anonymous-submission-acl2025 commited on
Commit
a204f16
·
1 Parent(s): 80b6508
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 29/paper.pdf +3 -0
  2. 29/replication_package/Code/.Rhistory +512 -0
  3. 29/replication_package/Code/Figure 2, 3, Table SI1.R +183 -0
  4. 29/replication_package/Code/Figure 4.R +53 -0
  5. 29/replication_package/Code/Figure 5.R +145 -0
  6. 29/replication_package/Code/Figure 6, SI1.R +221 -0
  7. 29/replication_package/Code/Figure 7, SI2, SI17.R +125 -0
  8. 29/replication_package/Code/Figure 8, SI19.R +95 -0
  9. 29/replication_package/Code/Figure SI11, SI12, SI15, SI16.R +115 -0
  10. 29/replication_package/Code/Figure SI3, SI4, SI5.R +167 -0
  11. 29/replication_package/Code/Figure SI6, SI7, SI8, SI9, SI10.R +348 -0
  12. 29/replication_package/Code/LOG/log_Figure 2, 3, Table SI1.txt +3 -0
  13. 29/replication_package/Code/LOG/log_Figure 4.txt +3 -0
  14. 29/replication_package/Code/LOG/log_Figure 5.txt +3 -0
  15. 29/replication_package/Code/LOG/log_Figure 6, SI1.txt +3 -0
  16. 29/replication_package/Code/LOG/log_Figure 7, SI2, SI17.txt +3 -0
  17. 29/replication_package/Code/LOG/log_Figure 8, SI19.txt +3 -0
  18. 29/replication_package/Code/LOG/log_Figure SI11, SI12, SI15, SI16.txt +3 -0
  19. 29/replication_package/Code/LOG/log_Figure SI3, SI4, SI5.txt +3 -0
  20. 29/replication_package/Code/LOG/log_Figure SI6, SI7, SI8, SI9, SI10.txt +3 -0
  21. 29/replication_package/Code/LOG/log_SI_robust_prep.txt +3 -0
  22. 29/replication_package/Code/LOG/log_Table 1, SI3, SI4, SI5, Figure SI13, SI14.txt +3 -0
  23. 29/replication_package/Code/LOG/log_Table 2.txt +3 -0
  24. 29/replication_package/Code/LOG/log_Table 3, Figure SI18.txt +3 -0
  25. 29/replication_package/Code/LOG/log_zzSI_robust_prep.txt +3 -0
  26. 29/replication_package/Code/MASTER.R +13 -0
  27. 29/replication_package/Code/Table 1, SI3, SI4, SI5, Figure SI13, SI14.R +349 -0
  28. 29/replication_package/Code/Table 2.R +82 -0
  29. 29/replication_package/Code/Table 3, Figure SI18.R +109 -0
  30. 29/replication_package/Code/helper_functions.R +206 -0
  31. 29/replication_package/Code/zzSI_robust_prep.R +161 -0
  32. 29/replication_package/Data/Pew/biden_sanders_ideo_feb_march_PEW.csv +3 -0
  33. 29/replication_package/Data/Results/SI-data.RData +3 -0
  34. 29/replication_package/Data/Results/tjbalWgtsNEW.RData +3 -0
  35. 29/replication_package/Data/france_data.RData +3 -0
  36. 29/replication_package/Data/gtrends_data.RData +3 -0
  37. 29/replication_package/Data/mobility_data.RData +3 -0
  38. 29/replication_package/Data/nationscape_data.RData +3 -0
  39. 29/replication_package/Data/primary_data.RData +3 -0
  40. 29/replication_package/Data/replication_data.RData +3 -0
  41. 29/replication_package/Data/survey_experiment_data.RData +3 -0
  42. 29/replication_package/Figures/SI_figure1.pdf +3 -0
  43. 29/replication_package/Figures/SI_figure10.pdf +3 -0
  44. 29/replication_package/Figures/SI_figure11.pdf +3 -0
  45. 29/replication_package/Figures/SI_figure12.pdf +3 -0
  46. 29/replication_package/Figures/SI_figure13.pdf +3 -0
  47. 29/replication_package/Figures/SI_figure14.pdf +3 -0
  48. 29/replication_package/Figures/SI_figure15.pdf +3 -0
  49. 29/replication_package/Figures/SI_figure16.pdf +3 -0
  50. 29/replication_package/Figures/SI_figure17.pdf +3 -0
29/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15d29b2b15d48f28c8e6962fa1ba757e5175e6d2cf7ff1a146329c8c95a7aa2f
3
+ size 2599693
29/replication_package/Code/.Rhistory ADDED
@@ -0,0 +1,512 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ }
2
+ # Determine intervals between values of the moderator
3
+ if (incr == "default"){
4
+ increment = (max_val - min_val)/(num_points - 1)
5
+ }else{
6
+ increment = incr
7
+ }
8
+ # Create list of moderator values at which marginal effect is evaluated
9
+ x_2 <- seq(from=min_val, to=max_val, by=increment)
10
+ # Compute marginal effects
11
+ delta_1 = beta_1 + beta_3*x_2
12
+ # Compute variances
13
+ var_1 = covMat[effect,effect] + (x_2^2)*covMat[interaction, interaction] + 2*x_2*covMat[effect, interaction]
14
+ # Standard errors
15
+ se_1 = sqrt(var_1)
16
+ # Upper and lower confidence bounds
17
+ z_score = qnorm(1 - ((1 - conf)/2))
18
+ upper_bound = sapply(1:length(z_score), function(x) delta_1 + z_score[x]*se_1)
19
+ lower_bound = sapply(1:length(z_score), function(x) delta_1 - z_score[x]*se_1)
20
+ # Determine the bounds of the graphing area
21
+ max_y = max(upper_bound)
22
+ min_y = min(lower_bound)
23
+ # Make the histogram color
24
+ hist_col = colr
25
+ stars <- ifelse(abs(summary(model)$coefficients[interaction,3]) >2.6,"***",
26
+ ifelse(abs(summary(model)$coefficients[interaction,3]) > 1.96,"**",
27
+ ifelse(abs(summary(model)$coefficients[interaction,3]) > 1.65,"*","")))
28
+ est <- paste("Interaction: ",round(summary(model)$coefficients[interaction,1],3),stars," (",
29
+ round(summary(model)$coefficients[interaction,2],3),")",sep="")
30
+ # Initialize plotting window
31
+ if(plot) {
32
+ plot(x=c(), y=c(), ylim=c(min_y, max_y), xlim=c(min_val, max_val),
33
+ xlab=xlabel, ylab=ylabel, main=title)
34
+ # Plot estimated effects
35
+ if(!pointsplot) {
36
+ lines(y=delta_1, x=x_2,col = colr)
37
+ for(i in ncol(upper_bound):1) {
38
+ polygon(c(x_2,rev(x_2)),c(upper_bound[,i],rev(lower_bound[,i])),border = NA,
39
+ col = colr)
40
+ }
41
+ }else{
42
+ points(y = delta_1,x = x_2,col = colr,pch = 19)
43
+ for(i in ncol(upper_bound):1) {
44
+ segments(x_2,upper_bound[,i],x_2,lower_bound[,i],col = colr,lwd = i)
45
+ }
46
+ }
47
+ # Add a dashed horizontal line for zero
48
+ abline(h=0, lty=3)
49
+ # Add a vertical line at the mean
50
+ if (mean){
51
+ abline(v = mean(mod_frame[[moderator]]), lty=2, col="red")
52
+ }
53
+ # Add a vertical line at the median
54
+ if (median){
55
+ abline(v = median(mod_frame[[moderator]]), lty=3, col="blue")
56
+ }
57
+ # Add Rug plot
58
+ if (rugplot){
59
+ rug(mod_frame[[moderator]])
60
+ }
61
+ if (show_est) {
62
+ text(par('usr')[ 2 ], par('usr')[ 4 ],adj=c(1.05,1.2),
63
+ labels = est)
64
+ }
65
+ #Add Histogram (Histogram only plots when minimum and maximum are the min/max of the moderator)
66
+ if (histogram & minimum=="min" & maximum=="max"){
67
+ par(new=T)
68
+ hist(mod_frame[[moderator]], axes=F, xlab="", ylab="",main="", border=hist_col, col=hist_col)
69
+ }
70
+ }
71
+ return(list(delta_1 = delta_1,x_2 = x_2,ub = upper_bound,lb = lower_bound,inc = increment,est = est))
72
+ }
73
+ ####################################################################################################################### Preparing variables
74
+ Y <- paste0(c("pct_","VAP_","pcttw_"),"sanders")
75
+ D <- unlist(lapply(c("sc_","ln_"),function(x) paste0(x,paste0(c("county_","DMA_","state_"),"cases"))))
76
+ FE <- c("0","DMA_CODE","date")
77
+ covariates <- c("sc_CTY_LTHS","sc_CTY_CollUp",'caucus_switch','caucus',
78
+ "sc_CTY_LT30yo","sc_CTY_60Up",#"sc_CTY_Old_age_dep_ratio",
79
+ "sc_CTY_Below_poverty_level_AGE_18_64","sc_CTY_Female_hher_no_husbandhh",
80
+ "sc_CTY_Unem_rate_pop_16_over","sc_CTY_Labor_Force_Part_Rate_pop_16_over",
81
+ "sc_CTY_Manufactur","sc_CTY_Md_inc_hhs",
82
+ "sc_CTY_POPPCT_RURAL","sc_CTY_Speak_only_English","sc_CTY_White","sc_CTY_Black_or_African_American",
83
+ "ln_CTY_tot_pop","sc_turnout_pct_20")
84
+ ####################################################################################################################### Looping across specifications
85
+ finalDat$sc_turnout_pct_chg <- scale(finalDat$turnout_pct_chg)
86
+ finalDat$sc_VAP_turnout_20 <- scale(finalDat$VAP_turnout_20)
87
+ ####################################################################################################################### Looping across specifications
88
+ resRegs <- resBal <- resTabs <- list()
89
+ y
90
+ Y <- c('pct_sanders16')
91
+ D <- unlist(lapply(c("sc_","ln_"),function(x) paste0(x,paste0(c("county_","DMA_","state_"),"cases"))))
92
+ FE <- c("0","DMA_CODE","stab")
93
+ covariates <- c("sc_CTY_LTHS","sc_CTY_CollUp",'caucus_switch','caucus',
94
+ "sc_CTY_LT30yo","sc_CTY_60Up",#"sc_CTY_Old_age_dep_ratio",
95
+ "sc_CTY_Below_poverty_level_AGE_18_64","sc_CTY_Female_hher_no_husbandhh",
96
+ "sc_CTY_Unem_rate_pop_16_over","sc_CTY_Labor_Force_Part_Rate_pop_16_over",
97
+ "sc_CTY_Manufactur","sc_CTY_Md_inc_hhs",
98
+ "sc_CTY_POPPCT_RURAL","sc_CTY_Speak_only_English",
99
+ "sc_CTY_White","sc_CTY_Black_or_African_American",
100
+ "ln_CTY_tot_pop","sc_turnout_pct_20")
101
+ ####################################################################################################################### Looping across specifications
102
+ resRegs <- resBal <- resTabs <- list()
103
+ for(y in Y) {
104
+ for(d in D[c(1:3)]) {
105
+ for(fe in FE) {
106
+ stars <- list()
107
+ for(dateThresh in c("2020-01-01","2020-03-01")) {
108
+ if(dateThresh == '2020-03-01') {
109
+ covs <- covariates[-which(covariates == 'caucus')]
110
+ } else {
111
+ covs <- covariates
112
+ }
113
+ if(!is.null(resRegs[[y]][[d]][[fe]][[dateThresh]]$basic$felm$cont)) { next }
114
+ finalDat$treatBin <- ifelse(finalDat[[gsub("sc_|ln_","",d)]] > 1,1,0)
115
+ foranal.weight <- finalDat %>% select(y,d,treatBin,gsub("sc_|ln_","",d),DMA_CODE,date,stab,covs) %>%
116
+ filter(complete.cases(.),date >= as.Date(dateThresh))
117
+ m.out <- matchit(formula = as.formula(paste("treatBin ~ ",paste(covs,collapse = " + "))),
118
+ data = foranal.weight,
119
+ method = "nearest",
120
+ distance = "mahalanobis")
121
+ m.data <- match.data(m.out)
122
+ W.out <- weightit(formula(paste0("treatBin ~ ",paste(covs,collapse = " + "))),
123
+ data = foranal.weight, estimand = "ATT", method = "cbps")
124
+ # Balance tables
125
+ balt.pre <- bal.tab(formula(paste0("treatBin ~ ",paste(covs,collapse = " + "))),
126
+ data = foranal.weight, estimand = "ATT",m.threshold = .05)
127
+ balt.post <- bal.tab(W.out, m.threshold = .05, disp.v.ratio = TRUE)
128
+ unm <- data.frame(Covs = rownames(balt.pre$Balance),
129
+ balt.pre$Balance %>% mutate(Diff_Unm = round(Diff.Un,2),
130
+ Bal_Test_Unm = M.Threshold.Un)) %>%
131
+ select(Covs,Diff_Unm,Bal_Test_Unm)
132
+ match <- data.frame(Covs = rownames(balt.post$Balance),
133
+ balt.post$Balance %>% mutate(Diff_Match = round(Diff.Adj,2),
134
+ Bal_Test_Match = M.Threshold)) %>%
135
+ select(Covs,Diff_Match,Bal_Test_Match)
136
+ # balTab <- match %>% left_join(unm) %>% select(Covs,Diff_Unm,Bal_Test_Unm,Diff_Match,Bal_Test_Match)
137
+ # balTab$Covs <- Hmisc::capitalize(trimws(gsub("manufactur","Manufacturing",gsub("labor force part rate","LFPR",
138
+ # gsub("hher|hhs","HH",gsub("bachelor s","Bachelor's",gsub("_"," ",gsub("sc_|cty_|age_18_64|pop_16_over|hh$|poppct","",tolower(balTab$Covs)))))))))
139
+ # resBal[[y]][[d]][[fe]][[dateThresh]]$balTab <- balTab
140
+ # resBal[[y]][[d]][[fe]][[dateThresh]]$balPlot <- qqprep(m.out)
141
+ # Basic
142
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$basic$felm$cont <- summary(stars$cont[[paste0(dateThresh,"_1")]] <- felm(as.formula(paste0("scale(",y,") ~ ",d," + ",paste(c(covs),collapse = " + ")," | ",fe," | 0 | ",fe)),finalDat %>% filter(date >= as.Date(dateThresh))))$coefficients
143
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$basic$felm$bin <- summary(stars$bin[[paste0(dateThresh,"_1")]] <- felm(as.formula(paste0("scale(",y,") ~ treatBin + ",paste(c(covs),collapse = " + ")," | ",fe," | 0 | ",fe)),finalDat %>% filter(date >= as.Date(dateThresh))))$coefficients
144
+ # Matching
145
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$matching$felm$cont <- summary(stars$cont[[paste0(dateThresh,"_2")]] <- felm(as.formula(paste0("scale(",y,") ~ ",d," + ",paste(c(covs),collapse = " + ")," | ",fe," | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients
146
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$matching$felm$bin <- summary(stars$bin[[paste0(dateThresh,"_2")]] <- felm(as.formula(paste0("scale(",y,") ~ treatBin + ",paste(c(covs),collapse = " + ")," | ",fe," | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients
147
+ # Weighting
148
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$weighting$felm$cont <- summary(stars$cont[[paste0(dateThresh,"_3")]] <- felm(as.formula(paste0("scale(",y,") ~ ",d," + ",paste(c(covs),collapse = " + ")," | ",fe," | 0 | ",fe)),foranal.weight,weights = W.out$weights))$coefficients
149
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$weighting$felm$bin <- summary(stars$bin[[paste0(dateThresh,"_3")]] <- felm(as.formula(paste0("scale(",y,") ~ treatBin + ",paste(c(covs),collapse = " + ")," | ",fe," | 0 | ",fe)),foranal.weight,weights = W.out$weights))$coefficients
150
+ if(fe != "0") {
151
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$basic$lmer <- summary(lmer(as.formula(paste0("scale(",y,") ~ ",d," + ",paste(c(covs),collapse = " + ")," + (1| ",fe,")")),finalDat %>% filter(date >= as.Date(dateThresh))))$coefficients
152
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$matching$lmer <- summary(lmer(as.formula(paste0("scale(",y,") ~ ",d," + ",paste(c(covs),collapse = " + ")," + (1| ",fe,")")),m.data,weights = m.data$weights))$coefficients
153
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$weighting$lmer <- summary(lmer(as.formula(paste0("scale(",y,") ~ ",d," + ",paste(c(covs),collapse = " + ")," + (1| ",fe,")")),foranal.weight,weights = W.out$weights))$coefficients
154
+ }
155
+ # covars <- rownames(stars$cont[[1]]$coefficients)
156
+ # labs <- gsub("Lths","LTHS",gsub("Collup","Coll. Up",gsub("Md inc HH","Med HH Inc",gsub("Sc ","",gsub(" or african american|band$","",Hmisc::capitalize(trimws(gsub("manufactur","manufacturing",gsub("hher|hhs","HH",gsub("labor force part rate","LFPR",gsub("bachelor s","bachelor's",gsub("age 18 64|pop 16 over|hh$|poppct","",gsub("\\_"," ",gsub("^sc_|^.*cty\\_","",tolower(covars)))))))))))))))
157
+ # resTabs[[y]][[d]][[fe]]$cont$html <- stargazer(stars$cont,type = "html",keep.stat = c("n","rsq"),covariate.labels = labs)
158
+ # resTabs[[y]][[d]][[fe]]$cont$tex <- stargazer(stars$cont,keep.stat = c("n","rsq"),covariate.labels = labs)
159
+ # covars <- rownames(stars$bin[[1]]$coefficients)
160
+ # labs <- gsub("Lths","LTHS",gsub("Collup","Coll. Up",gsub("Md inc HH","Med HH Inc",gsub("Sc ","",gsub(" or african american|band$","",Hmisc::capitalize(trimws(gsub("manufactur","manufacturing",gsub("hher|hhs","HH",gsub("labor force part rate","LFPR",gsub("bachelor s","bachelor's",gsub("age 18 64|pop 16 over|hh$|poppct","",gsub("\\_"," ",gsub("^sc_|^.*cty\\_","",tolower(covars)))))))))))))))
161
+ # resTabs[[y]][[d]][[fe]]$bin$html <- stargazer(stars$bin,type = "html",keep.stat = c("n","rsq"),covariate.labels = labs)
162
+ # resTabs[[y]][[d]][[fe]]$bin$tex <- stargazer(stars$bin,keep.stat = c("n","rsq"),covariate.labels = labs)
163
+ }
164
+ }
165
+ cat(y,"\n")
166
+ }
167
+ }
168
+ toplot <- NULL
169
+ for(fe in names(resRegs$pct_sanders16$sc_DMA_cases)) {
170
+ for(mod in c('basic','matching','weighting')) {
171
+ for(meas in c('bin','cont')) {
172
+ tmp <- resRegs$pct_sanders16$sc_DMA_cases[[fe]]$`2020-01-01`[[mod]]$felm[[meas]][2,]
173
+ if(is.null(tmp)) { next }
174
+ tmp <- data.frame(t(tmp))
175
+ colnames(tmp) <- c('est','se','tstat','pval')
176
+ tmp$fe <- fe
177
+ tmp$mod <- mod
178
+ tmp$meas <- meas
179
+ toplot <- bind_rows(toplot,tmp)
180
+ }
181
+ }
182
+ }
183
+ toplot %>%
184
+ filter(meas != 'cont') %>%
185
+ mutate(fe = factor(ifelse(fe == 0,'None',
186
+ ifelse(fe == 'DMA_CODE','DMA','State')),levels = c('None','DMA','State'))) %>%
187
+ ggplot(aes(x = fe,y = est,color = mod)) +
188
+ geom_point(position = position_dodge(width = .2)) +
189
+ geom_errorbar(aes(ymin = est - 2*se,ymax = est+2*se),width = .1,
190
+ position = position_dodge(width = .2)) +
191
+ geom_hline(yintercept = 0,linetype = 'dashed') +
192
+ scale_color_manual(name = 'Model',values = c('basic' = 'grey70',
193
+ 'matching' = 'grey40',
194
+ 'weighting' = 'black')) +
195
+ xlab('Fixed Effect') + ylab('Effect of Covid Exposure on Bernie 2016') +
196
+ theme_ridges()
197
+ list.files('./')
198
+ # Master script
199
+ for(f in list.files('./')) {
200
+ if(grepl('helper_functions|MASTER|LOG',f)) { next }
201
+ # stop()
202
+ con <- file(paste0('./LOG/log_',gsub('.R','.txt',f)))
203
+ cat(f,'\n')
204
+ sink(con,append = TRUE)
205
+ sink(con,append = TRUE,type = 'message')
206
+ source(f,echo = T,max.deparse.length = 10000)
207
+ sink()
208
+ sink(type = 'message')
209
+ }
210
+ list.files('./')
211
+ file.exits(paste0('./LOG/log_',gsub('.R','.txt',f)))
212
+ file.exists(paste0('./LOG/log_',gsub('.R','.txt',f)))
213
+ # Master script
214
+ for(f in list.files('./')) {
215
+ if(grepl('helper_functions|MASTER|LOG',f)) { next }
216
+ if(file.exists(paste0('./LOG/log_',gsub('.R','.txt',f)))) { next }
217
+ # stop()
218
+ con <- file(paste0('./LOG/log_',gsub('.R','.txt',f)))
219
+ cat(f,'\n')
220
+ sink(con,append = TRUE)
221
+ sink(con,append = TRUE,type = 'message')
222
+ source(f,echo = T,max.deparse.length = 10000)
223
+ sink()
224
+ sink(type = 'message')
225
+ }
226
+ require(lme4)
227
+ require(lfe)
228
+ require(MatchIt)
229
+ require(WeightIt)
230
+ require(tjbal)
231
+ require(optmatch)
232
+ require(stargazer)
233
+ require(cobalt)
234
+ require(gridExtra)
235
+ require(ggridges)
236
+ require(ggrepel)
237
+ require(CBPS)
238
+ require(tidyverse)
239
+ rm(list = ls())
240
+ gc()
241
+ ####################################################################################################################### Loading data
242
+ load('../Data/replication_data.RData')
243
+ ####################################################################################################################### Loading functions
244
+ source('./helper_functions.R')
245
+ # ####################################################################################################################### Command line arguments
246
+ # args <- commandArgs(trailingOnly = T)
247
+ # # args <- c(3,2,2,2)
248
+ # # Y: 1-3
249
+ # # D: 1-2
250
+ # # FE: 1-4
251
+ # # GEO: 1-2
252
+ # yInd <- as.numeric(args[1])
253
+ # dInd <- as.numeric(args[2])
254
+ # feInd <- as.numeric(args[3])
255
+ # geoInd <- as.numeric(args[4])
256
+ ####################################################################################################################### Preparing variables
257
+ Y <- paste0(c("pct_","VAP_","pcttw_"),"sanders")
258
+ D <- unlist(lapply(c("sc_","ln_"),function(x) paste0(x,paste0(c("county_","DMA_","state_"),"cases"))))
259
+ FE <- c("0","DMA_CODE","date")
260
+ covariates <- c("sc_CTY_LTHS","sc_CTY_CollUp",
261
+ "sc_CTY_LT30yo","sc_CTY_60Up",
262
+ "sc_CTY_Below_poverty_level_AGE_18_64","sc_CTY_Female_hher_no_husbandhh",
263
+ "sc_CTY_Unem_rate_pop_16_over","sc_CTY_Labor_Force_Part_Rate_pop_16_over",
264
+ "sc_CTY_Manufactur","sc_CTY_Md_inc_hhs",
265
+ "sc_CTY_POPPCT_RURAL","sc_CTY_Speak_only_English","sc_CTY_White","sc_CTY_Black_or_African_American",
266
+ "ln_CTY_tot_pop","sc_turnout_pct_20")
267
+ set.seed(123)
268
+ resSI <- list()
269
+ for(y in 'pcttw_sanders') {
270
+ for(fe in c('DMA_CODE','0')) {
271
+ for(geo in 'DMA_') {
272
+ for(d in c('March10Cases','March17Cases')) {
273
+ for(pre in c("2020-03-01","2020-03-03","2020-03-10","2020-03-17")) {
274
+ for(post in c("2020-03-01","2020-03-03","2020-03-10","2020-03-17")) {
275
+ if(pre == post) { next }
276
+ if(pre == "2020-03-01") {
277
+ finalDat$post <- ifelse(finalDat$date == as.Date(post),1,
278
+ ifelse(finalDat$date <= as.Date(pre),0,NA))
279
+ } else if(post == "2020-03-01") {
280
+ finalDat$post <- ifelse(finalDat$date <= as.Date(post),1,
281
+ ifelse(finalDat$date == as.Date(pre),0,NA))
282
+ } else {
283
+ finalDat$post <- ifelse(finalDat$date == as.Date(post),1,
284
+ ifelse(finalDat$date == as.Date(pre),0,NA))
285
+ }
286
+ finalDat$treatBin <- ifelse(finalDat[[paste0(geo,d)]] > 1,1,0)
287
+ finalDat$treat <- ifelse(finalDat$post == 1 & finalDat$treatBin == 1,1,0)
288
+ tmpAnal <- finalDat %>% select(Y,treat,treatBin,c(covariates,paste0(y,"16")),pcttw_sanders16,VAP_sanders16,DMA_CODE,date,stab,matches("cases"),post) %>% filter(complete.cases(.))
