Syoy commited on
Commit
ba7cb3c
·
1 Parent(s): 0ef5836

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +168 -7
README.md CHANGED
@@ -1,8 +1,7 @@
1
  ---
2
- license: mit
3
- task_categories:
4
- - image-classification
5
- pretty_name: Food-100 Data Set
6
  size_categories:
7
  - 100K<n<1M
8
  tags:
@@ -13,24 +12,77 @@ tags:
13
  - enhanced
14
  language:
15
  - en
 
 
 
 
 
 
 
16
  ---
17
  # Dataset Card for Food-101-Enriched (Enhanced by Renumics)
18
 
19
  ## Dataset Description
20
 
21
- - **Homepage:** [Renumics Homepage](https://renumics.com/)
22
  - **GitHub** [Spotlight](https://github.com/Renumics/spotlight)
23
  - **Dataset Homepage** [data.vision.ee.ethz.ch](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/)
24
  - **Paper:** [Food-101 – Mining Discriminative Components with Random Forests](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/static/bossard_eccv14_food-101.pdf)
25
 
26
  ### Dataset Summary
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  This data set contains 101'000 images from 101 food categories.
29
  For each class, 250 manually reviewed test images are provided as well as 750 training images.
30
  On purpose, the training images were not cleaned, and thus still contain some amount of noise.
31
  This comes mostly in the form of intense colors and sometimes wrong labels.
32
  All images were rescaled to have a maximum side length of 512 pixels.
33
 
 
 
 
 
34
  ### Languages
35
 
36
  English class labels.
@@ -39,9 +91,9 @@ English class labels.
39
 
40
  ### Data Instances
41
 
42
- Sample data instance:
43
 
44
- ```
45
  {
46
  "image": "/huggingface/datasets/downloads/extracted/49750366cbaf225ce1b5a5c033fa85ceddeee2e82f1d6e0365e8287859b4c7c8/0/0.jpg",
47
  "label": 6,
@@ -49,6 +101,115 @@ Sample data instance:
49
  "split": "train"
50
  }
51
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
  ### Data Fields
54
 
 
1
  ---
2
+ license: unknown
3
+ paperswithcode_id: food-101
4
+ pretty_name: Food-101 Data Set
 
5
  size_categories:
6
  - 100K<n<1M
7
  tags:
 
12
  - enhanced
13
  language:
14
  - en
15
+ source_datasets:
16
+ - extended|other-foodspotting
17
+ - extended|food101
18
+ task_categories:
19
+ - image-classification
20
+ task_ids:
21
+ - multi-class-image-classification
22
  ---
23
  # Dataset Card for Food-101-Enriched (Enhanced by Renumics)
24
 
25
  ## Dataset Description
26
 
27
+ - **Homepage:** [Renumics Homepage](https://renumics.com/?hf-dataset-card=food101-enriched)
28
  - **GitHub** [Spotlight](https://github.com/Renumics/spotlight)
29
  - **Dataset Homepage** [data.vision.ee.ethz.ch](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/)
30
  - **Paper:** [Food-101 – Mining Discriminative Components with Random Forests](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/static/bossard_eccv14_food-101.pdf)
31
 
32
  ### Dataset Summary
33
 
34
+ [Data-centric AI](https://datacentricai.org) principles have become increasingly important for real-world use cases. At [Renumics](https://renumics.com/?hf-dataset-card=food101-enriched) we believe that classical benchmark datasets and competitions should be extended to reflect this development.
35
+
36
+ This is why we are publishing benchmark datasets with application-specific enrichments (e.g. embeddings, baseline results, uncertainties, label error scores). We hope this helps the ML community in the following ways:
37
+ 1. Enable new researchers to quickly develop a profound understanding of the dataset.
38
+ 2. Popularize data-centric AI principles and tooling in the ML community.
39
+ 3. Encourage the sharing of meaningful qualitative insights in addition to traditional quantitative metrics.
40
+
41
+ This dataset is an enriched version of the [Food101 Data Set](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/).
42
+
43
+ ### Explore the Dataset
44
+
45
+ ![Analyze Food101 with Spotlight](https://spotlight.renumics.com/resources/hf-food101-enriched.png)
46
+
47
+ The enrichments allow you to quickly gain insights into the dataset. The open source data curation tool [Renumics Spotlight](https://github.com/Renumics/spotlight) enables that with just a few lines of code:
48
+
49
+ Install datasets and Spotlight via [pip](https://packaging.python.org/en/latest/key_projects/#pip):
50
+
51
+ ```python
52
+ !pip install renumics-spotlight datasets
53
+ ```
54
+
55
+ Load the dataset from huggingface in your notebook:
56
+
57
+ ```python
58
+ import datasets
59
+
60
+ dataset = datasets.load_dataset("renumics/food101-enriched", split="train")
61
+ ```
62
+
63
+ Start exploring with a simple:
64
+
65
+ ```python
66
+ from renumics import spotlight
67
+
68
+ df = dataset.to_pandas()
69
+ spotlight.show(df_show, port=8000, dtype={"image": spotlight.Image})
70
+ ```
71
+ You can use the UI to interactively configure the view on the data. Depending on the concrete tasks (e.g. model comparison, debugging, outlier detection) you might want to leverage different enrichments and metadata.
72
+
73
+
74
+ ### Food101 Dataset
75
+
76
  This data set contains 101'000 images from 101 food categories.
77
  For each class, 250 manually reviewed test images are provided as well as 750 training images.
78
  On purpose, the training images were not cleaned, and thus still contain some amount of noise.
79
  This comes mostly in the form of intense colors and sometimes wrong labels.
80
  All images were rescaled to have a maximum side length of 512 pixels.
81
 
82
+ ### Supported Tasks and Leaderboards
83
+
84
+ - `image-classification`: The goal of this task is to classify a given image of a dish into one of 101 classes. The leaderboard is available [here](https://paperswithcode.com/sota/fine-grained-image-classification-on-food-101).
85
+
86
  ### Languages
87
 
88
  English class labels.
 
91
 
92
  ### Data Instances
93
 
94
+ A sample from the training set is provided below:
95
 
96
+ ```python
97
  {
98
  "image": "/huggingface/datasets/downloads/extracted/49750366cbaf225ce1b5a5c033fa85ceddeee2e82f1d6e0365e8287859b4c7c8/0/0.jpg",
99
  "label": 6,
 
