first commit
Browse files
qa_srl.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Dataset loading script for loading the Large-Scale-QASRL (FitzGeralds et. al., ACL 2018) training set, along with the QASRL-GS evaluation dataset (Roit et. al., ACL 2020)."""
|
16 |
+
|
17 |
+
|
18 |
+
import datasets
|
19 |
+
from pathlib import Path
|
20 |
+
import gzip
|
21 |
+
import json
|
22 |
+
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
@inproceedings{fitzgerald2018large,
|
26 |
+
title={Large-Scale QA-SRL Parsing},
|
27 |
+
author={FitzGerald, Nicholas and Michael, Julian and He, Luheng and Zettlemoyer, Luke},
|
28 |
+
booktitle={Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
|
29 |
+
pages={2051--2060},
|
30 |
+
year={2018}
|
31 |
+
}
|
32 |
+
@inproceedings{roit2020controlled,
|
33 |
+
title={Controlled Crowdsourcing for High-Quality QA-SRL Annotation},
|
34 |
+
author={Roit, Paul and Klein, Ayal and Stepanov, Daniela and Mamou, Jonathan and Michael, Julian and Stanovsky, Gabriel and Zettlemoyer, Luke and Dagan, Ido},
|
35 |
+
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
36 |
+
pages={7008--7013},
|
37 |
+
year={2020}
|
38 |
+
}
|
39 |
+
"""
|
40 |
+
|
41 |
+
|
42 |
+
_DESCRIPTION = """\
|
43 |
+
The dataset contains question-answer pairs to model verbal predicate-argument structure.
|
44 |
+
The questions start with wh-words (Who, What, Where, What, etc.) and contain a verb predicate in the sentence; the answers are phrases in the sentence.
|
45 |
+
This dataset loads the train split from "QASRL Bank", a.k.a "QASRL-v2" or "QASRL-LS" (Large Scale),
|
46 |
+
which was constructed via crowdsourcing and presented at (FitzGeralds et. al., ACL 2018),
|
47 |
+
and the dev and test splits from QASRL-GS (Gold Standard), introduced in (Roit et. al., ACL 2020).
|
48 |
+
"""
|
49 |
+
|
50 |
+
_HOMEPAGE = "https://qasrl.org"
|
51 |
+
|
52 |
+
# TODO: Add the licence for the dataset here if you can find it
|
53 |
+
_LICENSE = ""
|
54 |
+
|
55 |
+
SpanFeatureType = datasets.Sequence(datasets.Value("int32"), length=2)
|
56 |
+
|
57 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
58 |
+
class QaSrl(datasets.GeneratorBasedBuilder):
|
59 |
+
"""QA-SRL: Question-Answer Driven Semantic Role Labeling corpus"""
|
60 |
+
|
61 |
+
VERSION = datasets.Version("1.0.0")
|
62 |
+
|
63 |
+
BUILDER_CONFIGS = [
|
64 |
+
datasets.BuilderConfig(
|
65 |
+
name="plain_text", version=VERSION, description=""
|
66 |
+
),
|
67 |
+
]
|
68 |
+
|
69 |
+
DEFAULT_CONFIG_NAME = (
|
70 |
+
"plain_text" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
71 |
+
)
|
72 |
+
|
73 |
+
def _info(self):
|
74 |
+
features = datasets.Features(
|
75 |
+
{
|
76 |
+
"sentence": datasets.Value("string"),
|
77 |
+
"sent_id": datasets.Value("string"),
|
78 |
+
"predicate_idx": datasets.Value("int32"),
|
79 |
+
"predicate": datasets.Value("string"),
|
80 |
+
"is_verbal": datasets.Value("bool"),
|
81 |
+
"verb_form": datasets.Value("string"),
|
82 |
+
"question": datasets.Sequence(datasets.Value("string")),
|
83 |
+
"answers": datasets.Sequence(datasets.Value("string")),
|
84 |
+
"answer_ranges": datasets.Sequence(SpanFeatureType)
|
85 |
+
}
|
86 |
+
)
|
87 |
+
return datasets.DatasetInfo(
|
88 |
+
# This is the description that will appear on the datasets page.
|
89 |
+
description=_DESCRIPTION,
|
90 |
+
# This defines the different columns of the dataset and their types
|
91 |
+
features=features, # Here we define them above because they are different between the two configurations
|
92 |
+
# If there's a common (input, target) tuple from the features,
|
93 |
+
# specify them here. They'll be used if as_supervised=True in
|
94 |
+
# builder.as_dataset.
|
95 |
+
supervised_keys=None,
|
96 |
+
# Homepage of the dataset for documentation
|
97 |
+
homepage=_HOMEPAGE,
|
98 |
+
# License for the dataset if available
|
99 |
+
license=_LICENSE,
|
100 |
+
# Citation for the dataset
|
101 |
+
citation=_CITATION,
|
102 |
+
)
|
103 |
+
|
104 |
+
def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager):
|
105 |
+
"""Returns SplitGenerators."""
|
106 |
+
|
107 |
+
# iterate the tar file of the corpus
|
108 |
+
|
109 |
+
# Older version of the corpus (has some format errors):
|
110 |
+
# corpus_base_path = Path(dl_manager.download_and_extract(_URLs["qasrl_v2.0"]))
|
111 |
+
# corpus_orig = corpus_base_path / "qasrl-v2" / "orig"
|
112 |
+
|
113 |
+
self.qasrl2018 = datasets.load_dataset("biu-nlp/qa_srl2018")
|
114 |
+
self.qasrl2020 = datasets.load_dataset("biu-nlp/qa_srl2020")
|
115 |
+
|
116 |
+
|
117 |
+
# TODO add optional kwarg for genre (wikinews)
|
118 |
+
return [
|
119 |
+
datasets.SplitGenerator(
|
120 |
+
name=datasets.Split.TRAIN,
|
121 |
+
# These kwargs will be passed to _generate_examples
|
122 |
+
gen_kwargs={
|
123 |
+
"dataset": self.qasrl2018["train"],
|
124 |
+
},
|
125 |
+
),
|
126 |
+
datasets.SplitGenerator(
|
127 |
+
name=datasets.Split.VALIDATION,
|
128 |
+
# These kwargs will be passed to _generate_examples
|
129 |
+
gen_kwargs={
|
130 |
+
"dataset": self.qasrl2020["validation"],
|
131 |
+
},
|
132 |
+
),
|
133 |
+
datasets.SplitGenerator(
|
134 |
+
name=datasets.Split.TEST,
|
135 |
+
# These kwargs will be passed to _generate_examples
|
136 |
+
gen_kwargs={
|
137 |
+
"dataset": self.qasrl2020["test"],
|
138 |
+
},
|
139 |
+
),
|
140 |
+
]
|
141 |
+
|
142 |
+
def _generate_examples(self, dataset):
|
143 |
+
|
144 |
+
""" Yields examples from a '.jsonl.gz' file ."""
|
145 |
+
for idx, instance in enumerate(dataset):
|
146 |
+
yield idx, instance
|
147 |
+
|