289
+ m.out <- matchit(formula = as.formula(paste("treatBin ~ ",paste(c(covariates,paste0(y,"16")),collapse = " + "))),
290
+ data = tmpAnal,
291
+ method = "nearest",
292
+ distance = "mahalanobis")
293
+ m.data <- match.data(m.out)
294
+ W.out <- weightit(formula(paste0("treatBin ~ ",paste(c(covariates,paste0(y,"16")),collapse = " + "))),
295
+ data = tmpAnal, estimand = "ATT", method = "cbps")
296
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$bin <- summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients
297
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$cont <- summary(felm(as.formula(paste0('scale(',y,") ~ ",paste0("scale(",geo,d,")")," + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients
298
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$did$coefs <- summary(tmp <- felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients
299
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$did$mfx <- interaction_plot_continuous(tmp,num_points = 2,pointsplot = T)
300
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$bin <- summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients
301
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$cont <- summary(felm(as.formula(paste0('scale(',y,") ~ ",paste0("scale(",geo,d,")")," + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients
302
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$did$coefs <- summary(tmp <- felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients
303
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$did$mfx <- interaction_plot_continuous(tmp,num_points = 2,pointsplot = T)
304
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$bin <- summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients
305
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$cont <- summary(felm(as.formula(paste0('scale(',y,") ~ ",paste0("scale(",geo,d,")")," + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients
306
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$did$coefs <- summary(tmp <- felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients
307
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$did$mfx <- interaction_plot_continuous(tmp,num_points = 2,pointsplot = T)
308
+ # Permutation SHEEYAHT
309
+ basic.bin.plac <- basic.cont.plac <- basic.did.plac <- matching.bin.plac <- matching.cont.plac <- matching.did.plac <- weighting.bin.plac <- weighting.cont.plac <- weighting.did.plac <- NULL
310
+ for(bs in 1:100) {
311
+ tmpAnal$perm <- sample(tmpAnal[[paste0(geo,d)]],size = nrow(tmpAnal))
312
+ tmpAnal$treatBin <- ifelse(tmpAnal$perm > 1,1,0)
313
+ tmpAnal$treat <- ifelse(tmpAnal$post == 1 & tmpAnal$treatBin == 1,1,0)
314
+ m.out <- matchit(formula = as.formula(paste("treatBin ~ ",paste(c(covariates,paste0(y,"16")),collapse = " + "))),
315
+ data = tmpAnal,
316
+ method = "full",
317
+ distance = "mahalanobis")
318
+ m.data <- match.data(m.out)
319
+ W.out <- weightit(formula(paste0("treatBin ~ ",paste(c(covariates,paste0(y,"16")),collapse = " + "))),
320
+ data = tmpAnal, estimand = "ATT", method = "cbps")
321
+ test <- tryCatch(felm(as.formula(paste0('scale(',y,") ~ ",paste0("scale(",geo,d,")")," + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights),error = function(e) e)
322
+ if(inherits(test,"error")) { next }
323
+ basic.bin.plac <- c(basic.bin.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients['treat',1])
324
+ basic.cont.plac <- c(basic.cont.plac,summary(felm(as.formula(paste0('scale(',y,") ~ scale(perm) + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients["scale(perm)",1])
325
+ basic.did.plac <- c(basic.did.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients["treatBin:post",1])
326
+ matching.bin.plac <- c(matching.bin.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients['treat',1])
327
+ matching.cont.plac <- c(matching.cont.plac,summary(felm(as.formula(paste0('scale(',y,") ~ scale(perm) + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients["scale(perm)",1])
328
+ matching.did.plac <- c(matching.did.plac,
329
+ summary(felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients["treatBin:post",1])
330
+ weighting.bin.plac <- c(weighting.bin.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients['treat',1])
331
+ weighting.cont.plac <- c(weighting.cont.plac,summary(felm(as.formula(paste0('scale(',y,") ~ scale(perm) + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients["scale(perm)",1])
332
+ weighting.did.plac <- c(weighting.did.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients["treatBin:post",1])
333
+ cat(".")
334
+ }
335
+ cat('\n')
336
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$plac$bin <- basic.bin.plac
337
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$plac$cont <- basic.cont.plac
338
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$plac$did <- basic.did.plac
339
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$plac$bin <- matching.bin.plac
340
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$plac$cont <- matching.cont.plac
341
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$plac$did <- matching.did.plac
342
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$plac$bin <- weighting.bin.plac
343
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$plac$cont <- weighting.cont.plac
344
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$plac$did <- weighting.did.plac
345
+ }
346
+ }
347
+ }
348
+ }
349
+ }
350
+ cat(y," done\n")
351
+ }
352
+ require(lme4)
353
+ require(lfe)
354
+ require(MatchIt)
355
+ require(WeightIt)
356
+ require(tjbal)
357
+ require(optmatch)
358
+ require(stargazer)
359
+ require(cobalt)
360
+ require(gridExtra)
361
+ require(ggridges)
362
+ require(ggrepel)
363
+ require(CBPS)
364
+ require(tidyverse)
365
+ rm(list = ls())
366
+ gc()
367
+ ####################################################################################################################### Loading data
368
+ load('../Data/replication_data.RData')
369
+ ####################################################################################################################### Loading functions
370
+ source('./helper_functions.R')
371
+ # ####################################################################################################################### Command line arguments
372
+ # args <- commandArgs(trailingOnly = T)
373
+ # # args <- c(3,2,2,2)
374
+ # # Y: 1-3
375
+ # # D: 1-2
376
+ # # FE: 1-4
377
+ # # GEO: 1-2
378
+ # yInd <- as.numeric(args[1])
379
+ # dInd <- as.numeric(args[2])
380
+ # feInd <- as.numeric(args[3])
381
+ # geoInd <- as.numeric(args[4])
382
+ ####################################################################################################################### Preparing variables
383
+ Y <- paste0(c("pct_","VAP_","pcttw_"),"sanders")
384
+ D <- unlist(lapply(c("sc_","ln_"),function(x) paste0(x,paste0(c("county_","DMA_","state_"),"cases"))))
385
+ FE <- c("0","DMA_CODE","date")
386
+ covariates <- c("sc_CTY_LTHS","sc_CTY_CollUp",
387
+ "sc_CTY_LT30yo","sc_CTY_60Up",
388
+ "sc_CTY_Below_poverty_level_AGE_18_64","sc_CTY_Female_hher_no_husbandhh",
389
+ "sc_CTY_Unem_rate_pop_16_over","sc_CTY_Labor_Force_Part_Rate_pop_16_over",
390
+ "sc_CTY_Manufactur","sc_CTY_Md_inc_hhs",
391
+ "sc_CTY_POPPCT_RURAL","sc_CTY_Speak_only_English","sc_CTY_White","sc_CTY_Black_or_African_American",
392
+ "ln_CTY_tot_pop","sc_turnout_pct_20")
393
+ set.seed(123)
394
+ resSI <- list()
395
+ for(y in 'pcttw_sanders') {
396
+ for(fe in c('DMA_CODE','0')) {
397
+ for(geo in 'DMA_') {
398
+ for(d in c('March10Cases','March17Cases')) {
399
+ for(pre in c("2020-03-01","2020-03-03","2020-03-10","2020-03-17")) {
400
+ for(post in c("2020-03-01","2020-03-03","2020-03-10","2020-03-17")) {
401
+ if(pre == post) { next }
402
+ if(pre == "2020-03-01") {
403
+ finalDat$post <- ifelse(finalDat$date == as.Date(post),1,
404
+ ifelse(finalDat$date <= as.Date(pre),0,NA))
405
+ } else if(post == "2020-03-01") {
406
+ finalDat$post <- ifelse(finalDat$date <= as.Date(post),1,
407
+ ifelse(finalDat$date == as.Date(pre),0,NA))
408
+ } else {
409
+ finalDat$post <- ifelse(finalDat$date == as.Date(post),1,
410
+ ifelse(finalDat$date == as.Date(pre),0,NA))
411
+ }
412
+ finalDat$treatBin <- ifelse(finalDat[[paste0(geo,d)]] > 1,1,0)
413
+ finalDat$treat <- ifelse(finalDat$post == 1 & finalDat$treatBin == 1,1,0)
414
+ tmpAnal <- finalDat %>% select(Y,treat,treatBin,c(covariates,paste0(y,"16")),pcttw_sanders16,VAP_sanders16,DMA_CODE,date,stab,matches("cases"),post) %>% filter(complete.cases(.))
415
+ m.out <- matchit(formula = as.formula(paste("treatBin ~ ",paste(c(covariates,paste0(y,"16")),collapse = " + "))),
416
+ data = tmpAnal,
417
+ method = "nearest",
418
+ distance = "mahalanobis")
419
+ m.data <- match.data(m.out)
420
+ W.out <- weightit(formula(paste0("treatBin ~ ",paste(c(covariates,paste0(y,"16")),collapse = " + "))),
421
+ data = tmpAnal, estimand = "ATT", method = "cbps")
422
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$bin <- summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients
423
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$cont <- summary(felm(as.formula(paste0('scale(',y,") ~ ",paste0("scale(",geo,d,")")," + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients
424
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$did$coefs <- summary(tmp <- felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients
425
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$did$mfx <- interaction_plot_continuous(tmp,num_points = 2,pointsplot = T)
426
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$bin <- summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients
427
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$cont <- summary(felm(as.formula(paste0('scale(',y,") ~ ",paste0("scale(",geo,d,")")," + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients
428
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$did$coefs <- summary(tmp <- felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients
429
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$did$mfx <- interaction_plot_continuous(tmp,num_points = 2,pointsplot = T)
430
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$bin <- summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients
431
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$cont <- summary(felm(as.formula(paste0('scale(',y,") ~ ",paste0("scale(",geo,d,")")," + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients
432
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$did$coefs <- summary(tmp <- felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients
433
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$did$mfx <- interaction_plot_continuous(tmp,num_points = 2,pointsplot = T)
434
+ # Permutation SHEEYAHT
435
+ basic.bin.plac <- basic.cont.plac <- basic.did.plac <- matching.bin.plac <- matching.cont.plac <- matching.did.plac <- weighting.bin.plac <- weighting.cont.plac <- weighting.did.plac <- NULL
436
+ for(bs in 1:100) {
437
+ tmpAnal$perm <- sample(tmpAnal[[paste0(geo,d)]],size = nrow(tmpAnal))
438
+ tmpAnal$treatBin <- ifelse(tmpAnal$perm > 1,1,0)
439
+ tmpAnal$treat <- ifelse(tmpAnal$post == 1 & tmpAnal$treatBin == 1,1,0)
440
+ m.out <- matchit(formula = as.formula(paste("treatBin ~ ",paste(c(covariates,paste0(y,"16")),collapse = " + "))),
441
+ data = tmpAnal,
442
+ method = "full",
443
+ distance = "mahalanobis")
444
+ m.data <- match.data(m.out)
445
+ W.out <- weightit(formula(paste0("treatBin ~ ",paste(c(covariates,paste0(y,"16")),collapse = " + "))),
446
+ data = tmpAnal, estimand = "ATT", method = "cbps")
447
+ test <- tryCatch(felm(as.formula(paste0('scale(',y,") ~ ",paste0("scale(",geo,d,")")," + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights),error = function(e) e)
448
+ if(inherits(test,"error")) { next }
449
+ basic.bin.plac <- c(basic.bin.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients['treat',1])
450
+ basic.cont.plac <- c(basic.cont.plac,summary(felm(as.formula(paste0('scale(',y,") ~ scale(perm) + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients["scale(perm)",1])
451
+ basic.did.plac <- c(basic.did.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients["treatBin:post",1])
452
+ matching.bin.plac <- c(matching.bin.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients['treat',1])
453
+ matching.cont.plac <- c(matching.cont.plac,summary(felm(as.formula(paste0('scale(',y,") ~ scale(perm) + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients["scale(perm)",1])
454
+ matching.did.plac <- c(matching.did.plac,
455
+ summary(felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients["treatBin:post",1])
456
+ weighting.bin.plac <- c(weighting.bin.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients['treat',1])
457
+ weighting.cont.plac <- c(weighting.cont.plac,summary(felm(as.formula(paste0('scale(',y,") ~ scale(perm) + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients["scale(perm)",1])
458
+ weighting.did.plac <- c(weighting.did.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients["treatBin:post",1])
459
+ cat(".")
