33
+
34
+ ### Languages
35
+
36
+ English class labels.
37
+
38
+ ## Dataset Structure
39
+
40
+ ### Data Instances
41
+
42
+ Sample data instance:
43
+
44
+ ```
45
+ {'image': '/huggingface/datasets/downloads/extracted/49750366cbaf225ce1b5a5c033fa85ceddeee2e82f1d6e0365e8287859b4c7c8/0/0.jpg',
46
+ 'label': 6,
47
+ 'label_str': 'beignets',
48
+ 'split': 'train'
49
+ }
50
+ ```
51
+
52
+ ### Data Fields
53
+
54
+ | Feature | Data Type |
55
+ |---------------------------------|-----------------------------------------------|
56
+ | image | Image(decode=True, id=None) |
57
+ | split | Value(dtype='string', id=None) |
58
+ | label | ClassLabel(names=[...], id=None) |
59
+ | label_str | Value(dtype='string', id=None) |
60
+
61
+ ### Data Splits
62
+
63
+ | Dataset Split | Number of Images in Split |
64
+ | ------------- |---------------------------|
65
+ | Train | 75750 |
66
+ | Test | 25250 |
67
+
68
+ ## Dataset Creation
69
+
70
+ ### Curation Rationale
71
+
72
+ [More Information Needed]
73
+
74
+ ### Source Data
75
+
76
+ #### Initial Data Collection and Normalization
77
+
78
+ [More Information Needed]
79
+
80
+ #### Who are the source language producers?
81
+
82
+ [More Information Needed]
83
+
84
+ ### Annotations
85
+
86
+ #### Annotation process
87
+
88
+ [More Information Needed]
89
+
90
+ #### Who are the annotators?
91
+
92
+ [More Information Needed]
93
+
94
+ ### Personal and Sensitive Information
95
+
96
+ [More Information Needed]
97
+
98
+ ## Considerations for Using the Data
99
+
100
+ ### Social Impact of Dataset
101
+
102
+ [More Information Needed]
103
+
104
+ ### Discussion of Biases
105
+
106
+ [More Information Needed]
107
+
108
+ ### Other Known Limitations
109
+
110
+ [More Information Needed]
111
+
112
+ ## Additional Information
113
+
114
+ ### Dataset Curators
115
+
116
+ [More Information Needed]
117
+
118
+ ### Licensing Information
119
+
120
+ The Food-101 data set consists of images from Foodspotting [1] which are not property of the Federal Institute of Technology Zurich (ETHZ). Any use beyond scientific fair use must be negociated with the respective picture owners according to the Foodspotting terms of use [2].
121
+ [1] [http://www.foodspotting.com/](http://www.foodspotting.com/)
122
+ [2] [http://www.foodspotting.com/terms/](http://www.foodspotting.com/terms/)
123
+
124
+ ### Citation Information
125
+
126
+ If you use this dataset, please cite the following paper:
127
+ ```
128
+ @inproceedings{bossard14,
129
+ title = {Food-101 -- Mining Discriminative Components with Random Forests},
130
+ author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc},
131
+ booktitle = {European Conference on Computer Vision},
132
+ year = {2014}
133
+ }
134
+ ```
135
+
136
+ ### Contributions
137
+
138
+ Lukas Bossard, Matthieu Guillaumin, Luc Van Gool, and Renumics GmbH.