--- language: - en - zh license: mit task_categories: - image-segmentation task_ids: - semantic-segmentation tags: - remote-sensing - change-detection - satellite-imagery - high-resolution - multi-temporal dataset_info: config_name: jl1-cd features: - name: image_pair sequence: - name: image dtype: image shape: - 512 - 512 - 3 - name: change_label dtype: image shape: - 512 - 512 - 1 splits: - name: train num_bytes: 1024000000 num_examples: 4000 - name: test num_bytes: 256000000 num_examples: 1000 download_size: 1280000000 dataset_size: 1280000000 --- # Dataset Card for JL1-CD ## Dataset Description (English) ### Overview **JL1-CD** is a large-scale, sub-meter, all-inclusive open-source dataset for remote sensing image change detection (CD). It contains 5,000 pairs of 512×512 pixel satellite images with a resolution of 0.5 to 0.75 meters, covering various types of surface changes in multiple regions of China. JL1-CD includes not only common human-induced changes (e.g., buildings, roads) but also natural changes (e.g., forests, water bodies, grasslands). The dataset aims to provide a comprehensive benchmark for change detection algorithms. ### Dataset Structure - **Number of Image Pairs**: 5,000 pairs - **Image Size**: 512×512 pixels - **Resolution**: 0.5 to 0.75 meters - **Change Types**: Human-induced changes (e.g., buildings, roads) and natural changes (e.g., forests, water bodies, grasslands) - **Dataset Split**: 4,000 pairs for training, 1,000 pairs for testing ### Dataset Features - **High Resolution**: Provides rich spatial information, facilitating visual interpretation. - **Comprehensive**: Covers various change types, enhancing the generalization capability of algorithms. - **Open Source**: The dataset is fully open-source, supporting the research community's use and improvement. ### Usage The JL1-CD dataset can be used to train and evaluate remote sensing image change detection models. The image pairs in the dataset include images from two time points along with corresponding pixel-level change labels. Users can utilize this dataset to develop, test, and optimize change detection algorithms. ### Benchmark Results The **Multi-Teacher Knowledge Distillation (MTKD)** framework proposed in the paper achieves new state-of-the-art (SOTA) results on the JL1-CD dataset. Experiments demonstrate that the MTKD framework significantly improves the performance of change detection models with various network architectures and parameter sizes. ### Code The code can be found at https://github.com/circleLZY/MTKD-CD. ### Citation If you use the JL1-CD dataset, please cite the following paper: [JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework](https://huggingface.co/papers/2502.13407) ```bibtex @article{liu2025jl1, title={JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework}, author={Liu, Ziyuan and Zhu, Ruifei and Gao, Long and Zhou, Yuanxiu and Ma, Jingyu and Gu, Yuantao}, journal={arXiv preprint arXiv:2502.13407}, year={2025} } ``` ### License The JL1-CD dataset is licensed under the **MIT License**, allowing users to freely use, modify, and distribute the dataset. ### Contact For any questions or suggestions, please contact: - **Ziyuan Liu**: liuziyua22@mails.tsinghua.edu.cn --- ## 数据集描述 (中文) ### 概述 **JL1-CD** 是一个用于遥感图像变化检测(Change Detection, CD)的大规模、亚米级、全要素开源数据集。该数据集包含 5,000 对 512×512 像素的卫星图像,分辨率为 0.5 至 0.75 米,覆盖了中国多个地区的多种地表变化类型。JL1-CD 不仅包含常见的人为变化(如建筑物、道路),还涵盖了自然变化(如森林、水体、草地等)。该数据集旨在为变化检测算法提供一个全面的基准测试平台。 ### 数据集结构 - **图像对数量**:5,000 对 - **图像尺寸**:512×512 像素 - **分辨率**:0.5 至 0.75 米 - **变化类型**:人为变化(如建筑物、道路)和自然变化(如森林、水体、草地) - **数据集划分**:4,000 对用于训练,1,000 对用于测试 ### 数据集特点 - **高分辨率**:提供丰富的空间信息,便于视觉解释。 - **综合性**:涵盖多种变化类型,提升算法的泛化能力