460
+ }
461
+ cat('\n')
462
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$plac$bin <- basic.bin.plac
463
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$plac$cont <- basic.cont.plac
464
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$plac$did <- basic.did.plac
465
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$plac$bin <- matching.bin.plac
466
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$plac$cont <- matching.cont.plac
467
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$plac$did <- matching.did.plac
468
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$plac$bin <- weighting.bin.plac
469
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$plac$cont <- weighting.cont.plac
470
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$plac$did <- weighting.did.plac
471
+ }
472
+ }
473
+ }
474
+ }
475
+ }
476
+ cat(y," done\n")
477
+ }
478
+ # Master script
479
+ for(f in list.files('./')) {
480
+ if(grepl('helper_functions|MASTER|LOG',f)) { next }
481
+ if(file.exists(paste0('./LOG/log_',gsub('.R','.txt',f)))) { next }
482
+ stop()
483
+ con <- file(paste0('./LOG/log_',gsub('.R','.txt',f)))
484
+ cat(f,'\n')
485
+ sink(con,append = TRUE)
486
+ sink(con,append = TRUE,type = 'message')
487
+ source(f,echo = T,max.deparse.length = 10000)
488
+ sink()
489
+ sink(type = 'message')
490
+ }
491
+ f
492
+ # stop()
493
+ con <- file(paste0('./LOG/log_',gsub('.R','.txt',f)))
494
+ cat(f,'\n')
495
+ sink(con,append = TRUE)
496
+ sink(con,append = TRUE,type = 'message')
497
+ source(f,echo = T,max.deparse.length = 10000)
498
+ sink()
499
+ sink(type = 'message')
500
+ # Master script
501
+ for(f in list.files('./')) {
502
+ if(grepl('helper_functions|MASTER|LOG',f)) { next }
503
+ if(file.exists(paste0('./LOG/log_',gsub('.R','.txt',f)))) { next }
504
+ # stop()
505
+ con <- file(paste0('./LOG/log_',gsub('.R','.txt',f)))
506
+ cat(f,'\n')
507
+ sink(con,append = TRUE)
508
+ sink(con,append = TRUE,type = 'message')
509
+ source(f,echo = T,max.deparse.length = 10000)
510
+ sink()
511
+ sink(type = 'message')
512
+ }
29/replication_package/Code/Figure 2, 3, Table SI1.R ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File name: figure2_figure3_SItable1.R
2
+ # In:
3
+ # - replication_data.RData
4
+ # Out:
5
+ # - /Figures/figure2.pdf
6
+ # - /Figures/figure3.pdf
7
+ # - /Tables/SI-table1.tex
8
+
9
+ require(lme4)
10
+ require(lfe)
11
+ require(MatchIt)
12
+ require(WeightIt)
13
+ require(tjbal)
14
+ require(optmatch)
15
+ require(stargazer)
16
+ require(cobalt)
17
+ require(tidyverse)
18
+ require(sf)
19
+ require(leaflet)
20
+ require(ggridges)
21
+ require(ggthemes)
22
+ require(gridExtra)
23
+
24
+ rm(list = ls())
25
+ gc()
26
+ ########################################################################################## Loading data
27
+ load('../Data/replication_data.RData')
28
+
29
+
30
+ # Figure 2: Map (compressed to PNG in manuscript)
31
+ toplot <- maps$county %>% filter(!state %in% c("Alaska","Hawaii"))
32
+ toplot$DMA.CODE[which(toplot$state == 'Texas' & toplot$name %in% c('Throckmorton','Knox'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Texas' & toplot$name %in% c('Baylor'))])
33
+ toplot$DMA.CODE[which(toplot$state == 'Texas' & toplot$name %in% c('Montague'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Texas' & toplot$name %in% c('Wise'))])
34
+ toplot$DMA.CODE[which(toplot$state == 'Colorado' & toplot$name %in% c('Cheyenne'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Colorado' & toplot$name %in% c('Kiowa'))])
35
+ toplot$DMA.CODE[which(toplot$state == 'Nebraska' & toplot$name %in% c('Hooker','Arthur','Blaine'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Nebraska' & toplot$name %in% c('Thomas'))])
36
+ toplot$DMA.CODE[which(toplot$state == 'Wyoming' & toplot$name %in% c('Johnson'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Wyoming' & toplot$name %in% c('Natrona'))])
37
+ toplot$DMA.CODE[which(toplot$state == 'Iowa' & toplot$name %in% c('Emmet'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Minnesota' & toplot$name %in% c('Martin'))])
38
+ toplot$DMA.CODE[which(toplot$state == 'Minnesota' & toplot$name %in% c('Nicollet'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Minnesota' & toplot$name %in% c('Sibley'))])
39
+ toplot$DMA.CODE[which(toplot$state == 'Illinois' & toplot$name %in% c('Edgar'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Illinois' & toplot$name %in% c('Clark'))])
40
+ toplot$DMA.CODE[which(toplot$state == 'Kentucky' & toplot$name %in% c('Adair','Cumberland'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Kentucky' & toplot$name %in% c('Metcalfe'))])
41
+ toplot$DMA.CODE[which(toplot$state == 'Ohio' & toplot$name %in% c('Athens'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Ohio' & toplot$name %in% c('Meigs'))])
42
+ toplot$DMA.CODE[which(toplot$state == 'Ohio' & toplot$name %in% c('Guernsey','Noble'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Ohio' & toplot$name %in% c('Belmont'))])
43
+ toplot$DMA.CODE[which(toplot$state == 'Arkansas' & toplot$name %in% c('Nevada'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Arkansas' & toplot$name %in% c('Columbia'))])
44
+ toplot$DMA.CODE[which(toplot$state == 'Tennessee' & toplot$name %in% c('Gibson','Chester'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Tennessee' & toplot$name %in% c('McNairy'))])
45
+ toplot$DMA.CODE[which(toplot$state == 'South Carolina' & toplot$name %in% c('Saluda'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'South Carolina' & toplot$name %in% c('Edgefield'))])
46
+ toplot$DMA.CODE[which(toplot$state == 'California' & toplot$name %in% c('Modoc'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'California' & toplot$name %in% c('Siskiyou'))])
47
+ toplot$DMA.CODE[which(toplot$state == 'Arkansas' & toplot$name %in% c('Johnson'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Arkansas' & toplot$name %in% c('Pope'))])
48
+ toplot$DMA.CODE[which(toplot$state == 'Colorado' & toplot$name %in% c('Custer'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Colorado' & toplot$name %in% c('Saguache'))])
49
+ toplot$DMA.CODE[which(toplot$state == 'Wyoming' & toplot$name %in% c('Lincoln'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Wyoming' & toplot$name %in% c('Teton'))])
50
+ toplot$DMA.CODE[which(toplot$state == 'Nebraska' & toplot$name %in% c('Banner'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Nebraska' & toplot$name %in% c('Morrill'))])
51
+ toplot$DMA.CODE[which(toplot$state == 'South Dakota' & toplot$name %in% c('Jones'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'South Dakota' & toplot$name %in% c('Lyman'))])
52
+ toplot$DMA.CODE[which(toplot$state == 'South Dakota' & toplot$name %in% c('Dewey','Campbell'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'South Dakota' & toplot$name %in% c('Corson'))])
53
+ toplot$DMA.CODE[which(toplot$state == 'Iowa' & toplot$name %in% c('Adams'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Iowa' & toplot$name %in% c('Montgomery'))])
54
+ toplot$DMA.CODE[which(toplot$state == 'Missouri' & toplot$name %in% c('Mercer'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Iowa' & toplot$name %in% c('Decatur'))])
55
+ toplot$DMA.CODE[which(toplot$state == 'Missouri' & toplot$name %in% c('Phelps'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Missouri' & toplot$name %in% c('Pulaski'))])
56
+ toplot$DMA.CODE[which(toplot$state == 'Missouri' & toplot$name %in% c('Reynolds'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Missouri' & toplot$name %in% c('Wayne'))])
57
+ toplot$DMA.CODE[which(toplot$state == 'Oklahoma' & toplot$name %in% c('Ottawa'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Kansas' & toplot$name %in% c('Cherokee'))])
58
+ toplot$DMA.CODE[which(toplot$state == 'Kentucky' & toplot$name %in% c('Magoffin'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Kentucky' & toplot$name %in% c('Johnson'))])
59
+ toplot$DMA.CODE[which(toplot$state == 'Pennsylvania' & toplot$name %in% c('Franklin'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Pennsylvania' & toplot$name %in% c('Fulton'))])
60
+ toplot$DMA.CODE[which(toplot$state == 'Ohio' & toplot$name %in% c('Auglaize'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Ohio' & toplot$name %in% c('Shelby'))])
61
+ toplot$DMA.CODE[which(toplot$state == 'Georgia' & toplot$name %in% c('Taylor'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Georgia' & toplot$name %in% c('Marion'))])
62
+ toplot$DMA.CODE[which(toplot$state == 'Illinois' & toplot$name %in% c('Cass'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Illinois' & toplot$name %in% c('Brown'))])
63
+ toplot$DMA.CODE[which(toplot$state == 'Tennessee' & toplot$name %in% c('Wayne'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Alabama' & toplot$name %in% c('Lauderdale'))])
64
+ toplot$DMA.CODE[which(toplot$state == 'Texas' & toplot$name %in% c('Red River','Camp'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Texas' & toplot$name %in% c('Titus'))])
65
+ toplot$DMA.CODE[which(toplot$state == 'Nebraska' & toplot$name %in% c('Butler','Pawnee'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Nebraska' & toplot$name %in% c('Johnson'))])
66
+ toplot$DMA.CODE[which(toplot$state == 'New Mexico' & toplot$name %in% c('Lea'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Texas' & toplot$name %in% c('Winkler'))])
67
+ toplot$DMA.CODE[which(toplot$state == 'Kansas' & toplot$name %in% c('Morton'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Oklahoma' & toplot$name %in% c('Texas'))])
68
+ toplot$DMA.CODE[which(toplot$state == 'Georgia' & toplot$name %in% c('Seminole'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'Georgia' & toplot$name %in% c('Early'))])
69
+ toplot$DMA.CODE[which(toplot$state == 'Virginia' & toplot$name %in% c('Grayson'))] <- unique(toplot$DMA.CODE[which(toplot$state == 'North Carolina' & toplot$name %in% c('Alleghany'))])
70
+
71
+ as.data.frame(toplot) %>% ungroup() %>% select(state,DMA.CODE) %>% distinct() %>%
72
+ group_by(DMA.CODE) %>% summarise(n=n()) -> multiStateDMA
73
+
74
+ toplot %>% left_join(multiStateDMA %>% mutate(DMA.CODE,multiState = (n > 1)+0) %>% select(-n)) -> toplot
75
+
76
+
77
+
78
+ toplot$treated <- ifelse(toplot$state %in% c('Iowa','New Hampshire','South Carolina','Nevada',
79
+ 'Alabama','Arkansas','California','Colorado','Maine',
80
+ 'Massachusetts','Minnesota','North Carolina','Oklahoma',
81
+ 'Tennessee','Texas','Utah','Vermont','Virginia'),0,1)
82
+ comparisons <- as.data.frame(toplot) %>% select(DMA.CODE,multiState,stab,treated) %>%
83
+ filter(multiState == 1) %>%
84
+ group_by(DMA.CODE) %>%
85
+ summarise(IDvar = mean(treated)) %>%
86
+ filter(IDvar > 0 & IDvar < 1)
87
+
88
+
89
+ pdf('../Figures/figure2.pdf',width = 16,height = 12)
90
+ toplot %>%
91
+ left_join(comparisons) %>%
92
+ mutate(IDvar = ifelse(is.na(IDvar),0,IDvar)) %>%
93
+ mutate(treated2 = ifelse(treated == 1 & IDvar > 0,4,
94
+ ifelse(treated == 0 & IDvar > 0,3,
95
+ ifelse(treated == 1 & IDvar == 0,2,1)))) %>%
96
+ mutate(treated2 = ifelse(IDvar > 0,treated2,'drop')) %>%
97
+ ggplot() +
98
+ geom_sf(aes(fill = factor(treated2),color = treated2),size = .1) +
99
+ scale_fill_manual(name = 'Primary Date',
100
+ values = c('4' = '#1e1e1e','3' = '#878787',
101
+ '2' = 'white','1' = 'white'),
102
+ breaks = c('4','3'),
103
+ labels = c('4' = 'Post-Outbreak','3' = 'Pre-Outbreak')) +
104
+ scale_color_manual(guide = F,values = c('4' = 'white','3' = 'white','drop' = 'grey80'),na.translate = F) +
105
+ geom_sf(data = maps$DMA,color = 'black',fill = NA) +
106
+ theme_map()
107
+ dev.off()
108
+
109
+
110
+
111
+ # Figure 3
112
+ p1 <- finalDat %>%
113
+ mutate(treat = ifelse(county_March17Cases > 0,1,0),
114
+ post = ifelse(date > as.Date('2020-03-10'),'Post March 10','Pre March 17')) %>%
115
+ group_by(treat,post) %>%
116
+ summarise(outcome = mean(pcttw_sanders,na.rm=T),
117
+ sd = sd(pcttw_sanders,na.rm=T)) %>%
118
+ ggplot(aes(x = factor(post,levels = c("Pre March 17","Post March 10")),y = outcome,
119
+ fill = factor(treat))) +
120
+ stat_summary(fun.y = mean,geom = "bar",position = position_dodge(width = .9),
121
+ size = 3,alpha = .7) +
122
+ scale_fill_manual(name = '',values = c('0' = 'grey80','1' = 'grey30'),
123
+ labels = c('0' = 'Insulated on March 17th','1' = 'Exposed on March 17th')) +
124
+ theme_ridges() + xlab('Period') + ylab('Sanders Two-Way Vote Share')
125
+
126
+ p2 <- finalDat %>%
127
+ mutate(post = ifelse(date > as.Date('2020-03-10'),'Post','Pre'),
128
+ logcases = log(county_March17Cases+1)) %>%
129
+ ggplot(aes(x = logcases,y = pcttw_sanders,color = factor(post,levels = c("Pre","Post")),size = turnout_20,weight = log(turnout_20+1))) +
130
+ geom_point(alpha = .6) +
131
+ geom_smooth(method = 'lm') +
132
+ scale_color_manual(name = "Period",values = c('Post' = 'grey30',"Pre" = "grey70")) +
133
+ scale_size_continuous(guide = F) +
134
+ theme_ridges() + xlab("March 17 Cases (logged)") + ylab('Sanders Two-Way Vote Share')
135
+
136
+
137
+ pdf('../Figures/figure3.pdf',width = 7,height = 5)
138
+ grid.arrange(p1 + theme(legend.position = 'bottom'),
139
+ p2 + theme(legend.position = 'bottom'),ncol = 2)
140
+ dev.off()
141
+
142
+
143
+
144
+ # SI Table 1
145
+ covariates <- c("sc_CTY_LTHS","sc_CTY_CollUp",'caucus_switch','caucus',
146
+ "sc_CTY_LT30yo","sc_CTY_60Up",
147
+ "sc_CTY_Below_poverty_level_AGE_18_64","sc_CTY_Female_hher_no_husbandhh",
148
+ "sc_CTY_Unem_rate_pop_16_over","sc_CTY_Labor_Force_Part_Rate_pop_16_over",
149
+ "sc_CTY_Manufactur","sc_CTY_Md_inc_hhs",
150
+ "sc_CTY_POPPCT_RURAL","sc_CTY_Speak_only_English","sc_CTY_White","sc_CTY_Black_or_African_American",
151
+ "ln_CTY_tot_pop","sc_turnout_pct_20")
152
+
153
+ maps$county %>% left_join(multiStateDMA %>% mutate(DMA.CODE,multiState = (n > 1)+0) %>% select(-n)) -> maps$county
154
+ as.data.frame(maps$county) %>% ungroup() %>% select(FIPS,multiState) %>%
155
+ distinct() %>%
156
+ left_join(finalDat,by = c("FIPS" = "stcou")) %>%
157
+ select(multiState,gsub("sc_|ln_","",covariates),pct_sanders16) -> tocompare
158
+
159
+ zeroOne <- function(x) {
160
+ return(x > 0 & x < 1)
161
+ }
162
+
163
+ div100 <- function(x) {
164
+ return(x/100)
165
+ }
166
+ tocompare %>%
167
+ mutate(turnout_pct_20 = turnout_pct_20*100) %>%
168
+ gather(variable,value,-multiState) %>%
169
+ filter(complete.cases(.)) %>%
170
+ group_by(multiState,variable) %>%
171
+ summarise(value = list(value)) %>%
172
+ spread(multiState,value,sep = "_") %>%
173
+ group_by(variable) %>%
174
+ mutate(p_value = round(t.test(unlist(multiState_0), unlist(multiState_1))$p.value,2),
175
+ t_value = round(t.test(unlist(multiState_0), unlist(multiState_1))$statistic,1),
176
+ avg_0 = round(mean(unlist(multiState_0),na.rm=T),1),
177
+ avg_1 = round(mean(unlist(multiState_1),na.rm=T),1),
178
+ sd_0 = round(sd(unlist(multiState_0),na.rm=T),1),
179
+ sd_1 = round(sd(unlist(multiState_1),na.rm=T),1)) %>%
180
+ select(variable,matches("avg|sd"),p_value,t_value) %>%
181
+ arrange(t_value) -> dma_fe_balance
182
+ dma_fe_balance$variable <- gsub("_"," ",gsub("CTY_","",dma_fe_balance$variable))
183
+ stargazer(data.frame(dma_fe_balance %>% select(-matches("sd_"))),summary = F,digits = 1,out = '../Tables/SI-table1.tex')
29/replication_package/Code/Figure 4.R ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File name: figure4.R
2
+ # In:
3
+ # - replication_data.RData
4
+ # Out:
5
+ # - /Figures/figure4.pdf
6
+
7
+ require(lme4)
8
+ require(lfe)
9
+ require(MatchIt)
10
+ require(WeightIt)
11
+ require(tjbal)
12
+ require(optmatch)
13
+ require(stargazer)
14
+ require(cobalt)
15
+ require(tidyverse)
16
+ require(ggridges)
17
+ rm(list = ls())
18
+ gc()
19
+ ####################################################################################################################### Loading data
20
+ load('../Data/replication_data.RData')
21
+
22
+
23
+
24
+
25
+
26
+
27
+
28
+
29
+
30
+ ####################################################################################################################### Loading functions
31
+ source('./helper_functions.R')
32
+
33
+
34
+
35
+
36
+
37
+ # Figure 4
38
+ finalDat$post <- ifelse(finalDat$date > as.Date('2020-03-10'),1,0)
39
+ finalDat$treat <- ifelse(finalDat$DMA_March17Cases > 1,1,0)
40
+ summary(tmp <- lmer(as.formula(paste0("pcttw_sanders ~ treat*post + (1|DMA_CODE)")),finalDat))$coefficients
41
+ toplot <- data.frame(interaction_plot_continuous(tmp,num_points = 2,pointsplot = T))
42
+
43
+
44
+ pdf('../Figures/figure4.pdf',width = 7,height = 5)
45
+ toplot %>%
46
+ mutate(x = factor(ifelse(x_2 == 0,'Pre','Post'),levels = c('Pre','Post'))) %>%
47
+ ggplot(aes(x = x,y = delta_1))+
48
+ geom_point() +
49
+ geom_errorbar(aes(ymin = lb,ymax = ub),width= .1) +
50
+ geom_hline(yintercept = 0,linetype = 'dashed') +
51
+ xlab("Period") + ylab("Marginal Effect of Exposure") +
52
+ theme_ridges()
53
+ dev.off()
29/replication_package/Code/Figure 5.R ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File name: figure5.R
2
+ # In:
3
+ # - replication_data.RData
4
+ # Out:
5
+ # - /Figures/figure5.pdf
6
+
7
+
8
+ require(lme4)
9
+ require(lfe)
10
+ require(MatchIt)
11
+ require(WeightIt)
12
+ require(tjbal)
13
+ require(optmatch)
14
+ require(stargazer)
15
+ require(cobalt)
16
+ require(tidyverse)
17
+ require(ggridges)
18
+
19
+ rm(list = ls())
20
+ gc()
21
+ ####################################################################################################################### Loading data
22
+ load('../Data/replication_data.RData')
23
+
24
+
25
+ ####################################################################################################################### Loading functions
26
+ source('./helper_functions.R')
27
+
28
+
29
+
30
+
31
+
32
+
33
+
34
+ D <- unlist(lapply(c("sc_","ln_"),function(x) paste0(x,paste0(c("county_","DMA_","state_"),"cases"))))
35
+ FE <- c("0","DMA_CODE","date")
36
+ covariates <- c("sc_CTY_LTHS","sc_CTY_CollUp",
37
+ "sc_CTY_LT30yo","sc_CTY_60Up",
38
+ "sc_CTY_Below_poverty_level_AGE_18_64","sc_CTY_Female_hher_no_husbandhh",
39
+ "sc_CTY_Unem_rate_pop_16_over","sc_CTY_Labor_Force_Part_Rate_pop_16_over",
40
+ "sc_CTY_Manufactur","sc_CTY_Md_inc_hhs",
41
+ "sc_CTY_POPPCT_RURAL","sc_CTY_Speak_only_English","sc_CTY_White","sc_CTY_Black_or_African_American",
42
+ "ln_CTY_tot_pop","sc_turnout_pct_20")
43
+
44
+
45
+
46
+
47
+
48
+
49
+
50
+ # Week-by-week
51
+ weeks <- c("2020-02-22","2020-02-29",
52
+ "2020-03-03","2020-03-10","2020-03-17","2020-04-07")
53
+
54
+ resWkly <- list()
55
+ for(y in c("pcttw_sanders")) {
56
+ for(d in c("DMA_March10Cases",
57
+ "DMA_March17Cases")) {
58
+ for(fe in "0") {
59
+
60
+ wkly <- wklyBin <- wklyMatch <- wklyWeight <- wklyMatchBin <- wklyWeightBin <- NULL
61
+ if(grepl("March",d)) {
62
+ wks <- weeks
63
+ } else {
64
+ wks <- weeks[4:6]
65
+ }
66
+ for(week in wks) {
67
+ if(fe == 'stab' & week == '2020-04-07') { next }
68
+ cat(paste0(week,'/',y,'/',d,'/',fe,'\n'))
69
+ if(grepl("county",d) & week == "2020-03-01") { next }
70
+ if(week < as.Date("2020-03-01")) {
71
+ tmp <- finalDat %>% select(y,matches(gsub("sc_|ln_","",d)),DMA_CODE,stab,date,c(covariates,paste0(y,"16"))) %>% filter(date < as.Date(week)) %>% filter(complete.cases(.))
72
+ } else {
73
+ tmp <- finalDat %>% select(y,matches(gsub("sc_|ln_","",d)),DMA_CODE,stab,date,c(covariates,paste0(y,"16"))) %>% filter(date == as.Date(week)) %>% filter(complete.cases(.))
