Italian_Parcels / convert.py
do-me's picture
Upload convert.py
82421a4 verified
import os
import zipfile
import geopandas as gpd
import pandas as pd
from tqdm import tqdm # For progress bars
import warnings
import multiprocessing as mp
import sys # Import the sys module
# Ignore specific warnings
warnings.filterwarnings("ignore", category=RuntimeWarning,
message="driver GML does not support open option DRIVER")
warnings.filterwarnings("ignore", category=RuntimeWarning,
message="Non closed ring detected. To avoid accepting it, set the OGR_GEOMETRY_ACCEPT_UNCLOSED_RING configuration option to NO")
def process_region(region_zip_path, output_dir):
"""Processes a single region zip file to extract and save commune and parcel data."""
region_name = os.path.basename(region_zip_path).replace(".zip", "") # Extract region name from filename.
all_communes = []
all_parcels = []
try:
with zipfile.ZipFile(region_zip_path, 'r') as region_zip:
city_zip_names = [f.filename for f in region_zip.filelist if f.filename.endswith('.zip')]
for city_zip_name in city_zip_names:
city_zip_path = region_zip.open(city_zip_name)
try:
with zipfile.ZipFile(city_zip_path, 'r') as city_zip:
commune_zip_names = [f.filename for f in city_zip.filelist if f.filename.endswith('.zip')]
for commune_zip_name in commune_zip_names:
try:
commune_zip_path = city_zip.open(commune_zip_name)
with zipfile.ZipFile(commune_zip_path, 'r') as commune_zip:
# Find GML files
gml_files = [f.filename for f in commune_zip.filelist if
f.filename.endswith('.gml')]
commune_gml = next((f for f in gml_files if '_map.gml' in f),
None) # Find map.gml
parcel_gml = next((f for f in gml_files if '_ple.gml' in f),
None) # Find ple.gml
if commune_gml:
try:
commune_gdf = gpd.read_file(commune_zip.open(commune_gml),
driver='GML')
all_communes.append(commune_gdf)
except Exception as e:
print(
f"Error reading commune GML {commune_gml} from {commune_zip_name}: {e}")
if parcel_gml:
try:
parcel_gdf = gpd.read_file(commune_zip.open(parcel_gml),
driver='GML')
all_parcels.append(parcel_gdf)
except Exception as e:
print(
f"Error reading parcel GML {parcel_gml} from {commune_zip_name}: {e}")
except zipfile.BadZipFile as e:
print(f"Bad Zip file encountered: {commune_zip_name} - {e}")
except Exception as e:
print(f"Error processing {commune_zip_name}: {e}")
except zipfile.BadZipFile as e:
print(f"Bad Zip file encountered: {city_zip_name} - {e}")
except Exception as e:
print(f"Error processing {city_zip_name}: {e}")
except zipfile.BadZipFile as e:
print(f"Bad Zip file encountered: {region_zip_name} - {e}")
except Exception as e:
print(f"Error processing {region_zip_name}: {e}")
# Concatenate and save for the region
try:
if all_communes:
communes_gdf = gpd.GeoDataFrame(pd.concat(all_communes, ignore_index=True))
# handle crs here.
if all_communes and hasattr(all_communes[0], 'crs') and all_communes[0].crs: # Check if not empty list
try:
communes_gdf.crs = all_communes[0].crs
except AttributeError as e:
print(f"Could not set CRS: {e}")
else:
print("WARNING: CRS information is missing from the input data.")
# Identify and convert problematic columns to strings
problem_columns = []
for col in communes_gdf.columns:
if col != 'geometry':
try:
communes_gdf[col] = pd.to_numeric(communes_gdf[col], errors='raise')
except (ValueError, TypeError):
problem_columns.append(col)
for col in problem_columns:
communes_gdf[col] = communes_gdf[col].astype(str)
# Try to set the geometry
if 'msGeometry' in communes_gdf.columns:
communes_gdf = communes_gdf.set_geometry('msGeometry')
elif 'geometry' in communes_gdf.columns:
communes_gdf = communes_gdf.set_geometry('geometry') # Already the default, but be explicit
else:
print(
"WARNING: No 'geometry' or 'msGeometry' column found in commune data. Spatial operations will not work.")
communes_gdf.to_parquet(
os.path.join(output_dir, f"{region_name}_communes.geoparquet"),
compression='gzip')
print(
f"Successfully saved {region_name} communes to {output_dir}/{region_name}_communes.geoparquet")
if all_parcels:
parcels_gdf = gpd.GeoDataFrame(pd.concat(all_parcels, ignore_index=True))
# handle crs here.
if all_parcels and hasattr(all_parcels[0], 'crs') and all_parcels[0].crs:
try:
parcels_gdf.crs = all_parcels[0].crs
except AttributeError as e:
print(f"Could not set CRS: {e}")
else:
print("WARNING: CRS information is missing from the input data.")
# Identify and convert problematic columns to strings
problem_columns = []
for col in parcels_gdf.columns:
if col != 'geometry':
try:
parcels_gdf[col] = pd.to_numeric(parcels_gdf[col], errors='raise')
except (ValueError, TypeError):
problem_columns.append(col)
for col in problem_columns:
parcels_gdf[col] = parcels_gdf[col].astype(str)
# Try to set the geometry
if 'msGeometry' in parcels_gdf.columns:
parcels_gdf = parcels_gdf.set_geometry('msGeometry')
elif 'geometry' in parcels_gdf.columns:
parcels_gdf = parcels_gdf.set_geometry('geometry') # Already the default, but be explicit
else:
print(
"WARNING: No 'geometry' or 'msGeometry' column found in parcel data. Spatial operations will not work.")
parcels_gdf.to_parquet(os.path.join(output_dir, f"{region_name}_parcels.geoparquet"),
compression='gzip')
print(
f"Successfully saved {region_name} parcels to {output_dir}/{region_name}_parcels.geoparquet")
except Exception as e:
print(f"Error saving GeoParquet files for {region_name}: {e}")
def process_italy_data_unzipped_parallel(root_dir, output_dir, num_processes=mp.cpu_count()):
"""
Processes the Italian data in parallel, leveraging multiprocessing.
"""
os.makedirs(output_dir, exist_ok=True)
region_zip_paths = [os.path.join(root_dir, f) for f in os.listdir(root_dir) if f.endswith('.zip')]
total_regions = len(region_zip_paths)
# Add this block to protect the entry point
if __name__ == '__main__':
# For macOS, you might need to set the start method to 'spawn'
if sys.platform == 'darwin':
mp.set_start_method('spawn')
with mp.Pool(processes=num_processes) as pool:
# Use pool.starmap to pass multiple arguments to process_region
results = list(tqdm(pool.starmap(process_region, [(region_zip_path, output_dir) for region_zip_path in region_zip_paths]), total=total_regions, desc="Overall Progress: Regions"))
# Example Usage:
root_dir = "ITALIA" # Path to the ITALIA directory
output_dir = "output" # Path to save the GeoParquet files
num_processes = mp.cpu_count() # Use all available CPU cores
process_italy_data_unzipped_parallel(root_dir, output_dir, num_processes)