101
  "split": "train"
102
  }
103
  ```
104
+ <details>
105
+ <summary>Class Label Mappings</summary>
106
+
107
+ ```json
108
+ {
109
+ "apple_pie": 0,
110
+ "baby_back_ribs": 1,
111
+ "baklava": 2,
112
+ "beef_carpaccio": 3,
113
+ "beef_tartare": 4,
114
+ "beet_salad": 5,
115
+ "beignets": 6,
116
+ "bibimbap": 7,
117
+ "bread_pudding": 8,
118
+ "breakfast_burrito": 9,
119
+ "bruschetta": 10,
120
+ "caesar_salad": 11,
121
+ "cannoli": 12,
122
+ "caprese_salad": 13,
123
+ "carrot_cake": 14,
124
+ "ceviche": 15,
125
+ "cheesecake": 16,
126
+ "cheese_plate": 17,
127
+ "chicken_curry": 18,
128
+ "chicken_quesadilla": 19,
129
+ "chicken_wings": 20,
130
+ "chocolate_cake": 21,
131
+ "chocolate_mousse": 22,
132
+ "churros": 23,
133
+ "clam_chowder": 24,
134
+ "club_sandwich": 25,
135
+ "crab_cakes": 26,
136
+ "creme_brulee": 27,
137
+ "croque_madame": 28,
138
+ "cup_cakes": 29,
139
+ "deviled_eggs": 30,
140
+ "donuts": 31,
141
+ "dumplings": 32,
142
+ "edamame": 33,
143
+ "eggs_benedict": 34,
144
+ "escargots": 35,
145
+ "falafel": 36,
146
+ "filet_mignon": 37,
147
+ "fish_and_chips": 38,
148
+ "foie_gras": 39,
149
+ "french_fries": 40,
150
+ "french_onion_soup": 41,
151
+ "french_toast": 42,
152
+ "fried_calamari": 43,
153
+ "fried_rice": 44,
154
+ "frozen_yogurt": 45,
155
+ "garlic_bread": 46,
156
+ "gnocchi": 47,
157
+ "greek_salad": 48,
158
+ "grilled_cheese_sandwich": 49,
159
+ "grilled_salmon": 50,
160
+ "guacamole": 51,
161
+ "gyoza": 52,
162
+ "hamburger": 53,
163
+ "hot_and_sour_soup": 54,
164
+ "hot_dog": 55,
165
+ "huevos_rancheros": 56,
166
+ "hummus": 57,
167
+ "ice_cream": 58,
168
+ "lasagna": 59,
169
+ "lobster_bisque": 60,
170
+ "lobster_roll_sandwich": 61,
171
+ "macaroni_and_cheese": 62,
172
+ "macarons": 63,
173
+ "miso_soup": 64,
174
+ "mussels": 65,
175
+ "nachos": 66,
176
+ "omelette": 67,
177
+ "onion_rings": 68,
178
+ "oysters": 69,
179
+ "pad_thai": 70,
180
+ "paella": 71,
181
+ "pancakes": 72,
182
+ "panna_cotta": 73,
183
+ "peking_duck": 74,
184
+ "pho": 75,
185
+ "pizza": 76,
186
+ "pork_chop": 77,
187
+ "poutine": 78,
188
+ "prime_rib": 79,
189
+ "pulled_pork_sandwich": 80,
190
+ "ramen": 81,
191
+ "ravioli": 82,
192
+ "red_velvet_cake": 83,
193
+ "risotto": 84,
194
+ "samosa": 85,
195
+ "sashimi": 86,
196
+ "scallops": 87,
197
+ "seaweed_salad": 88,
198
+ "shrimp_and_grits": 89,
199
+ "spaghetti_bolognese": 90,
200
+ "spaghetti_carbonara": 91,
201
+ "spring_rolls": 92,
202
+ "steak": 93,
203
+ "strawberry_shortcake": 94,
204
+ "sushi": 95,
205
+ "tacos": 96,
206
+ "takoyaki": 97,
207
+ "tiramisu": 98,
208
+ "tuna_tartare": 99,
209
+ "waffles": 100
210
+ }
211
+ ```
212
+ </details>
213
 
214
  ### Data Fields
215