74
+ }
75
+ tmp$treatBin <- ifelse(tmp[[gsub("sc_|ln_","",d)]] > 0,1,0)
76
+
77
+ wkly <- bind_rows(wkly,data.frame(t(summary(felm(as.formula(paste0("scale(",y,") ~ scale(",gsub("sc_","",d),") + ",
78
+ paste(unique(c(covariates,paste0(y,"16"))),collapse = "+"),
79
+ "| ",fe," | 0 | 0")),tmp))$coefficients[paste0("scale(",gsub("sc_","",d),")"),]),date = week))
80
+
81
+ wklyBin <- bind_rows(wklyBin,data.frame(t(summary(felm(as.formula(paste0("scale(",y,") ~ treatBin + ",
82
+ paste(unique(c(covariates,paste0(y,"16"))),collapse = "+"),
83
+ "| ",fe," | 0 | 0")),tmp))$coefficients["treatBin",]),date = week))
84
+
85
+ if(length(unique(tmp$treatBin)) == 2) {
86
+ m.out <- try(matchit(formula = as.formula(paste("treatBin ~ ",paste(c(covariates,paste0(y,"16")),collapse = " + "))),
87
+ data = tmp,
88
+ method = "nearest",
89
+ distance = "mahalanobis"))
90
+ if(class(m.out) != "try-error") {
91
+ m.data <- match.data(m.out)
92
+ wklyMatch <- bind_rows(wklyMatch,data.frame(t(summary(felm(as.formula(paste0("scale(",y,") ~ scale(",gsub("sc_","",d),") + ",
93
+ paste(c(covariates,paste0(y,"16")),collapse = " + ")," | ",fe," | 0 | ",fe)),
94
+ m.data,weights = m.data$weights))$coefficients[paste0("scale(",gsub("sc_","",d),")"),]),date = week))
95
+ wklyMatchBin <- bind_rows(wklyMatchBin,data.frame(t(summary(felm(as.formula(paste0("scale(",y,") ~ treatBin + ",
96
+ paste(c(covariates,paste0(y,"16")),collapse = " + ")," | ",fe," | 0 | ",fe)),
97
+ m.data,weights = m.data$weights))$coefficients["treatBin",]),date = week))
98
+ }
99
+
100
+ W.out <- try(weightit(formula(paste0("treatBin ~ ",paste(c(covariates,paste0(y,"16")),collapse = " + "))),
101
+ data = tmp, estimand = "ATT", method = "cbps"))
102
+
103
+
104
+ if(class(W.out) != "try_error") {
105
+ wklyWeight <- bind_rows(wklyWeight,data.frame(t(summary(felm(as.formula(paste0("scale(",y,") ~ scale(",gsub("sc_","",d),") + ",
106
+ paste(c(covariates,paste0(y,"16")),collapse = " + ")," | ",fe," | 0 | ",fe)),
107
+ tmp,weights = W.out$weights))$coefficients[paste0("scale(",gsub("sc_","",d),")"),]),date = week))
108
+
109
+ wklyWeightBin <- bind_rows(wklyWeightBin,data.frame(t(summary(felm(as.formula(paste0("scale(",y,") ~ treatBin + ",
110
+ paste(c(covariates,paste0(y,"16")),collapse = " + ")," | ",fe," | 0 | ",fe)),
111
+ tmp,weights = W.out$weights))$coefficients["treatBin",]),date = week))
112
+ }
113
+ }
114
+ }
115
+ resWkly[[y]][[d]][[fe]]$basic$cont <- wkly
116
+ resWkly[[y]][[d]][[fe]]$basic$bin <- wklyBin
117
+ resWkly[[y]][[d]][[fe]]$matching$cont <- wklyMatch
118
+ resWkly[[y]][[d]][[fe]]$matching$bin <- wklyMatchBin
119
+ resWkly[[y]][[d]][[fe]]$weighting$cont <- wklyWeight
120
+ resWkly[[y]][[d]][[fe]]$weighting$bin <- wklyWeightBin
121
+ }
122
+ }
123
+ }
124
+
125
+
126
+ pdf('../Figures/figure5.pdf',width = 7,height = 5)
127
+ bind_rows(resWkly$pcttw_sanders$DMA_March17Cases$`0`$basic$cont %>%
128
+ mutate(type = 'basic',
129
+ date = as.Date(date) - .25),
130
+ resWkly$pcttw_sanders$DMA_March17Cases$`0`$weighting$cont %>%
131
+ mutate(type = 'weighting',
132
+ date = as.Date(date) + .25)) %>%
133
+ ggplot(aes(x = date,y = Estimate,color = type,fill = type)) +
134
+ geom_hline(yintercept = 0,linetype = 'dashed') +
135
+ geom_point(size = 1.5) +
136
+ geom_rect(aes(xmin = date-.25,ymin = Estimate - 1.96*`Std..Error`,
137
+ xmax = date+.25,ymax = Estimate + 1.96*`Std..Error`),alpha = .5,color = NA) +
138
+ theme_ridges() +
139
+ scale_color_manual(values = c('basic' = 'grey50','weighting' = 'grey40'),
140
+ guide = F) +
141
+ scale_fill_manual(name = 'Method',values = c('basic' = 'grey70','weighting' = 'grey40'),
142
+ labels = c('basic' = 'Unweighted OLS','weighting' = 'CBPS Weights')) +
143
+ xlab('Date') + ylab('Coefficient on March 17 Cases') +
144
+ theme(legend.position = 'bottom')
145
+ dev.off()
29/replication_package/Code/Figure 6, SI1.R ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File name: figure6_SIfigure1.R
2
+ # In:
3
+ # - replication_data.RData
4
+ # Out:
5
+ # - /Data/Results/tjbalWgtsNEW.RData (saving time re-estimating the weights)
6
+ # - /Figures/figure6.pdf
7
+ # - /Figures/SI_figure1.pdf
8
+
9
+ require(lme4)
10
+ require(lfe)
11
+ require(MatchIt)
12
+ require(WeightIt)
13
+ require(tjbal)
14
+ require(optmatch)
15
+ require(stargazer)
16
+ require(cobalt)
17
+ require(tidyverse)
18
+ require(ggridges)
19
+
20
+
21
+ rm(list = ls())
22
+ gc()
23
+ ####################################################################################################################### Loading data
24
+ load('../Data/replication_data.RData')
25
+
26
+
27
+ ####################################################################################################################### Loading functions
28
+ source('./helper_functions.R')
29
+
30
+
31
+
32
+
33
+
34
+
35
+ ####################################################################################################################### Preparing variables
36
+ Y <- paste0(c("pct_","VAP_","pcttw_"),"sanders")
37
+ D <- unlist(lapply(c("sc_","ln_"),function(x) paste0(x,paste0(c("county_","DMA_","state_"),"cases"))))
38
+ FE <- c("0","DMA_CODE","date")
39
+ covariates <- c("sc_CTY_LTHS","sc_CTY_CollUp",
40
+ "sc_CTY_LT30yo","sc_CTY_60Up",
41
+ "sc_CTY_Below_poverty_level_AGE_18_64","sc_CTY_Female_hher_no_husbandhh",
42
+ "sc_CTY_Unem_rate_pop_16_over","sc_CTY_Labor_Force_Part_Rate_pop_16_over",
43
+ "sc_CTY_Manufactur","sc_CTY_Md_inc_hhs",
44
+ "sc_CTY_POPPCT_RURAL","sc_CTY_Speak_only_English","sc_CTY_White","sc_CTY_Black_or_African_American",
45
+ "ln_CTY_tot_pop","sc_turnout_pct_20")
46
+
47
+
48
+
49
+
50
+ # SI Figure 1
51
+ set.seed(123)
52
+ treatInd <- "March17Cases"
53
+ vd <- '2020-03-17'
54
+ d <- 'ln_DMA_cases'
55
+ est <- 'meanfirst'
56
+ treatInd <- paste0("DMA_",treatInd)
57
+ forTjbalAnal$treatGroup <- ifelse(forTjbalAnal$voteDate == vd & forTjbalAnal[[treatInd]] > 0,1,0)
58
+ forTjbalAnal$treat <- ifelse(forTjbalAnal$treatGroup == 1 & forTjbalAnal$date > as.Date("2020-04-17"),1,0)
59
+
60
+ inds <- which(forTjbalAnal$treatGroup == 1)
61
+ inds <- unique(forTjbalAnal$stcou[inds])
62
+ ctrlInds <- unique(forTjbalAnal$stcou[-c(which(forTjbalAnal$stcou %in% inds),which(forTjbalAnal$voteDate >= as.Date(vd)))])
63
+
64
+ tmpTjbalAnal <- forTjbalAnal %>% filter(stcou %in% c(inds,ctrlInds))
65
+ tjout <- try(tjbal(data = as.data.frame(tmpTjbalAnal),Y = d,D = "treat",X = unique(c(covariates,"pct_sanders16")),
66
+ index = c("stcou","dateNum"),estimator = est,demean = T,vce = "fixed"))
67
+
68
+
69
+ toplot <- as.data.frame(tjout$Y.bar)
70
+ toplot$date <- seq.Date(from = as.Date("2020-01-23"),to = as.Date("2020-05-01"),length.out = nrow(tjout$Y.bar))
71
+ getwd()
72
+ pdf("../Figures/SI_figure1.pdf")
73
+ toplot %>%
74
+ gather(type,value,-date) %>%
75
+ ggplot(aes(x = date,y = value,color = type,size = type,linetype = type,alpha = type)) +
76
+ geom_line() +
77
+ geom_vline(xintercept = as.Date(unique(finalDat$Date)[which(as.Date(unique(finalDat$Date)) < as.Date("2020-03-17"))]),linetype = "dashed",alpha = .6) +
78
+ geom_vline(xintercept = as.Date("2020-03-17"),size = 1.2) +
79
+ xlab("Date") + ylab("Number of Cases (logged)") +
80
+ annotate(geom = "text",label = c("Iowa Caucuses","New Hampshire","Nevada","South Carolina","Super Tuesday","March 10","March 17"),
81
+ x = as.Date(c("2020-02-03","2020-02-11","2020-02-22","2020-02-29",
82
+ "2020-03-03","2020-03-10","2020-03-17")),y = Inf,angle = 90,vjust = 1,hjust = 1,size = 3.5,color = "grey30") +
83
+ annotate(geom = "text",label = c("Treated","Weighted","Control"),
84
+ y = c(7.8,7.5,6.6),x = as.Date("2020-05-02"),angle = 0,
85
+ parse = F,hjust = 0,vjust = .3,size = 3.5,color = "grey30") +
86
+ scale_linetype_manual(values = c("solid","dotted","solid")) +
87
+ scale_size_manual(values = c(1.2,1.2,2.5)) +
88
+ scale_color_manual(values = c("red","black","black")) +
89
+ scale_alpha_manual(values = c(1,1,.3)) +
90
+ xlim(as.Date("2020-01-23"),as.Date("2020-05-10")) + theme_ridges() +
91
+ theme(legend.position = "none") +
92
+ theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
93
+ panel.background = element_blank(), axis.line = element_line(colour = "black"))
94
+ dev.off()
95
+
96
+
97
+
98
+ # Figure 6
99
+ set.seed(123)
100
+ tjBalWgts <- list()
101
+ for(vd in c("2020-03-03","2020-03-10","2020-03-17")) {
102
+ for(d in c("county_cases")) {
103
+ for(est in c("kernel")) {
104
+
105
+ if(vd == "2020-03-03") {
106
+ treatInd <- "March3Cases"
107
+ } else if(vd == "2020-03-10") {
108
+ treatInd <- "March10Cases"
109
+ } else {
110
+ treatInd <- "March17Cases"
111
+ }
112
+ if(grepl("county",d)) {
113
+ treatInd <- paste0("county_",treatInd)
114
+ } else {
115
+ treatInd <- paste0("DMA_",treatInd)
116
+ }
117
+
118
+ forTjbalAnal$treatGroup <- ifelse(forTjbalAnal$voteDate == vd & forTjbalAnal[[treatInd]] > 0,1,0)
119
+ forTjbalAnal$treat <- ifelse(forTjbalAnal$treatGroup == 1 & forTjbalAnal$date > as.Date("2020-04-17"),1,0)
120
+
121
+ inds <- which(forTjbalAnal$treatGroup == 1)
122
+ inds <- unique(forTjbalAnal$stcou[inds])
123
+ ctrlInds <- unique(forTjbalAnal$stcou[-c(which(forTjbalAnal$stcou %in% inds),which(forTjbalAnal$voteDate >= as.Date(vd)))])
124
+
125
+ ests <- finalDat %>% select(stcou)
126
+ for(i in 1:length(inds)) {
127
+ tmpTjbalAnal <- forTjbalAnal %>% filter(stcou %in% c(inds[-i],ctrlInds))
128
+ sink <- capture.output(tjout <- try(tjbal(data = as.data.frame(tmpTjbalAnal),Y = d,D = "treat",
129
+ X = unique(c(covariates,"pct_sanders16")),seed = 123,
130
+ index = c("stcou","dateNum"),estimator = est,demean = T,vce = "fixed")))
131
+
132
+ if(class(tjout) == "try-error") { next }
133
+ tjout$data.wide$w <- tjout$w
134
+ ests <- ests %>% left_join(tjout$data.wide %>% select(stcou = unit,w),by = 'stcou')
135
+ colnames(ests)[which(colnames(ests) == "w")] <- paste0("w",i)
136
+ cat('.')
137
+ }
138
+ cat('\n')
139
+
140
+ tjBalWgts[[vd]][[d]][[est]]$jacknife <- ests
141
+ tmpTjbalAnal <- forTjbalAnal %>% filter(stcou %in% c(inds,ctrlInds))
142
+ sink <- capture.output(tjout <- try(tjbal(data = as.data.frame(tmpTjbalAnal),Y = d,D = "treat",X = unique(c(covariates,"pct_sanders16")),
143
+ index = c("stcou","dateNum"),estimator = est,demean = T,seed = 123,
144
+ vce = "fixed")))
145
+
146
+ if(class(tjout) == "try-error") { next }
147
+ tjout$data.wide$w <- tjout$w
148
+ tjBalWgts[[vd]][[d]][[est]]$full <- tjout$data.wide %>% select(stcou = unit,w)
149
+ }
150
+ }
151
+ }
152
+
153
+ save(tjBalWgts,file = "../Data/Results/tjbalWgtsNEW.RData")
154
+ load("../Data/Results/tjbalWgtsNEW.RData")
155
+
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+
164
+ resTjbal <- list()
165
+ for(y in Y) {
166
+ for(geo in c("county_","DMA_")) {
167
+ for(d in c("March3Cases","March10Cases","March17Cases")) {
168
+ if(d == "March3Cases") {
169
+ int <- "2020-03-03"
170
+ } else if(d == "March10Cases") {
171
+ int <- "2020-03-10"
172
+ } else {
173
+ int <- "2020-03-17"
174
+ }
175
+ for(balCases in names(tjBalWgts[[int]])) {
176
+ for(est in names(tjBalWgts[[int]][[balCases]])) {
177
+
178
+ if(is.null(tjBalWgts[[int]][[balCases]][[est]]$full)) { next }
179
+
180
+ finalDat %>% left_join(tjBalWgts[[int]][[balCases]][[est]]$full) %>%
181
+ left_join(tjBalWgts[[int]][[balCases]][[est]]$jacknife) %>% filter(!is.na(w)) -> tmpAnal
182
+ tmpAnal$post <- ifelse(tmpAnal$date == as.Date(int),1,0)
183
+ tmpAnal$treatGroup <- ifelse(tmpAnal[[paste0(geo,d)]] > 0,1,0)
184
+ tmpAnal$treat <- ifelse(tmpAnal$post == 1 & tmpAnal$treatGroup == 1,1,0)
185
+ tmpAnal %>% select(post,treatGroup,treat,date)
186
+
187
+ ests <- NULL
188
+ for(i in colnames(tmpAnal %>% select(matches("^w\\d")))) {
189
+ ests <- c(ests,sum(tmpAnal[[y]]*tmpAnal[[i]],na.rm=T))
190
+ }
191
+ resTjbal[[y]][[geo]][[d]][[balCases]][[est]]$bootstrapped <- ests
192
+ resTjbal[[y]][[geo]][[d]][[balCases]][[est]]$lmCont <- summary(lm(as.formula(paste0(y," ~ ",balCases)),tmpAnal,weights = abs(tmpAnal$w)))$coefficients
193
+ resTjbal[[y]][[geo]][[d]][[balCases]][[est]]$lmBin <- summary(lm(as.formula(paste0(y," ~ treat")),tmpAnal,weights = abs(tmpAnal$w)))$coefficients
194
+ }
195
+ }
196
+ }
197
+ }
198
+ }
199
+
200
+
201
+ toplot <- NULL
202
+ for(period in names(resTjbal$pcttw_sanders$DMA_)) {
203
+ toplot <- bind_rows(toplot,
204
+ data.frame(bs = resTjbal$pcttw_sanders$county_[[period]]$county_cases$kernel$bootstrapped,
205
+ period = period))
206
+ }
207
+
208
+
209
+
210
+
211
+ # Figure 6:
212
+ pdf('../Figures/figure6.pdf',width = 7,height = 5)
213
+ toplot %>%
214
+ mutate(period = factor(gsub('Cases','',
215
+ gsub('March','March ',period)),levels = rev(c('March 3','March 10','March 17')))) %>%
216
+ ggplot(aes(x = bs,y = period)) +
217
+ geom_density_ridges(alpha = .7,color = 'black') +
218
+ theme_ridges() +
219
+ geom_vline(xintercept = 0,linetype = 'dashed') +
220
+ xlab('ATT of Exposure on Sanders Support') + ylab('Outbreak Date')
221
+ dev.off()
29/replication_package/Code/Figure 7, SI2, SI17.R ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File name: figure7_SIfigure2_SIfigure17.R
2
+ # In:
3
+ # - /Data/gtrends_data.RData: DMA-level data on google searches for "coronavirus" linked with DMA-level cases and deaths
4
+ # - /Data/mobility_data.RData: county-level data on physical mobility linked with county-level cases and deaths
5
+ # - /Data/pew/biden_sanders_ideo_feb_march_PEW.csv: Pew survey data on public's placement of Sanders and Biden on an ideological scale
6
+ # Out:
7
+ # - /Figures/figure7.pdf
8
+ # - /Figures/SI_figure2.pdf
9
+ # - /Figures/SI_figure17.pdf
10
+
11
+ require(lme4)
12
+ require(lfe)
13
+ require(MatchIt)
14
+ require(WeightIt)
15
+ require(tjbal)
16
+ require(optmatch)
17
+ require(stargazer)
18
+ require(cobalt)
19
+ require(tidyverse)
20
+ require(ggridges)
21
+
22
+ rm(list = ls())
23
+ gc()
24
+
25
+ # Figure 7
26
+ load('../Data/gtrends_data.RData')
27
+ coefs <- NULL
28
+ for(day in as.character(unique(gtrends_cases$date))[5:95]) {
29
+ tmp <- summary(lmer(hits ~ log(cases+1) + (1|stab),gtrends_cases %>% filter(date == as.Date(day))))$coefficients
30
+ if(nrow(tmp) == 1) { next }
31
+ txttmp <- unique(trimws(gsub("coronavirus|the","",queries[[day]]$value)))
