from datasets import DatasetBuilder, DatasetInfo, SplitGenerator, Split class CustomJSONLDataset(DatasetBuilder): VERSION = "1.0.0" def _info(self) -> DatasetInfo: return DatasetInfo( description="Custom dataset from local JSONL files.", features={"text": "string"}, supervised_keys=None, ) def _split_generators(self, dl_manager): urls = [f"output_json_{i}.jsonl" for i in range(2, 3)] # The download_and_extract function can handle multiple files and will # download them in parallel if possible. paths = dl_manager.download_and_extract(urls) return [ SplitGenerator( name=Split.TRAIN, gen_kwargs={"filepaths": paths}, ), ] def _generate_examples(self, filepaths): """Yields examples from the dataset.""" import json for filepath in filepaths: with open(filepath, "r", encoding="utf-8") as f: for idx, line in enumerate(f): data = json.loads(line.strip()) yield idx, {"text": data["text"]} # The following lines are useful for testing locally, to ensure the script works as expected. # They're not necessary when the script is integrated into a HuggingFace Datasets repository. if __name__ == "__main__": from datasets import load_dataset # This will use the custom dataset loading script. dataset = load_dataset("path_to_this_script.py") print(dataset["train"][0])