32
+ if(any(txttmp == "")) {
33
+ txttmp <- txttmp[-which(txttmp == "")]
34
+ }
35
+ txttmp <- txttmp[1:3]
36
+ if(any(txttmp == "DGSGsymptoms")) {
37
+ txttmp <- ifelse(txttmp == "symptoms",'"symptoms"',paste0('phantom("',txttmp,'")'))
38
+ txttmp <- paste(txttmp,collapse = " ")
39
+ txttmp <- gsub(' "symptoms"',' * "symptoms"',txttmp)
40
+ txttmp <- gsub('"symptoms" ','"symptoms" * ',txttmp)
41
+ txttmp <- gsub('"\\) phantom\\("', ' ',txttmp)
42
+ } else {
43
+ txttmp <- paste(txttmp,collapse = " ")
44
+ }
45
+ tq <- txttmp
46
+
47
+ coefs <- bind_rows(coefs,data.frame(t(tmp[2,]),date = as.Date(day),topQ = tq,stringsAsFactors = F))
48
+ }
49
+
50
+ pdf("../figures/figure7.pdf",width = 7,height = 5)
51
+ coefs %>%
52
+ ggplot(aes(x = date,y = Estimate)) +
53
+ geom_point() +
54
+ geom_errorbar(aes(ymin = Estimate - 2*Std..Error,ymax = Estimate + 2*Std..Error)) +
55
+ theme_bw() +
56
+ geom_hline(yintercept = 0) +
57
+ theme_bw() +
58
+ geom_vline(xintercept = as.Date(c("2020-02-03","2020-02-11","2020-02-22","2020-02-29",
59
+ "2020-03-03","2020-03-10","2020-03-17")),linetype = "dashed",alpha = .3) +
60
+ annotate(geom = "text",label = c("IA","NH","NV","SC","SupTues","Mar 10th","AZ, FL, IL"),
61
+ x = as.Date(c("2020-02-03","2020-02-11","2020-02-22","2020-02-29",
62
+ "2020-03-03","2020-03-10","2020-03-17")),y = -Inf,angle = 90,vjust = 1,hjust = 0) +
63
+ theme_ridges() +
64
+ theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
65
+ panel.background = element_blank(), axis.line = element_line(colour = "black")) + xlab("Date") + ylab("Coefficient on Exposure") +
66
+ annotate(geom = "text",label = coefs$topQ,y = coefs$Estimate + 2*coefs$Std..Error + 1,x = coefs$date,angle = 90,
67
+ parse = F,hjust = 0,vjust = .3,size = 2,color = "grey30") +
68
+ ylim(c(-10,45))
69
+ dev.off()
70
+
71
+
72
+
73
+ # SI Figure 2
74
+ load('../Data/mobility_data.RData')
75
+
76
+ dma_coefs <- cty_coefs <- NULL
77
+ for(week in as.character(unique(mobility_cases$weeks))[-13]) {
78
+ tmp <- summary(felm(raw ~ log(cases+1) | stab | 0 | stab,mobility_cases %>% filter(weeks == as.Date(week))))$coefficients[1,1:3]
79
+ names(tmp) <- c("Estimate","Std..Error","tstat")
80
+ cty_coefs <- bind_rows(cty_coefs,
81
+ data.frame(t(tmp),date = as.Date(week),stringsAsFactors = F))
82
+ }
83
+
84
+ pdf("../figures/SI_figure2.pdf",width= 7,height = 5)
85
+ cty_coefs %>%
86
+ ggplot(aes(x = date,y = Estimate)) +
87
+ geom_point(position = position_dodge(width = 4)) +
88
+ geom_errorbar(aes(ymin = Estimate - 2*Std..Error,
89
+ ymax = Estimate + 2*Std..Error),width = 1) +
90
+ geom_hline(yintercept = 0) +
91
+ theme_bw() +
92
+ geom_vline(xintercept = as.Date(c("2020-02-03","2020-02-11","2020-02-22","2020-02-29",
93
+ "2020-03-03","2020-03-10","2020-03-17")),linetype = "dashed",alpha = .5) +
94
+ annotate(geom = "text",label = c("IA","NH","NV","SC","SupTues","Mar 10th","AZ, FL, IL"),
95
+ x = as.Date(c("2020-02-03","2020-02-11","2020-02-22","2020-02-29",
96
+ "2020-03-03","2020-03-10","2020-03-17")),y = Inf,angle = 90,vjust = 1,hjust = 1) +
97
+ theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
98
+ panel.background = element_blank(), axis.line = element_line(colour = "black")) + xlab("Date") + ylab("Coefficient on Exposure") +
99
+ theme_ridges()
100
+ dev.off()
101
+
102
+
103
+
104
+
105
+
106
+
107
+
108
+ # SI Figure 17
109
+ toplot <- read.csv('../Data/pew/biden_sanders_ideo_feb_march_PEW.csv',stringsAsFactors = F)
110
+
111
+ pdf('../figures/SI_figure17.pdf',width = 8,height = 4)
112
+ toplot %>%
113
+ mutate_at(vars(matches('\\.|Refused|Moderate')),function(x) as.numeric(gsub('%','',x))) %>%
114
+ gather(key,value,-Group,-Candidate) %>%
115
+ filter(!grepl('Refused|Not\\.sure',key)) %>%
116
+ mutate(key = factor(gsub('\\.','\n',key),levels = c('Very\nliberal','Mostly\nliberal','Slightly\nliberal',
117
+ 'Moderate','Slightly\nconservative','Mostly\nconservative','Very\nconservative'))) %>%
118
+ filter(grepl('liberal dem',tolower(Group))) %>%
119
+ ggplot(aes(x = key,y = value,group = Candidate,fill = Candidate)) +
120
+ geom_bar(stat = 'identity',position= position_dodge(.8),alpha = .6) +
121
+ ylab('% Agreeing') + xlab('Candidate Ideology') +
122
+ scale_fill_manual(name = '',values = c('Biden' = 'grey40','Sanders' = 'grey70')) +
123
+ theme_ridges() +
124
+ theme(legend.position = 'bottom')
125
+ dev.off()
29/replication_package/Code/Figure 8, SI19.R ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File name: figure8_SIfigure19.R
2
+ # In:
3
+ # - /Data/france_data.RData: Data on 2020 municipal elections in France, linked with local-level cases and deaths
4
+ # Out:
5
+ # - /Figures/figure8.pdf
6
+ # - /Figures/SI_figure19.pdf
7
+
8
+
9
+ require(lfe)
10
+ require(ggridges)
11
+ require(tidyverse)
12
+ require(gridExtra)
13
+ rm(list =ls())
14
+ gc()
15
+ ####################################################################################################################### Loading functions
16
+ source('./helper_functions.R')
17
+
18
+
19
+ load('../Data/france_data.RData')
20
+
21
+ # Figure 8
22
+ p1 <- toanal %>%
23
+ mutate(mainstream = ifelse(mainstream == 0,'Non-Mainstream','Mainstream'),
24
+ period = factor(ifelse(date == as.Date('2020-03-15'),'March Elections','June Elections'),
25
+ levels = c('March Elections','June Elections'))) %>%
26
+ group_by(mainstream,period) %>%
27
+ summarise(votes = mean(votes)) %>%
28
+ ungroup() %>%
29
+ filter(complete.cases(.)) %>%
30
+ ggplot(aes(x = period,y = votes,fill = factor(mainstream))) +
31
+ stat_summary(fun.y = mean,geom = "bar",position = position_dodge(width = .9),
32
+ size = 3,alpha = .7) +
33
+ scale_fill_manual(name = '',values = c('Mainstream' = 'grey80','Non-Mainstream' = 'grey30')) +
34
+ theme_ridges() + xlab('Period') + ylab('Aggregate Vote Share')
35
+
36
+ p2 <- toanal %>%
37
+ mutate(mainstream = ifelse(mainstream == 0,'Non-Mainstream','Mainstream'),
38
+ period = factor(ifelse(date == as.Date('2020-03-15'),'March Elections','June Elections'),
39
+ levels = c('March Elections','June Elections')),
40
+ logcases = log(deaths+1)) %>%
41
+ filter(!is.na(period)) %>%
42
+ ggplot(aes(x = logcases,y = votes,color = mainstream)) +
43
+ geom_point(alpha = .7,size = 2) +
44
+ geom_smooth(method = 'lm') +
45
+ scale_color_manual(name = "",values = c('Mainstream' = 'grey80',"Non-Mainstream" = "grey30")) +
46
+ theme_ridges() + xlab("Deaths (logged)") + ylab('Aggregate Vote Share')
47
+
48
+ pdf('../figures/figure8.pdf',width = 7,height = 4)
49
+ grid.arrange(p1 + theme(legend.position = 'bottom'),
50
+ p2 + theme(legend.position = 'bottom'),ncol = 2)
51
+ dev.off()
52
+
53
+
54
+
55
+ # SI Figure 19
56
+ toanal$post <- ifelse(toanal$date == '2020-03-15',0,1)
57
+
58
+ toanal$antiEst <- (toanal$mainstream - 1)^2
59
+ summary(mod1 <- felm(votes ~ antiEst*post | dpt_code | 0 | dpt_code,toanal))
60
+ summary(mod2 <- felm(votes ~ antiEst*log(deaths+1) | post + dpt_code | 0 | dpt_code,toanal))
61
+
62
+ toplot <- data.frame(interaction_plot_continuous(mod1,plot = T,pointsplot = T,colr = 'black',alph = 200,num_points = 2,
63
+ xlabel = "Election Wave",ylabel = 'Marginal Coefficient of Mainstream')) %>%
64
+ mutate(type = 'Temporal')
65
+
66
+ toplot <- bind_rows(toplot,data.frame(interaction_plot_continuous(mod2,plot = T,pointsplot = T,
67
+ colr = 'black',alph = 200,num_points = 20,
68
+ xlabel = "Election Wave",ylabel = 'Marginal Coefficient of Mainstream')) %>%
69
+ mutate(type = 'Geographic'))
70
+
71
+
72
+
73
+ p1 <- toplot %>%
74
+ filter(type == 'Temporal') %>%
75
+ mutate(x = factor(ifelse(x_2 == 0,'March Elections','June Elections'),levels = c('March Elections','June Elections'))) %>%
76
+ ggplot(aes(x = x,y = delta_1)) +
77
+ geom_point() +
78
+ geom_errorbar(aes(ymin = lb,ymax = ub),width = .1) +
79
+ geom_hline(yintercept = 0,linetype = 'dashed') +
80
+ ylab('Margnial Coefficient on Non-Mainstream') + xlab('') +
81
+ theme_ridges() +
82
+ ggtitle('Temporal Variation')
83
+ p2 <- toplot %>%
84
+ filter(type == 'Geographic') %>%
85
+ ggplot(aes(x = x_2,y = delta_1)) +
86
+ geom_point() +
87
+ geom_errorbar(aes(ymin = lb,ymax = ub),width = .1) +
88
+ geom_hline(yintercept = 0,linetype = 'dashed') +
89
+ ylab('Margnial Coefficient on Non-Mainstream') + xlab('Logged Deaths') +
90
+ theme_ridges() +
91
+ ggtitle('Geographic Variation')
92
+
93
+ pdf('../Figures/SI_figure19.pdf',width = 8,height = 4)
94
+ grid.arrange(p1,p2,ncol = 2)
95
+ dev.off()
29/replication_package/Code/Figure SI11, SI12, SI15, SI16.R ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File name: SIfigure11_SIfigure12_SIfigure15_SIfigure16.R
2
+ # In:
3
+ # - nationscape_prepped.RData: Nationscape survey data merged with NYT covid data, aggregated to the congressional district level
4
+ # Out:
5
+ # - /Figures/SI_figure11.pdf
6
+ # - /Figures/SI_figure12.pdf
7
+ # - /Figures/SI_figure15.pdf
8
+ # - /Figures/SI_figure16.pdf
9
+
10
+
11
+
12
+ rm(list = ls())
13
+ gc()
14
+ require(tidyverse)
15
+ require(stargazer)
16
+ require(lubridate)
17
+ require(ggridges)
18
+ require(lfe)
19
+
20
+
21
+
22
+ ####################################################################################################################### Loading data
23
+ load('../Data/nationscape_data.RData')
24
+
25
+
26
+
27
+
28
+ ####################################################################################################################### Loading functions
29
+ source('./helper_functions.R')
30
+
31
+
32
+
33
+ # SI Figure 11
34
+ pdf('../Figures/SI_figure11.pdf',width = 7,height = 5)
35
+ forAnal %>%
36
+ filter(dateMo < as.Date('2020-07-01') & dateMo > as.Date('2019-07-01')) %>%
37
+ group_by(stcd,dateMo,exposedMean) %>%
38
+ summarise(ideoM = mean(economy_better,na.rm=T)) %>%
39
+ ggplot(aes(x = ideoM,y = fct_rev(factor(dateMo)),group = paste(dateMo,exposedMean),
40
+ fill = paste(dateMo,exposedMean))) +
41
+ geom_density_ridges(alpha = .6,color = 'white',quantile_lines = T,quantiles = 2) +
42
+ scale_fill_cyclical(
43
+ breaks = c("2019-08-01 0", "2019-08-01 1"),
44
+ labels = c(`2019-08-01 0` = "Insulated", `2019-08-01 1` = "Exposed"),
45
+ values = rev(c("#000000", "#b0b0b0", "#000000", "#b0b0b0")),
46
+ name = "", guide = "legend"
47
+ ) +
48
+ theme_ridges() +
49
+ xlab("Economic Evaluation") +
50
+ ylab("") +
51
+ scale_x_continuous(limits = c(1,3),breaks = 1:3,labels = c('Improved','The Same','Worse'))
52
+ dev.off()
53
+
54
+ # SI Figure 12
55
+ forAnal %>%
56
+ filter(dateMo < as.Date('2020-07-01') & dateMo > as.Date('2019-07-01')) %>%
57
+ group_by(stcd,dateWk,dateMo,exposedMean) %>%
58
+ summarise(econ = mean(economy_better,na.rm=T)) %>%
59
+ mutate(post = ifelse(dateMo > as.Date('2020-02-01'),1,0)) -> forDID
60
+
61
+ summary(mEcon <- felm(scale(econ) ~ exposedMean*post | 0 | 0 | stcd,forDID %>% filter(dateMo < as.Date('2020-04-01'))))
62
+ toplot <- data.frame(interaction_plot_continuous(mEcon,pointsplot = T,num_points = 2,plot = T))
63
+
64
+ pdf('../Figures/SI_figure12.pdf',width = 7,height = 4)
65
+ toplot %>%
66
+ mutate(x_2 = factor(ifelse(x_2 == 0,'Pre-March','March'),levels = c('Pre-March','March'))) %>%
67
+ ggplot(aes(x = x_2,y = delta_1)) +
68
+ geom_point() +
69
+ geom_errorbar(aes(ymin = lb,ymax = ub),width = .1) +
70
+ geom_hline(yintercept = 0,linetype = 'dashed') +
71
+ theme_ridges() +
72
+ xlab('Period') + ylab('Effect of Covid Exposure')
73
+ dev.off()
74
+
75
+
76
+
77
+ # SI Figure 15
78
+ (pSanders <- forAnal %>%
79
+ mutate(sanders = (cand_favorability_sanders - 5)*-1) %>% #ifelse(cand_favorability_sanders < 3,1,0)) %>%
80
+ filter(dateMo < as.Date('2020-05-01') & dateMo > as.Date('2019-07-01')) %>%
81
+ group_by(stcd,dateMo,exposedMean) %>%
82
+ summarise(ideoM = mean(sanders,na.rm=T)) %>%
83
+ ggplot(aes(x = ideoM,y = fct_rev(factor(dateMo)),group = paste(dateMo,exposedMean),
84
+ fill = paste(dateMo,exposedMean))) +
85
+ geom_density_ridges(alpha = .6,color = 'white',quantile_lines = T,quantiles = 2) +
86
+ scale_fill_cyclical(
87
+ breaks = c("2019-08-01 0", "2019-08-01 1"),
88
+ labels = c(`2019-08-01 0` = "Insulated", `2019-08-01 1` = "Exposed"),
89
+ values = rev(c("#000000", "#b0b0b0", "#000000", "#b0b0b0")),
90
+ name = "", guide = "legend"
91
+ ) +
92
+ theme_ridges() +
93
+ xlab("Sanders Approval") +
94
+ ylab("") +
95
+ scale_x_continuous(breaks = 1:4,labels = c('Very\nunfavorable','Somewhat\nunfavorable','Somewhat\nfavorable','Very\nfavorable')))
96
+
97
+ pdf('../Figures/SI_figure15.pdf',width = 7,height = 5)
98
+ print(pSanders)
99
+ dev.off()
100
+
101
+ # SI Figure 16
102
+ pdf('../Figures/SI_figure16.pdf',width = 8,height = 5)
103
+ forAnal %>%
104
+ mutate(sanders = (cand_favorability_sanders - 5)*-1) %>% #ifelse(cand_favorability_sanders < 3,1,0)) %>%
105
+ filter(dateWk %in% as.Date(c('2020-02-02','2020-02-09','2020-02-16','2020-02-23','2020-03-01','2020-03-08','2020-03-15','2020-03-22','2020-03-29'))) %>%
106
+ group_by(stcd,dateWk) %>%
107
+ summarise(sanders = mean(sanders,na.rm=T),
108
+ cases = log(mean(casesSum,na.rm=T)+1)) %>%
109
+ ggplot(aes(x = cases,y = sanders)) +
110
+ geom_point() +
111
+ geom_smooth(method = 'lm') +
112
+ facet_wrap(~dateWk) +
113
+ theme_ridges() +
114
+ xlab('Logged Cases') + ylab('Sanders Approval')
115
+ dev.off()
29/replication_package/Code/Figure SI3, SI4, SI5.R ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File name: SIfigure3_SIfigure4_SIfigure_5.R
2
+ # In:
3
+ # - replication_data.RData
4
+ # -
5
+ # Out:
6
+ # - /Figures/SI_figure3.pdf
7
+ # - /Figures/SI_figure4.pdf
8
+ # - /Figures/SI_figure5.pdf
9
+
10
+ require(lme4)
11
+ require(lfe)
12
+ require(MatchIt)
13
+ require(WeightIt)
14
+ require(tjbal)
15
+ require(optmatch)
16
+ require(stargazer)
17
+ require(cobalt)
18
+ require(tidyverse)
19
+ require(gridExtra)
20
+ require(ggridges)
21
+ require(ggrepel)
22
+
23
+ rm(list = ls())
24
+ gc()
25
+
26
+
27
+
28
+
29
+ ####################################################################################################################### Loading data
30
+ load(paste0('../Data/Results/SI-data.RData')) ## SI_robust_prep.R script which is designed to run on a computing cluster for speed.
31
+
32
+
33
+
34
+
35
+
36
+ ####################################################################################################################### Loading functions
37
+ source('./helper_functions.R')
38
+
39
+
40
+
41
+
42
+ # SI Figure 3
43
+ toplot <- NULL
44
+ for(post in c('2020-03-03','2020-03-10','2020-03-17')) {
45
+ for(mod in c('basic','matching','weighting')) {
46
+ toplot <- bind_rows(toplot,data.frame(est = resSI$pcttw_sanders$DMA_$March17Cases$DMA_CODE$`2020-03-01`[[post]]$felm[[mod]]$plac$did,
47
+ post = factor(ifelse(post == '2020-03-03','Control: February\nTreated: March 3rd',
48
+ ifelse(post == '2020-03-10','Control: February\nTreated: March 10th',
49
+ 'Control: February\nTreated: March 17th')),
50
+ levels = c('Control: February\nTreated: March 3rd',
51
+ 'Control: February\nTreated: March 10th',
52
+ 'Control: February\nTreated: March 17th')),
53
+ model = Hmisc::capitalize(mod),stringsAsFactors = F))
54
+ }
55
+ }
56
+
57
+
58
+ pdf('../Figures/SI_figure3.pdf',width = 8,height = 5)
59
+ toplot %>%
60
+ ggplot(aes(x = est,y = factor(model,levels = rev(c('Basic','Matching','Weighting'))))) +
61
+ geom_vline(xintercept = 0,linetype = 'dashed') +
62
+ geom_density_ridges(alpha = .4,color = 'white') +
63
+ facet_wrap(~post) + ylab('Method') + xlab("Bootstrapped Estimates") +
64
+ theme_ridges() +
65
+ theme(
66
+ strip.text.x = element_text(
67
+ size = 10, color = "black", face = "bold",hjust = 0,vjust = .5
68
+ ),
69
+ strip.background = element_rect(
70
+ color="white", fill="white", size=0, linetype="solid"
71
+ )
72
+ )
73
+ dev.off()
74
+
75
+
76
+
77
+
78
+ # SI Figure 4
79
+ toplot <- NULL
80
+ for(pre in c('2020-03-01','2020-03-03','2020-03-10','2020-03-17')) {
81
+ for(post in c('2020-03-01','2020-03-03','2020-03-10','2020-03-17')) {
82
+ for(mod in c('basic','weighting','matching')) {
83
+ tmp <- resSI$pcttw_sanders$DMA_$March10Cases$DMA_CODE[[pre]][[post]]$felm[[mod]]$bin['treat',]
84
+ if(is.null(tmp)) { next }
85
+ tmp <- data.frame(t(tmp))
86
+ colnames(tmp) <- c('est','se','tstat','pval')
87
+ tmp$pre <- pre
88
+ tmp$post <- post
89
+ tmp$mod <- mod
90
+ toplot <- bind_rows(toplot,tmp)
91
+ }
92
+ }
93
+ }
94
+
95
+
96
+ pdf('../Figures/SI_figure4.pdf',width = 8,height = 5)
97
+ toplot %>%
98
+ mutate(post = factor(gsub('03-03','ST',
99
+ gsub('03-01','Feb',
100
+ gsub('2020-','',post))),levels = c('Feb','ST','03-10','03-17')),
101
+ pre = factor(paste0('Pre Election: ',gsub('03-03','Super Tuesday',
102
+ gsub('03-01','February',
103
+ gsub('2020-','',pre)))),
104
+ levels = paste0('Pre Election: ',c('February','Super Tuesday','03-10','03-17')))) %>%
105
+ ggplot(aes(x = post,y = est,shape = mod)) +
106
+ geom_point(position = position_dodge(width = .2),size = 2,alpha = .7) +
107
+ geom_errorbar(aes(ymin = est-2*se,ymax = est+2*se),width = .2,
108
+ position = position_dodge(width = .2),alpha = .4) +
109
+ geom_hline(yintercept = 0,linetype = 'dashed') +
110
+ facet_wrap(~pre) +
111
+ scale_shape_manual(name = 'Model',
112
+ values = c('basic' = 19,'matching' = 17,'weighting' = 15),
113
+ labels = c('Basic','Matching','Weighting')) +
114
+ theme_ridges() +
115
+ theme(legend.position = 'bottom') +
116
+ xlab('Post Election') + ylab('Effect of DMA Exposure')
117
+ dev.off()
118
+
119
+
120
+
121
+
122
+ # SI Figure 5
123
+ toplot <- NULL
124
+ for(pre in c('2020-03-01','2020-03-03','2020-03-10','2020-03-17')) {
125
+ for(post in c('2020-03-01','2020-03-03','2020-03-10','2020-03-17')) {
126
+ for(mod in c('basic','weighting','matching')) {
127
+ tmp <- resSI$pcttw_sanders$DMA_$March17Cases$`0`[[pre]][[post]]$felm[[mod]]$did$mfx
128
+ if(is.null(tmp)) { next }
129
+ tmp <- data.frame(tmp)
130
+ tmp$pre <- pre
131
+ tmp$post <- post
132
+ tmp$mod <- mod
133
+ toplot <- bind_rows(toplot,tmp)
134
+ }
135
+ }
136
+ }
137
+
138
+
139
+ pdf('../Figures/SI_figure5.pdf',width = 8,height = 5)
140
+ toplot %>%
141
+ filter(pre < post,
142
+ mod == 'weighting') %>%
143
+ mutate(x_2 = ifelse(x_2 == 0,gsub('2020-','',pre),gsub('2020-','',post)),
144
+ sig = ifelse(grepl('\\*',est),'Sig','Insig')) %>%
145
+ mutate(x_2 = factor(ifelse(x_2 == '03-01','Feb',
146
+ ifelse(x_2 == '03-03','ST',x_2)),
147
+ levels = c('Feb','ST','03-10','03-17'))) %>%
148
+ mutate(pre = factor(paste0('Pre: ',ifelse(pre == '2020-03-01','February',
149
+ ifelse(pre == '2020-03-03','Super Tuesday',pre))),
150
+ levels = paste0('Pre: ',c('February','Super Tuesday','2020-03-10','2020-03-17'))),
151
+ post = factor(paste0('Post: ',ifelse(post == '2020-03-01','February',
152
+ ifelse(post == '2020-03-03','Super Tuesday',post))),
153
+ levels = paste0('Post: ',c('February','Super Tuesday','2020-03-10','2020-03-17')))) %>%
154
+ ggplot(aes(x = x_2,y = delta_1,color = sig)) +
155
+ geom_point(position = position_dodge(width = .2),size = 2) +
156
+ geom_errorbar(aes(ymin = lb,ymax = ub),width = .1,size = 1,
157
+ position = position_dodge(width = .2)) +
158
+ geom_hline(yintercept = 0,linetype = 'dashed') +
159
+ facet_wrap(~pre+post,scales = 'free',ncol = 3) +
160
+ scale_color_manual(name = 'Sig.',values = c('Sig' = 'black','Insig' = 'grey50')) +
161
+ scale_linetype_manual(name = 'Model',
162
+ values = c('basic' = 'dotdash','matching' = 'dashed','weighting' = 'solid')) +
163
+ scale_shape_manual(name = 'Model',
164
+ values = c('basic' = 19,'matching' = 17,'weighting' = 15)) +
165
+ theme_ridges() + xlab('Comparison Periods') + ylab('Marginal Effect of Exposure') +
166
+ theme(legend.position = 'bottom')
167
+ dev.off()
29/replication_package/Code/Figure SI6, SI7, SI8, SI9, SI10.R ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File name: SIfigure6_SIfigure7_SIfigure8_SIfigure9_SIfigure10.R
2
+ # In:
3
+ # - replication_data.RData
4
+ # Out:
5
+ # - /Figures/SI_figure6.pdf
6
+ # - /Figures/SI_figure7.pdf
7
+ # - /Figures/SI_figure8.pdf
8
+ # - /Figures/SI_figure9.pdf
9
+ # - /Figures/SI_figure10.pdf
10
+
11
+ require(lme4)
12
+ require(lfe)
13
+ require(MatchIt)
14
+ require(WeightIt)
15
+ require(tjbal)
16
+ require(optmatch)
17
+ require(stargazer)
18
+ require(cobalt)
19
+ require(tidyverse)
20
+ require(gridExtra)
21
+ require(ggridges)
22
+ require(ggrepel)
23
+
24
+ rm(list = ls())
25
+ gc()
26
+
27
+
28
+
29
+
30
+ ####################################################################################################################### Loading data
31
+ load('../Data/replication_data.RData')
32
+
33
+
34
+
35
+
36
+ ####################################################################################################################### Loading functions
37
+ source('./helper_functions.R')
38
+
39
+
40
+
41
+
42
+
43
+
44
+
45
+ ####################################################################################################################### Preparing variables
46
+ Y <- paste0(c("pct_","VAP_","pcttw_"),"sanders")
47
+ D <- unlist(lapply(c("sc_","ln_"),function(x) paste0(x,paste0(c("county_","DMA_","state_"),"cases"))))
48
+ FE <- c("0","DMA_CODE","date")
49
+ covariates <- c("sc_CTY_LTHS","sc_CTY_CollUp",'caucus_switch','caucus',
50
+ "sc_CTY_LT30yo","sc_CTY_60Up",
51
+ "sc_CTY_Below_poverty_level_AGE_18_64","sc_CTY_Female_hher_no_husbandhh",
52
+ "sc_CTY_Unem_rate_pop_16_over","sc_CTY_Labor_Force_Part_Rate_pop_16_over",
53
+ "sc_CTY_Manufactur","sc_CTY_Md_inc_hhs",
54
+ "sc_CTY_POPPCT_RURAL","sc_CTY_Speak_only_English","sc_CTY_White","sc_CTY_Black_or_African_American",
55
+ "ln_CTY_tot_pop","sc_turnout_pct_20")
56
+
57
+
58
+
59
+
60
+
61
+
62
+ ####################################################################################################################### Looping across specifications
63
+ finalDat$sc_turnout_pct_chg <- scale(finalDat$turnout_pct_chg)
64
+ finalDat$sc_VAP_turnout_20 <- scale(finalDat$VAP_turnout_20)
65
+
66
+ Y <- c("sc_turnout_pct_20","sc_turnout_pct_chg","sc_VAP_turnout_20")
67
+ resTurnout <- list()
68
+ for(y in Y) {
69
+ for(d in D) {
70
+ for(fe in FE) {
71
+ for(m in c("sc_CTY_LT30yo","sc_CTY_60Up","sc_CTY_Unem_rate_pop_16_over","sc_CTY_Old_age_dep_ratio","sc_CTY_POPPCT_RURAL","sc_CTY_Manufactur","sc_CTY_LTHS","sc_CTY_CollUp")) {
72
+ resTurnout[[y]][[d]][[fe]][[m]]$felm$coefs <- summary(tmp <- felm(as.formula(paste0(y," ~ ",d,"*",m," + ",
73
+ paste(c(covariates)[-which(c(covariates) %in% c("sc_CTY_LT30yo","sc_CTY_60Up","sc_turnout_pct_20"))],collapse = "+")," | ",fe," | 0 | ",fe)),finalDat))$coefficients
74
+ resTurnout[[y]][[d]][[fe]][[m]]$felm$mfx <- interaction_plot_continuous(tmp)
75
+ if(fe != "0") {
76
+ resTurnout[[y]][[d]][[fe]][[m]]$lmer$coefs <- summary(tmp <- lmer(as.formula(paste0(y," ~ ",d,"*",m," + ",
77
+ paste(c(covariates)[-which(c(covariates) %in% c("sc_CTY_LT30yo","sc_CTY_60Up","sc_turnout_pct_20"))],collapse = "+")," + (1| ",fe,")")),finalDat))$coefficients
78
+ resTurnout[[y]][[d]][[fe]][[m]]$lmer$mfx <- interaction_plot_continuous(tmp)
79
+
80
+ }
81
+
82
+ }
83
+ }
84
+ }
85
+ }
86
+
87
+
88
+ p1 <- data.frame(resTurnout$sc_turnout_pct_20$sc_DMA_cases$DMA_CODE$sc_CTY_60Up$felm$mfx) %>%
89
+ ggplot(aes(x = x_2,y = delta_1)) +
90
+ geom_point() +
91
+ geom_errorbar(aes(ymin = lb,ymax = ub),width = .1) +
92
+ geom_hline(yintercept = 0,linetype = 'dashed') +
93
+ xlab(expression(Younger %<->% Older)) +
94
+ ylab('MFX of Exposure on Turnout') +
95
+ theme_ridges() +
96
+ ggtitle(label = '',subtitle = '% of county 60 years or older')
97
+
98
+ p2 <- data.frame(resTurnout$sc_turnout_pct_20$sc_DMA_cases$DMA_CODE$sc_CTY_LT30yo$felm$mfx) %>%
99
+ ggplot(aes(x = x_2,y = delta_1)) +
100
+ geom_point() +
101
+ geom_errorbar(aes(ymin = lb,ymax = ub),width = .1) +
102
+ geom_hline(yintercept = 0,linetype = 'dashed') +
103
+ xlab(expression(Older %<->% Younger)) +
104
+ ylab('MFX of Exposure on Turnout') +
105
+ theme_ridges() +
106
+ ggtitle(label = '',subtitle = '% of county 30 years or younger')
107
+
108
+
109
+ # SI Figure 6: Turnout and age
110
+ pdf('../Figures/SI_figure6.pdf',width = 8,height = 5)
111
+ grid.arrange(p1,p2,ncol = 2)
112
+ dev.off()
113
+
114
+
115
+
116
+ # SI Figure 7
117
+ pdf('../Figures/SI_figure7.pdf',width = 8,height = 5)
118
+ finalDat %>%
119
+ group_by(date,stab) %>%
120
+ summarise(pct_sanders16 = mean(pct_sanders16,na.rm=T),
121
+ turnout_pct_20 = mean(turnout_pct_20*100,na.rm=T)) %>%
122
+ ggplot(aes(x = date,y = turnout_pct_20,size = pct_sanders16,label = stab)) +
123
+ geom_point(alpha = .3) +
124
+ geom_text_repel(size = 4) +
125
+ theme_ridges() +
126
+ xlab('Date') + ylab('Turnout 2020 (%)') +
127
+ scale_size(name = 'Sanders 2016 Vote Share (%)') +
128
+ theme(legend.position = 'bottom')
129
+ dev.off()
130
+
131
+
132
+ # SI Figure 8
133
+ p1 <- finalDat %>%
134
+ filter(date %in% as.Date(c('2020-03-03',
135
+ '2020-03-10',
136
+ '2020-03-17'))) %>%
137
+ mutate(turnout_pct_20 = turnout_pct_20*100) %>%
138
+ ggplot(aes(x = pct_sanders16,y = turnout_pct_20)) +
139
+ geom_point() +
140
+ geom_smooth() +
141
+ theme_ridges() +
142
+ xlab('Sanders 2016 Vote Share (%)') +
143
+ ylab('Turnout 2020 (%)') + ylim(c(0,50)) +
144
+ ggtitle(label = '',subtitle = 'March Data')
145
+
146
+ p2 <- finalDat %>%
147
+ filter(date < as.Date('2020-03-03')) %>%
148
+ mutate(turnout_pct_20 = turnout_pct_20*100) %>%
149
+ ggplot(aes(x = pct_sanders16,y = turnout_pct_20)) +
150
+ geom_point() +
151
+ geom_smooth() +
152
+ theme_ridges() +
153
+ xlab('Sanders 2016 Vote Share (%)') +
154
+ ylab('Turnout 2020 (%)') + ylim(c(0,50)) +
155
+ ggtitle(label = '',subtitle = 'Pre-March Data')
156
+
157
+ pdf('../Figures/SI_figure8.pdf',width = 9,height = 5)
158
+ grid.arrange(p2,p1,ncol = 2)
159
+ dev.off()
160
+
161
+
162
+
163
+
164
+ # SI Figure 9
165
+ finalDat$post <- ifelse(finalDat$date > as.Date('2020-02-29'),1,0)
166
+ toplot <- data.frame(summary(felm(as.formula(paste0("turnout_pct_20 ~ scale(pct_sanders16)*factor(date) + ",
167
+ paste(covariates[c(1:2,5:17)],collapse = '+'),'| 0 | 0 | 0')),finalDat))$coefficients)
168
+ colnames(toplot) <- c('est','se','tstat','pval')
169
+ toplot$vars <- rownames(toplot)
170
+ rownames(toplot) <- NULL
171
+
172
+
173
+ toplot %>%
174
+ filter(grepl(':factor',vars)) %>%
175
+ mutate(date = as.Date(gsub('scale.*?date\\)','',vars))) %>%
176
+ ggplot(aes(x = date,y = est)) +
177
+ geom_point() +
178
+ geom_errorbar(aes(ymin = est - 2*se,ymax = est+2*se)) +
179
+ geom_hline(yintercept = 0,linetype = 'dashed')
180
+
181
+
182
+ finalDat$dateTmp <- as.Date(ifelse(finalDat$Date %in% as.Date(c('2020-02-11','2020-02-22')),as.Date('2020-02-22'),finalDat$Date),origin = '1970-01-01')
183
+ toplot <- NULL
184
+ for(d in unique(finalDat$Date)) {
185
+ if(nrow(finalDat %>% filter(Date == d)) < 50) {
186
+ covs <- covariates[c(2,6,9,15)]
187
+ } else {
188
+ covs <- covariates[c(2,6,9,15)]
189
+ }
190
+ tmp <- data.frame(t(summary(felm(as.formula(paste0("scale(turnout_pct_20) ~ scale(pct_sanders16) + ",
191
+ paste(covs,collapse = '+'),'| 0 | 0 | 0')),finalDat %>%
192
+ filter(Date == d)))$coefficients[2,]))
193
+ colnames(tmp) <- c('est','se','tstat','pval')
194
+ tmp$date <- as.Date(d,origin = '1970-01-01')
195
+ toplot <- bind_rows(toplot,tmp)
196
+ }
197
+
198
+
199
+ labs <- finalDat %>%
200
+ select(stab,Date) %>% distinct()
201
+ toplot$lab <- NA
202
+ for(d in unique(toplot$date)) {
203
+ toplot$lab[which(toplot$date == d)] <- paste(unique(labs$stab[which(labs$Date == d)])[order(unique(labs$stab[which(labs$Date == d)]))],collapse = '\n')
204
+ }
205
+
206
+
207
+ pdf('../Figures/SI_figure9.pdf',width = 8,height = 5)
208
+ toplot %>%
209
+ filter(date < as.Date('2020-04-15')) %>%
210
+ ggplot(aes(x = date,y = est,label = lab,color = ifelse(lab == 'SC','SC','black'))) +
211
+ geom_point() +
212
+ geom_errorbar(aes(ymin = est - 2*se,ymax = est+2*se),width = .5) +
213
+ geom_hline(yintercept = 0,linetype = 'dashed') +
214
+ theme_ridges() +
215
+ xlab('Election Date') + ylab('Relationship between Sanders 2016 and Turnout') +
216
+ scale_color_manual(values = c('SC' = 'red','black' = 'black')) +
217
+ geom_text_repel(size = 3,hjust = 0,vjust = .5,alpha = .8) +
218
+ theme(legend.position = 'none')
219
+ dev.off()
220
+
221
+
222
+
223
+
224
+
225
+
226
+
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+ # SI Figure 10
235
+ set.seed(123)
236
+ Y <- c('pct_sanders16')
237
+
238
+ D <- unlist(lapply(c("sc_","ln_"),function(x) paste0(x,paste0(c("county_","DMA_","state_"),"cases"))))
239
+ FE <- c("0","DMA_CODE","stab")
240
+ covariates <- c("sc_CTY_LTHS","sc_CTY_CollUp",'caucus_switch','caucus',
241
+ "sc_CTY_LT30yo","sc_CTY_60Up",
242
+ "sc_CTY_Below_poverty_level_AGE_18_64","sc_CTY_Female_hher_no_husbandhh",
243
+ "sc_CTY_Unem_rate_pop_16_over","sc_CTY_Labor_Force_Part_Rate_pop_16_over",
244
+ "sc_CTY_Manufactur","sc_CTY_Md_inc_hhs",
245
+ "sc_CTY_POPPCT_RURAL","sc_CTY_Speak_only_English",
246
+ "sc_CTY_White","sc_CTY_Black_or_African_American",
247
+ "ln_CTY_tot_pop","sc_turnout_pct_20")
248
+
249
+
250
+ resRegs <- resBal <- resTabs <- list()
251
+ for(y in Y) {
252
+ for(d in D[c(1:3)]) {
253
+
254
+ for(fe in FE) {
255
+ stars <- list()
256
+ for(dateThresh in c("2020-01-01","2020-03-01")) {
257
+ if(dateThresh == '2020-03-01') {
258
+ covs <- covariates[-which(covariates == 'caucus')]
259
+ } else {
260
+ covs <- covariates
261
+ }
262
+ if(!is.null(resRegs[[y]][[d]][[fe]][[dateThresh]]$basic$felm$cont)) { next }
263
+ finalDat$treatBin <- ifelse(finalDat[[gsub("sc_|ln_","",d)]] > 1,1,0)
264
+ foranal.weight <- finalDat %>% select(y,d,treatBin,gsub("sc_|ln_","",d),DMA_CODE,date,stab,covs) %>%
265
+ filter(complete.cases(.),date >= as.Date(dateThresh))
266
+
267
+ m.out <- matchit(formula = as.formula(paste("treatBin ~ ",paste(covs,collapse = " + "))),
268
+ data = foranal.weight,
269
+ method = "nearest",
270
+ distance = "mahalanobis")
271
+
272
+ m.data <- match.data(m.out)
273
+ W.out <- weightit(formula(paste0("treatBin ~ ",paste(covs,collapse = " + "))),
274
+ data = foranal.weight, estimand = "ATT", method = "cbps")
275
+
276
+ # Balance tables
277
+ balt.pre <- bal.tab(formula(paste0("treatBin ~ ",paste(covs,collapse = " + "))),
278
+ data = foranal.weight, estimand = "ATT",m.threshold = .05)
279
+
280
+ balt.post <- bal.tab(W.out, m.threshold = .05, disp.v.ratio = TRUE)
281
+ unm <- data.frame(Covs = rownames(balt.pre$Balance),
282
+ balt.pre$Balance %>% mutate(Diff_Unm = round(Diff.Un,2),
283
+ Bal_Test_Unm = M.Threshold.Un)) %>%
284
+ select(Covs,Diff_Unm,Bal_Test_Unm)
285
+
286
+ match <- data.frame(Covs = rownames(balt.post$Balance),
287
+ balt.post$Balance %>% mutate(Diff_Match = round(Diff.Adj,2),
288
+ Bal_Test_Match = M.Threshold)) %>%
289
+ select(Covs,Diff_Match,Bal_Test_Match)
290
+
291
+
292
+ # Basic
293
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$basic$felm$cont <- summary(stars$cont[[paste0(dateThresh,"_1")]] <- felm(as.formula(paste0("scale(",y,") ~ ",d," + ",paste(c(covs),collapse = " + ")," | ",fe," | 0 | ",fe)),finalDat %>% filter(date >= as.Date(dateThresh))))$coefficients
294
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$basic$felm$bin <- summary(stars$bin[[paste0(dateThresh,"_1")]] <- felm(as.formula(paste0("scale(",y,") ~ treatBin + ",paste(c(covs),collapse = " + ")," | ",fe," | 0 | ",fe)),finalDat %>% filter(date >= as.Date(dateThresh))))$coefficients
295
+
296
+ # Matching
297
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$matching$felm$cont <- summary(stars$cont[[paste0(dateThresh,"_2")]] <- felm(as.formula(paste0("scale(",y,") ~ ",d," + ",paste(c(covs),collapse = " + ")," | ",fe," | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients
298
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$matching$felm$bin <- summary(stars$bin[[paste0(dateThresh,"_2")]] <- felm(as.formula(paste0("scale(",y,") ~ treatBin + ",paste(c(covs),collapse = " + ")," | ",fe," | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients
299
+
300
+ # Weighting
301
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$weighting$felm$cont <- summary(stars$cont[[paste0(dateThresh,"_3")]] <- felm(as.formula(paste0("scale(",y,") ~ ",d," + ",paste(c(covs),collapse = " + ")," | ",fe," | 0 | ",fe)),foranal.weight,weights = W.out$weights))$coefficients
302
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$weighting$felm$bin <- summary(stars$bin[[paste0(dateThresh,"_3")]] <- felm(as.formula(paste0("scale(",y,") ~ treatBin + ",paste(c(covs),collapse = " + ")," | ",fe," | 0 | ",fe)),foranal.weight,weights = W.out$weights))$coefficients
303
+
304
+ if(fe != "0") {
305
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$basic$lmer <- summary(lmer(as.formula(paste0("scale(",y,") ~ ",d," + ",paste(c(covs),collapse = " + ")," + (1| ",fe,")")),finalDat %>% filter(date >= as.Date(dateThresh))))$coefficients
306
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$matching$lmer <- summary(lmer(as.formula(paste0("scale(",y,") ~ ",d," + ",paste(c(covs),collapse = " + ")," + (1| ",fe,")")),m.data,weights = m.data$weights))$coefficients
307
+ resRegs[[y]][[d]][[fe]][[dateThresh]]$weighting$lmer <- summary(lmer(as.formula(paste0("scale(",y,") ~ ",d," + ",paste(c(covs),collapse = " + ")," + (1| ",fe,")")),foranal.weight,weights = W.out$weights))$coefficients
308
+ }
309
+ }
310
+ }
311
+ cat(y,"\n")
312
+ }
313
+ }
314
+
315
+
316
+ toplot <- NULL
317
+ for(fe in names(resRegs$pct_sanders16$sc_DMA_cases)) {
318
+ for(mod in c('basic','matching','weighting')) {
319
+ for(meas in c('bin','cont')) {
320
+ tmp <- resRegs$pct_sanders16$sc_DMA_cases[[fe]]$`2020-01-01`[[mod]]$felm[[meas]][2,]
321
+ if(is.null(tmp)) { next }
322
+ tmp <- data.frame(t(tmp))
323
+ colnames(tmp) <- c('est','se','tstat','pval')
324
+ tmp$fe <- fe
325
+ tmp$mod <- mod
326
+ tmp$meas <- meas
327
+ toplot <- bind_rows(toplot,tmp)
328
+ }
329
+ }
330
+ }
331
+
332
+
333
+ pdf('../Figures/SI_figure10.pdf',width = 8,height = 5)
334
+ toplot %>%
335
+ filter(meas != 'cont') %>%
336
+ mutate(fe = factor(ifelse(fe == 0,'None',
337
+ ifelse(fe == 'DMA_CODE','DMA','State')),levels = c('None','DMA','State'))) %>%
338
+ ggplot(aes(x = fe,y = est,color = mod)) +
339
+ geom_point(position = position_dodge(width = .2)) +
340
+ geom_errorbar(aes(ymin = est - 2*se,ymax = est+2*se),width = .1,
341
+ position = position_dodge(width = .2)) +
342
+ geom_hline(yintercept = 0,linetype = 'dashed') +
343
+ scale_color_manual(name = 'Model',values = c('basic' = 'grey70',
344
+ 'matching' = 'grey40',
345
+ 'weighting' = 'black')) +
346
+ xlab('Fixed Effect') + ylab('Effect of Covid Exposure on Bernie 2016') +
347
+ theme_ridges()
348
+ dev.off()
29/replication_package/Code/LOG/log_Figure 2, 3, Table SI1.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac9be1e8f990ed341bee6e7d18f48117865ad78bda8e09611524ee337a8c700d
3
+ size 17430
29/replication_package/Code/LOG/log_Figure 4.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cc2dad199e651b3b18aeac4e0872d2227f1e3fd5fdcf0bbb5d97f3bf79f78b4
3
+ size 1906
29/replication_package/Code/LOG/log_Figure 5.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0e002d85754f3ce56b44690a936549dac1aab32673faeab1d2b5117b07148c3
3
+ size 9547
29/replication_package/Code/LOG/log_Figure 6, SI1.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d85f5f426954e63384f029e51fc8bad3a0fa568e2e96c823912ac5ec3ce3b53e
3
+ size 25431
29/replication_package/Code/LOG/log_Figure 7, SI2, SI17.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c7e9bea12b383efed75d618abbad1fe8b0fc400af78494907a990126013633a
3
+ size 6005
29/replication_package/Code/LOG/log_Figure 8, SI19.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7f087095576a80be99dd9bef648177e9769b00e426d980ac0cdb581e51e7eb4
3
+ size 6385
29/replication_package/Code/LOG/log_Figure SI11, SI12, SI15, SI16.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d32418d31e1abf7167109380c2c6a5dbd91821699226279b298073d65c5fe2b
3
+ size 6545
29/replication_package/Code/LOG/log_Figure SI3, SI4, SI5.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e920a955b865e9923d5e317755c889c2ee835f017e75b054ada4534cd8668d9
3
+ size 7395
29/replication_package/Code/LOG/log_Figure SI6, SI7, SI8, SI9, SI10.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60754321979b0db06d5eb13c89490b8d40c981341013b6ca81f43f839770694b
3
+ size 16586
29/replication_package/Code/LOG/log_SI_robust_prep.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:360ac1137e6197ce131aa3056d3a23d609bf8eb2ace11b14b7c2f0e6abfeaf17
3
+ size 13355
29/replication_package/Code/LOG/log_Table 1, SI3, SI4, SI5, Figure SI13, SI14.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00d48e16d2aa71185aefc9e5f5b1a4d5c67d1168f975854b424970d30cd49210
3
+ size 63166
29/replication_package/Code/LOG/log_Table 2.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72a6b1087b7f0f5c2195a5cfecb70dc38aeee23444503dccbca5eb450c7e72d5
3
+ size 21934
29/replication_package/Code/LOG/log_Table 3, Figure SI18.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95ac713d5fe9453df1f122c481132f92d7f51dd38bf7d4df8fa6d6f6b3bd6917
3
+ size 18257
29/replication_package/Code/LOG/log_zzSI_robust_prep.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef673370a716a15af5283f51187228e456867c6b8a528d6c480942e97c6c5ff0
3
+ size 18906
29/replication_package/Code/MASTER.R ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Master script
2
+ for(f in list.files('./')) {
3
+ if(grepl('helper_functions|MASTER|LOG',f)) { next }
4
+ if(file.exists(paste0('./LOG/log_',gsub('.R','.txt',f)))) { next }
5
+ # stop()
6
+ con <- file(paste0('./LOG/log_',gsub('.R','.txt',f)))
7
+ cat(f,'\n')
8
+ sink(con,append = TRUE)
9
+ sink(con,append = TRUE,type = 'message')
10
+ source(f,echo = T,max.deparse.length = 10000)
11
+ sink()
12
+ sink(type = 'message')
13
+ }
29/replication_package/Code/Table 1, SI3, SI4, SI5, Figure SI13, SI14.R ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File name: table1_SItable3_SItable5_SItable4_SIfigure13_SIfigure14.R
2
+ # In:
3
+ # - replication_data.RData
4
+ # Out:
5
+ # - /Tables/table1.tex
6
+ # - /Tables/SI-table3.tex
7
+ # - /Figures/SI_figure13.pdf
8
+ # - /Tables/SI-table4.tex
9
+ # - /Tables/SI-table5.tex
10
+ # - /Figures/SI_figure14.pdf
11
+
12
+ require(lme4)
13
+ require(lfe)
14
+ require(MatchIt)
15
+ require(WeightIt)
16
+ require(tjbal)
17
+ require(optmatch)
18
+ require(stargazer)
19
+ require(cobalt)
20
+ require(tidyverse)
21
+
22
+ rm(list = ls())
23
+ gc()
24
+ ####################################################################################################################### Loading data
25
+ load('../Data/replication_data.RData')
26
+
27
+
28
+ ####################################################################################################################### Loading functions
29
+ source('./helper_functions.R')
30
+
31
+
32
+
33
+
34
+
35
+ ####################################################################################################################### Preparing variables
36
+ Y <- c('pct_sanders16',paste0(c("pct_","VAP_","pcttw_"),"sanders"))
37
+ D <- unlist(lapply(c("sc_","ln_"),function(x) paste0(x,paste0(c("county_","DMA_","state_"),"cases"))))
38
+ FE <- c("0","DMA_CODE","date")
39
+ covariates <- c("sc_CTY_LTHS","sc_CTY_CollUp",
40
+ "sc_CTY_LT30yo","sc_CTY_60Up",
41
+ "sc_CTY_Below_poverty_level_AGE_18_64","sc_CTY_Female_hher_no_husbandhh",
42
+ "sc_CTY_Unem_rate_pop_16_over","sc_CTY_Labor_Force_Part_Rate_pop_16_over",
43
+ "sc_CTY_Manufactur","sc_CTY_Md_inc_hhs",
44
+ "sc_CTY_POPPCT_RURAL","sc_CTY_Speak_only_English","sc_CTY_White","sc_CTY_Black_or_African_American",
45
+ "ln_CTY_tot_pop","sc_turnout_pct_20",'caucus_switch','caucus')
46
+
47
+
48
+
49
+ # Function for generating matched data + weighted data
50
+ wgtMatchFun <- function(dat,formMatch,formWgt,matchMethod = 'nearest',wgtMethod = 'cbps') {
51
+ m.out <- matchit(formula = formula(formMatch),
52
+ data = dat,
53
+ method = matchMethod,
54
+ distance = "mahalanobis")
55
+
56
+ m.data <- match.data(m.out)
57
+ W.out <- weightit(formula = formula(formWgt),
58
+ data = dat,
59
+ estimand = "ATT",
60
+ method = wgtMethod)
61
+
62
+ # Balance tables
63
+ balt.pre <- bal.tab(formula(formWgt),
64
+ data = dat,
65
+ estimand = "ATT",
66
+ m.threshold = .05)
67
+
68
+ balt.post <- bal.tab(W.out, m.threshold = .05, disp.v.ratio = TRUE)
69
+ unm <- data.frame(Covs = gsub('_$','',rownames(balt.pre$Balance)),
70
+ balt.pre$Balance %>%
71
+ mutate(Diff_Unm = round(Diff.Un,2),
72
+ Bal_Test_Unm = M.Threshold.Un)) %>%
73
+ select(Covs,Diff_Unm,Bal_Test_Unm)
74
+
75
+ match <- data.frame(Covs = rownames(balt.post$Balance),
76
+ balt.post$Balance %>% mutate(Diff_Match = round(Diff.Adj,2),
77
+ Bal_Test_Match = M.Threshold)) %>%
78
+ select(Covs,Diff_Match,Bal_Test_Match)
79
+
80
+
81
+ balTab <- match %>% left_join(unm) %>% select(Covs,Diff_Unm,Bal_Test_Unm,Diff_Match,Bal_Test_Match)
82
+ balPlot <- qqprep(x = m.out)
83
+
84
+ return(list(balTab = balTab,
85
+ m.data = m.data,
86
+ W.out = W.out,
87
+ dat = dat,
88
+ balPlot = balPlot))
89
+ }
90
+
91
+
92
+ set.seed(123)
93
+ finalDat$treatBin <- ifelse(finalDat$DMA_cases > 1,1,0)
94
+
95
+ # Full Sample Regressions: Nearest neighbor + CBPS
96
+ summary(mFullRaw <- felm(as.formula(paste0("scale(pcttw_sanders) ~ treatBin + ",
97
+ paste(c(covariates,"pcttw_sanders16"),collapse = " + "),
98
+ " | DMA_CODE | 0 | DMA_CODE")),
99
+ finalDat))
100
+
101
+
102
+ foranal.weight <- finalDat %>%
103
+ select(pcttw_sanders,DMA_cases,treatBin,DMA_CODE,date,stab,covariates,pcttw_sanders16) %>%
104
+ filter(complete.cases(.))
105
+
106
+ fullPrepped <- wgtMatchFun(dat = foranal.weight,
107
+ formMatch = paste0('treatBin ~ ',paste(covariates,collapse = " + ")),
108
+ formWgt = paste0('treatBin ~ ',paste(covariates,collapse = " + ")),
109
+ matchMethod = 'nearest',
110
+ wgtMethod = 'cbps')
111
+
112
+ summary(mFullMatch <- felm(as.formula(paste0("scale(pcttw_sanders) ~ treatBin + ",
113
+ paste(c(covariates,"pcttw_sanders16"),collapse = " + "),
114
+ " | DMA_CODE | 0 | DMA_CODE")),
115
+ fullPrepped$m.data,weights = fullPrepped$m.data$weights))
116
+
117
+
118
+ summary(mFullWgt <- felm(as.formula(paste0("scale(pcttw_sanders) ~ treatBin + ",
119
+ paste(c(covariates,"pcttw_sanders16"),collapse = " + "),
120
+ " | DMA_CODE | 0 | DMA_CODE")),
121
+ fullPrepped$dat,weights = fullPrepped$W.out$weights))
122
+
123
+
124
+ # March + April Regressions
125
+ foranal.weight <- finalDat %>%
126
+ select(pcttw_sanders,DMA_cases,treatBin,
127
+ DMA_CODE,date,stab,covariates,
128
+ pcttw_sanders16) %>%
129
+ filter(complete.cases(.),
130
+ date >= as.Date('2020-03-01'))
131
+
132
+ covariates <- covariates[-which(covariates == 'caucus')]
133
+
134
+ marPrepped <- wgtMatchFun(dat = foranal.weight,
135
+ formMatch = paste0('treatBin ~ ',paste(covariates,collapse = " + ")),
136
+ formWgt = paste0('treatBin ~ ',paste(covariates,collapse = " + ")),
137
+ matchMethod = 'nearest',
138
+ wgtMethod = 'cbps')
139
+
140
+ summary(mMarRaw <- felm(as.formula(paste0("scale(pcttw_sanders) ~ treatBin + ",
141
+ paste(c(covariates,"pcttw_sanders16"),collapse = " + ")," | DMA_CODE | 0 | DMA_CODE")),
142
+ finalDat %>% filter(date >= as.Date("2020-03-01"))))
143
+
144
+ summary(mMarMatch <- felm(as.formula(paste0("scale(pcttw_sanders) ~ treatBin + ",
145
+ paste(c(covariates,"pcttw_sanders16"),collapse = " + ")," | DMA_CODE | 0 | DMA_CODE")),
146
+ marPrepped$m.data,weights = marPrepped$m.data$weights))
147
+
148
+
149
+ summary(mMarWgt <- felm(as.formula(paste0("scale(pcttw_sanders) ~ treatBin + ",
150
+ paste(c(covariates,"pcttw_sanders16"),collapse = " + ")," | DMA_CODE | 0 | DMA_CODE")),
151
+ marPrepped$dat,weights = marPrepped$W.out$weights))
152
+
153
+
154
+ # Table 1
155
+ covars <- rownames(mFullRaw$coefficients)
156
+ labs <- gsub('Treatbin','Exposure Dummy',gsub('Turnout pct 20','Turnout 2020',gsub('Pcttw sanders16','Sanders 2016',gsub('Caucus$','Caucus dummy',gsub("Lths","LTHS",gsub("Collup","Coll. Up",gsub("Md inc HH","Med HH Inc",gsub("Sc ","",gsub(" or african american|band$","",Hmisc::capitalize(trimws(gsub("manufactur","manufacturing",gsub("hher|hhs","HH",gsub("labor force part rate","LFPR",gsub("bachelor s","bachelor's",gsub("age 18 64|pop 16 over|hh$|poppct","",gsub("\\_"," ",gsub("^sc_|^.*cty\\_","",tolower(covars)))))))))))))))))))
157
+
158
+ prepTable <- function(tab,keeps = c('Exposure Dummy','Turnout 2020','Sanders 2016',
159
+ 'Caucus dummy','Caucus switch'),tops = 1:14,bottoms = (length(tab) - 8):length(tab)) {
160
+ inds <- NULL
161
+ for(keep in keeps) {
162
+ tmpInds <- which(grepl(keep,tab))
163
+ for(i in tmpInds) {
164
+ inds <- c(inds,i:(i+2))
165
+ }
166
+ }
167
+ inds <- unique(c(tops,inds,bottoms))
168
+
169
+ return(tab[inds])
170
+ }
171
+
172
+ tex <- stargazer(mFullRaw,mFullMatch,mFullWgt,
173
+ mMarRaw,mMarMatch,mMarWgt,
174
+ keep.stat = c("n","rsq"),
175
+ star.cutoffs = c(.1,.05,.01,.001),
176
+ star.char = c('\\dag','*','**','***'),
177
+ covariate.labels = labs)
178
+
179
+ cat(paste(prepTable(tex,keeps = c('Exposure Dummy','Turnout 2020','Sanders 2016',
180
+ 'Caucus switch','Caucus dummy')),
181
+ collapse = '\n'),file = '../Tables/table1.tex')
182
+
183
+
184
+
185
+ # SI Table 3
186
+ stargazer(marPrepped$balTab,summary = F,out = '../Tables/SI-table3.tex')
187
+
188
+
189
+
190
+ # SI Figure 13
191
+ toplot <- fullPrepped$balPlot$toplot
192
+ # rr <- marPrepped$balPlot$rr
193
+
194
+ dist2d <- function(x,y) {
195
+ m <- cbind(c(-1,-1),c(x,y))
196
+ abs(det(m))/sqrt(sum(c(-1,-1)^2))
197
+ }
198
+ vdist2d <- Vectorize(dist2d,vectorize.args = c("x","y"))
199
+ toplot$type <- as.character(toplot$type)
200
+ toplot$cov <- as.character(toplot$cov)
201
+ toplot <- toplot %>% bind_rows(toplot %>% group_by(cov) %>% summarise(x = min(x,y),y = min(x,y)),
202
+ toplot %>% group_by(cov) %>% summarise(x = max(x,y),y = max(x,y)))
203
+
204
+
205
+ toplot$cov <- Hmisc::capitalize(tolower(trimws(gsub("Manufactur","Manufacturing",gsub("Labor Force Part Rate","LFPR",gsub("hher|hhs","HH",gsub("Bachelor s","Bachelor's",gsub("_"," ",gsub("CTY_|AGE_18_64|pop_16_over|hh$|POPPCT","",toplot$cov)))))))))
206
+ toplot %>% group_by(type,cov) %>%
207
+ summarise(eucdist = mean(vdist2d(x = x,y= y))) %>%
208
+ filter(!is.na(type)) -> sum.euc
209
+
210
+
211
+
212
+ pdf('../Figures/SI_figure13.pdf',width = 7,height = 7)
213
+ toplot %>%
214
+ filter(!grepl('caucus',tolower(cov))) %>%
215
+ ggplot(aes(x = x,y = y,color = factor(type,levels = c("Raw","Matched")),
216
+ text = paste0(type,"\nEuc Dist = ",round(vdist2d(x = x,y = y),2)))) +
217
+ geom_point(alpha = .3,size = .5) +
218
+ geom_abline() +
219
+ geom_abline(aes(intercept = (rrlb - rrub) * 0.1,slope = 1),linetype = "dashed") +
220
+ geom_abline(aes(intercept = -(rrlb - rrub) * 0.1,slope = 1),linetype = "dashed") +
221
+ theme_bw() +
222
+ xlab("Control") + ylab("Treated") +
223
+ theme(legend.position = "bottom") +
224
+ facet_wrap(~cov,scales = "free") +
225
+ scale_color_discrete("",na.translate = F) +
226
+ guides(color = guide_legend(override.aes = list(size = 5,alpha = 1)))
227
+ dev.off()
228
+
229
+
230
+
231
+
232
+
233
+
234
+
235
+
236
+ # SI Tables 4-5 and Figure 14
237
+ # Full Sample Regressions: CEM + optweights
238
+ summary(mFullRaw <- felm(as.formula(paste0("scale(pcttw_sanders) ~ treatBin + ",
239
+ paste(c(covariates,"pcttw_sanders16"),collapse = " + "),
240
+ " | DMA_CODE | 0 | DMA_CODE")),
241
+ finalDat))
242
+
243
+
244
+ foranal.weight <- finalDat %>% select(pcttw_sanders,DMA_cases,treatBin,DMA_CODE,date,stab,covariates,pcttw_sanders16) %>% filter(complete.cases(.))
245
+ fullPrepped <- wgtMatchFun(dat = foranal.weight,
246
+ formMatch = paste0('treatBin ~ ',paste(covariates[c(4,2,10,12,7,13)],collapse = " + ")),
247
+ formWgt = paste0('treatBin ~ ',paste(covariates,collapse = " + ")),
248
+ matchMethod = 'cem',
249
+ wgtMethod = 'optweight')
250
+
251
+ summary(mFullMatch <- felm(as.formula(paste0("scale(pcttw_sanders) ~ treatBin + ",
252
+ paste(c(covariates,"pcttw_sanders16"),collapse = " + "),
253
+ " | DMA_CODE | 0 | DMA_CODE")),
254
+ fullPrepped$m.data,weights = fullPrepped$m.data$weights))
255
+
256
+
257
+ summary(mFullWgt <- felm(as.formula(paste0("scale(pcttw_sanders) ~ treatBin + ",
258
+ paste(c(covariates,"pcttw_sanders16"),collapse = " + "),
259
+ " | DMA_CODE | 0 | DMA_CODE")),
260
+ fullPrepped$dat,weights = fullPrepped$W.out$weights))
261
+
262
+
263
+ # March + April Regressions
264
+ foranal.weight <- finalDat %>%
265
+ select(pcttw_sanders,DMA_cases,treatBin,
266
+ DMA_CODE,date,stab,covariates,
267
+ pcttw_sanders16) %>%
268
+ filter(complete.cases(.),
269
+ date >= as.Date('2020-03-01'))
270
+
271
+ covs <- covariates[-which(grepl('caucus',covariates))]
272
+
273
+ marPrepped <- wgtMatchFun(dat = foranal.weight,
274
+ formMatch = paste0('treatBin ~ ',paste(covs[c(4,2,10,12,7,13)],collapse = " + ")), # CEM fails with the full set of covariates. See SI page 13-15 for discussion.
275
+ formWgt = paste0('treatBin ~ ',paste(covs,collapse = " + ")),
276
+ matchMethod = 'cem',
277
+ wgtMethod = 'optweight')
278
+
279
+ summary(mMarRaw <- felm(as.formula(paste0("scale(pcttw_sanders) ~ treatBin + ",
280
+ paste(c(covs,"pcttw_sanders16"),collapse = " + "),
281
+ " | DMA_CODE | 0 | DMA_CODE")),
282
+ finalDat %>% filter(date >= as.Date("2020-03-01"))))
283
+
284
+ summary(mMarMatch <- felm(as.formula(paste0("scale(pcttw_sanders) ~ treatBin + ",
285
+ paste(c(covs,"pcttw_sanders16"),collapse = " + "),
286
+ " | DMA_CODE | 0 | DMA_CODE")),
287
+ marPrepped$m.data,weights = marPrepped$m.data$weights))
288
+
289
+
290
+ summary(mMarWgt <- felm(as.formula(paste0("scale(pcttw_sanders) ~ treatBin + ",
291
+ paste(c(covs,"pcttw_sanders16"),collapse = " + "),
292
+ " | DMA_CODE | 0 | DMA_CODE")),
293
+ marPrepped$dat,weights = marPrepped$W.out$weights))
294
+
295
+
296
+ # SI Table 4
297
+ stargazer(fullPrepped$balTab,summary = F,out = '../Tables/SI-table4.tex')
298
+
299
+
300
+ # SI Table 5
301
+ covars <- rownames(mFullRaw$coefficients)
302
+ labs <- gsub('Treatbin','Exposure Dummy',gsub('Turnout pct 20','Turnout 2020',gsub('Pcttw sander16','Sanders 2016',gsub('Caucus$','Caucus dummy',gsub("Lths","LTHS",gsub("Collup","Coll. Up",gsub("Md inc HH","Med HH Inc",gsub("Sc ","",gsub(" or african american|band$","",Hmisc::capitalize(trimws(gsub("manufactur","manufacturing",gsub("hher|hhs","HH",gsub("labor force part rate","LFPR",gsub("bachelor s","bachelor's",gsub("age 18 64|pop 16 over|hh$|poppct","",gsub("\\_"," ",gsub("^sc_|^.*cty\\_","",tolower(covars)))))))))))))))))))
303
+
304
+ stargazer(mFullRaw,mFullMatch,mFullWgt,
305
+ mMarRaw,mMarMatch,mMarWgt,
306
+ keep.stat = c("n","rsq"),
307
+ star.cutoffs = c(.1,.05,.01,.001),
308
+ star.char = c('\\dag','*','**','***'),
309
+ covariate.labels = labs,out = '../Tables/SI-table5.tex')
310
+
311
+
312
+
313
+
314
+ # SI Figure 14
315
+ toplot <- fullPrepped$balPlot$toplot
316
+
317
+ dist2d <- function(x,y) {
318
+ m <- cbind(c(-1,-1),c(x,y))
319
+ abs(det(m))/sqrt(sum(c(-1,-1)^2))
320
+ }
321
+ vdist2d <- Vectorize(dist2d,vectorize.args = c("x","y"))
322
+ toplot$type <- as.character(toplot$type)
323
+ toplot$cov <- as.character(toplot$cov)
324
+ toplot <- toplot %>% bind_rows(toplot %>% group_by(cov) %>% summarise(x = min(x,y),y = min(x,y)),
325
+ toplot %>% group_by(cov) %>% summarise(x = max(x,y),y = max(x,y)))
326
+
327
+
328
+ toplot$cov <- Hmisc::capitalize(tolower(trimws(gsub("Manufactur","Manufacturing",gsub("Labor Force Part Rate","LFPR",gsub("hher|hhs","HH",gsub("Bachelor s","Bachelor's",gsub("_"," ",gsub("CTY_|AGE_18_64|pop_16_over|hh$|POPPCT","",toplot$cov)))))))))
329
+ toplot %>% group_by(type,cov) %>%
330
+ summarise(eucdist = mean(vdist2d(x = x,y= y))) %>%
331
+ filter(!is.na(type)) -> sum.euc
332
+
333
+
334
+
335
+ pdf('../Figures/SI_figure14.pdf',width = 7,height = 5)
336
+ toplot %>%
337
+ filter(!grepl('caucus',tolower(cov))) %>%
338
+ ggplot(aes(x = x,y = y,color = factor(type,levels = c("Raw","Matched")),text = paste0(type,"\nEuc Dist = ",round(vdist2d(x = x,y = y),2)))) +
339
+ geom_point(alpha = .3,size = .5) +
340
+ geom_abline() +
341
+ geom_abline(aes(intercept = (rrlb - rrub) * 0.1,slope = 1),linetype = "dashed") +
342
+ geom_abline(aes(intercept = -(rrlb - rrub) * 0.1,slope = 1),linetype = "dashed") +
343
+ theme_bw() +
344
+ xlab("Control") + ylab("Treated") +
345
+ theme(legend.position = "bottom") +
346
+ facet_wrap(~cov,scales = "free") +
347
+ scale_color_discrete("",na.translate = F) +
348
+ guides(color = guide_legend(override.aes = list(size = 5,alpha = 1)))
349
+ dev.off()
29/replication_package/Code/Table 2.R ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File name: table2.R
2
+ # In:
3
+ # - /Data/survey_experiment_data.RData
4
+ # Out:
5
+ # - /Tables/table2.tex
6
+
7
+ rm(list = ls())
8
+ gc()
9
+ require(tidyverse)
10
+
11
+ load('../Data/survey_experiment_data.RData')
12
+ # Basic test: Does pessimistic treatment increase support for mainstream candidate?
13
+ summary(main <- lm(scale(y) ~ z + factor(polAge) + factor(polOcc) + factor(polPlat) +
14
+ factor(age) + factor(sex) + factor(hisp) + white + black + asian + factor(pid),
15
+ foranal %>%
16
+ filter(duration > 180) %>%
17
+ mutate(sex = factor(sex,levels = c("Neither male nor female describes me accurately OR prefer not to say","Female","Male")),
18
+ polPlat = factor(polPlat,levels = c("none","hlth","educ")),
19
+ pid = factor(pid,levels = c("Strong Democrat","Democrat","Lean Democrat","Independent","Lean Republican","Republican","Strong Republican")),
20
+ covid_self = factor(covid_self,levels = c("No","Maybe","Yes")),
21
+ covid_pers = factor(covid_pers,levels = c("No","Maybe","Yes")))))
22
+
23
+ summary(biv <- lm(yBin ~ z,
24
+ foranal %>%
25
+ filter(duration > 0) %>%
26
+ mutate(sex = factor(sex,levels = c("Neither male nor female describes me accurately OR prefer not to say","Female","Male")),
27
+ polPlat = factor(polPlat,levels = c("none","hlth","educ")),
28
+ pid = factor(pid,levels = c("Strong Democrat","Democrat","Lean Democrat","Independent","Lean Republican","Republican","Strong Republican")),
29
+ covid_self = factor(covid_self,levels = c("No","Maybe","Yes")),
30
+ covid_pers = factor(covid_pers,levels = c("No","Maybe","Yes")))))
31
+
32
+ summary(ind <- lm(yBin ~ z +
33
+ factor(age) + factor(sex) + factor(hisp) + white + black + asian + factor(pid),
34
+ foranal %>%
35
+ filter(duration > 0) %>%
36
+ mutate(sex = factor(sex,levels = c("Neither male nor female describes me accurately OR prefer not to say","Female","Male")),
37
+ polPlat = factor(polPlat,levels = c("none","hlth","educ")),
38
+ pid = factor(pid,levels = c("Strong Democrat","Democrat","Lean Democrat","Independent","Lean Republican","Republican","Strong Republican")),
39
+ covid_self = factor(covid_self,levels = c("No","Maybe","Yes")),
40
+ covid_pers = factor(covid_pers,levels = c("No","Maybe","Yes")))))
41
+
42
+ summary(indcov <- lm(yBin ~ z +
43
+ factor(age) + factor(sex) + factor(hisp) + white + black + asian + factor(pid),
44
+ foranal %>%
45
+ filter(duration > 0) %>%
46
+ mutate(sex = factor(sex,levels = c("Neither male nor female describes me accurately OR prefer not to say","Female","Male")),
47
+ polPlat = factor(polPlat,levels = c("none","hlth","educ")),
48
+ pid = factor(pid,levels = c("Strong Democrat","Democrat","Lean Democrat","Independent","Lean Republican","Republican","Strong Republican")),
49
+ covid_self = factor(covid_self,levels = c("No","Maybe","Yes")),
50
+ covid_pers = factor(covid_pers,levels = c("No","Maybe","Yes")))))
51
+
52
+ summary(full <- lm(yBin ~ z +
53
+ factor(age) + factor(sex) + factor(hisp) + white + black + asian + factor(pid) +
54
+ factor(polAge) + factor(polOcc) + factor(polPlat),
55
+ foranal %>%
56
+ filter(duration > 0) %>%
57
+ mutate(sex = factor(sex,levels = c("Neither male nor female describes me accurately OR prefer not to say","Female","Male")),
58
+ polPlat = factor(polPlat,levels = c("none","hlth","educ")),
59
+ pid = factor(pid,levels = c("Strong Democrat","Democrat","Lean Democrat","Independent","Lean Republican","Republican","Strong Republican")),
60
+ covid_self = factor(covid_self,levels = c("No","Maybe","Yes")),
61
+ covid_pers = factor(covid_pers,levels = c("No","Maybe","Yes")))))
62
+
63
+
64
+
65
+ summary(attentive <- lm(yBin ~ z +
66
+ factor(age) + factor(sex) + factor(hisp) + white + black + asian + factor(pid) +
67
+ factor(polAge) + factor(polOcc) + factor(polPlat),
68
+ foranal %>%
69
+ filter(duration > 150) %>%
70
+ mutate(sex = factor(sex,levels = c("Neither male nor female describes me accurately OR prefer not to say","Female","Male")),
71
+ polPlat = factor(polPlat,levels = c("none","hlth","educ")),
72
+ pid = factor(pid,levels = c("Strong Democrat","Democrat","Lean Democrat","Independent","Lean Republican","Republican","Strong Republican")),
73
+ covid_self = factor(covid_self,levels = c("No","Maybe","Yes")),
74
+ covid_pers = factor(covid_pers,levels = c("No","Maybe","Yes")))))
75
+ require(stargazer)
76
+ stargazer(biv,ind,full,attentive,keep.stat = c("n","rsq"),keep = "pid|covid|z",
77
+ covariate.labels = c("Anxiety Prime","Democrat","Lean Dem","Independent","Lean GOP","Republican","Strong GOP"),
78
+ star.char = c('\\dag','*','**','***'),
79
+ star.cutoffs = c(.1,.05,.01,.001),
80
+ out = "../Tables/table2.tex")
81
+
82
+
29/replication_package/Code/Table 3, Figure SI18.R ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File name: table3_SIfigure18.R
2
+ # In:
3
+ # - /Data/primary_data.RData: Primary election results for the house of representatives, linked with district-level cases and deaths
4
+ # Out:
5
+ # - /Tables/table3.tex
6
+ # - /Figures/SI_figure18.pdf
7
+
8
+ require(lme4)
9
+ require(lfe)
10
+ require(MatchIt)
11
+ require(WeightIt)
12
+ require(tjbal)
13
+ require(optmatch)
14
+ require(stargazer)
15
+ require(cobalt)
16
+ require(tidyverse)
17
+ require(stargazer)
18
+ require(gridExtra)
19
+ require(ggridges)
20
+ require(ggrepel)
21
+
22
+ rm(list = ls())
23
+ gc()
24
+
25
+
26
+ load('../Data/primary_data.RData')
27
+
28
+ # Table 3
29
+ summary(mVScaseEXT <- felm(voteSh ~ extreme*log(casesSum+1) | stcd | 0 | stcd,toAnal))
30
+ summary(mVScaseJST <- felm(voteSh ~ justice*log(casesSum+1) | stcd | 0 | stcd,toAnal))
31
+ summary(mVScaseTEA <- felm(voteSh ~ tea*log(casesSum+1) | stcd | 0 | stcd,toAnal))
32
+
33
+ summary(mVSdthEXT <- felm(voteSh ~ extreme*log(deathsSum+1) | stcd | 0 | stcd,toAnal))
34
+ summary(mVSdthJST <- felm(voteSh ~ justice*log(deathsSum+1) | stcd | 0 | stcd,toAnal))
35
+ summary(mVSdthTEA <- felm(voteSh ~ tea*log(deathsSum+1) | stcd | 0 | stcd,toAnal))
36
+
37
+ summary(mVTcaseEXT <- felm(log(votes+1) ~ extreme*log(casesSum+1) + log(totVotes+1) | stcd | 0 | stcd,toAnal %>% filter(votes != 0)))
38
+ summary(mVTcaseJST <- felm(log(votes+1) ~ justice*log(casesSum+1) + log(totVotes+1) | stcd | 0 | stcd,toAnal %>% filter(votes != 0)))
39
+ summary(mVTcaseTEA <- felm(log(votes+1) ~ tea*log(casesSum+1) + log(totVotes+1) | stcd | 0 | stcd,toAnal %>% filter(votes != 0)))
40
+
41
+ summary(mVTdthEXT <- felm(log(votes+1) ~ extreme*log(deathsSum+1) + log(totVotes+1) | stcd | 0 | stcd,toAnal %>% filter(votes != 0)))
42
+ summary(mVTdthJST <- felm(log(votes+1) ~ justice*log(deathsSum+1) + log(totVotes+1) | stcd | 0 | stcd,toAnal %>% filter(votes != 0)))
43
+ summary(mVTdthTEA <- felm(log(votes+1) ~ tea*log(deathsSum+1) + log(totVotes+1) | stcd | 0 | stcd,toAnal %>% filter(votes != 0)))
44
+
45
+ regs <- list()
46
+ for(m in objects(pattern = '^mVScase')) {
47
+ regs[[m]] <- get(m)
48
+ rownames(regs[[m]]$coefficients) <- rownames(regs[[m]]$beta) <- gsub(':',' X ',
49
+ gsub('tea|justice|extreme','Anti-Est.',
50
+ gsub('log\\(deathsSum \\+ 1\\)','Deaths (ln)',
51
+ gsub('log\\(casesSum \\+ 1\\)','Cases (ln)',
52
+ gsub('log\\(totVotes \\+ 1\\)','Total Votes (ln)',rownames(regs[[m]]$coefficients))))))
53
+ }
54
+
55
+ stargazer(regs,keep.stat = c('n','rsq'),
56
+ star.char = c('\\dag','*','**','***'),
57
+ star.cutoffs = c(.1,.05,.01,.001),
58
+ add.lines = list(c('District FE','Y','Y','Y','Y')), out = '../Tables/table3.tex')
59
+
60
+ # SI Figure 18
61
+ toplot <- toAnal %>%
62
+ filter(date < as.Date('2020-11-01'),
63
+ votes > 0)
64
+
65
+ toplot$lab <- NA
66
+ for(d in unique(toplot$date)) {
67
+ toplot$lab[which(toplot$date == d)] <- paste(unique(toplot$stab[which(toplot$date == d)]),collapse = '\n')
68
+ }
69
+
70
+
71
+
72
+ p1 <- toplot %>%
73
+ ggplot(aes(x = date,y = voteSh,color = factor(extreme),size = casesSum,weight = log(casesSum+1),
74
+ alpha = factor(extreme),
75
+ label = lab)) +
76
+ geom_jitter(width = 0) +
77
+ geom_smooth(method = 'lm') +
78
+ geom_text(data = toplot %>%
79
+ group_by(date) %>%
80
+ slice(1) %>%
81
+ filter(!stab %in% c('HI','TN')) %>%
82
+ ungroup() %>%
83
+ mutate(voteSh = 1.01,
84
+ date = date - 3),
85
+ size = 2.5,hjust = 0,vjust = 0,color = 'black',alpha = .8) +
86
+ theme_ridges() +
87
+ scale_color_manual(name = 'Type',values = c(`0` = 'grey60',`1` = 'black'),label = c('Mainstream','Extreme')) +
88
+ scale_alpha_manual(guide = F,values = c(`0` = .15,`1` = .6)) +
89
+ scale_size_continuous(guide = F) +
90
+ xlab('Date') + ylab('Vote Share') +
91
+ scale_y_continuous(breaks = seq(0,1,by = .25),limits = c(0,1.25)) +
92
+ theme(legend.position = 'bottom')
93
+
94
+
95
+ p2 <- toplot %>%
96
+ ggplot(aes(x = log(casesSum+1),y = voteSh,color = factor(extreme))) +
97
+ geom_jitter(alpha = .2,width = .2) +
98
+ geom_smooth(method = 'lm') +
99
+ theme_ridges() +
100
+ scale_color_manual(name = 'Type',values = c(`0` = 'grey60',`1` = 'black'),label = c('Mainstream','Extreme')) +
101
+ scale_alpha_manual(guide = F,values = c(`0` = .15,`1` = .6)) +
102
+ scale_size_continuous(guide = F) +
103
+ xlab('Logged Cases') + ylab('Vote Share') +
104
+ scale_y_continuous(breaks = seq(0,1,by = .25),limits = c(0,1.25)) +
105
+ theme(legend.position = 'bottom')
106
+
107
+ pdf('../Figures/SI_figure18.pdf',width = 12,height = 8)
108
+ grid.arrange(p1,p2,ncol = 2)
109
+ dev.off()
29/replication_package/Code/helper_functions.R ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # QQ plot to evaluate balance
2
+ qqprep <- function (x, discrete.cutoff, which.subclass = NULL, numdraws = 5000,
3
+ interactive = T, which.xs = NULL, ...) {
4
+ X <- x$X
5
+ varnames <- colnames(X)
6
+ for (var in varnames) {
7
+ if (is.factor(X[, var])) {
8
+ tempX <- X[, !colnames(X) %in% c(var)]
9
+ form <- formula(substitute(~dummy - 1, list(dummy = as.name(var))))
10
+ X <- cbind(tempX, model.matrix(form, X))
11
+ }
12
+ }
13
+ covariates <- X
14
+ if (!is.null(which.xs)) {
15
+ if (sum(which.xs %in% dimnames(covariates)[[2]]) != length(which.xs)) {
16
+ stop("which.xs is incorrectly specified")
17
+ }
18
+ covariates <- covariates[, which.xs, drop = F]
19
+ }
20
+ treat <- x$treat
21
+ matched <- x$weights != 0
22
+ ratio <- x$call$ratio
23
+ if (is.null(ratio)) {
24
+ ratio <- 1
25
+ }
26
+ if (identical(x$call$method, "full") | (ratio != 1)) {
27
+ t.plot <- sample(names(treat)[treat == 1], numdraws/2,
28
+ replace = TRUE, prob = x$weights[treat == 1])
29
+ c.plot <- sample(names(treat)[treat == 0], numdraws/2,
30
+ replace = TRUE, prob = x$weights[treat == 0])
31
+ m.covariates <- x$X[c(t.plot, c.plot), ]
32
+ m.treat <- x$treat[c(t.plot, c.plot)]
33
+ }
34
+ else {
35
+ m.covariates <- covariates[matched, , drop = F]
36
+ m.treat <- treat[matched]
37
+ }
38
+ if (!is.null(which.subclass)) {
39
+ subclass <- x$subclass
40
+ sub.index <- subclass == which.subclass & !is.na(subclass)
41
+ sub.covariates <- covariates[sub.index, , drop = F]
42
+ sub.treat <- treat[sub.index]
43
+ sub.matched <- matched[sub.index]
44
+ m.covariates <- sub.covariates[sub.matched, , drop = F]
45
+ m.treat <- sub.treat[sub.matched]
46
+ }
47
+ nn <- dimnames(covariates)[[2]]
48
+ nc <- length(nn)
49
+ covariates <- data.matrix(covariates)
50
+ toplot <- NULL
51
+ for (i in 1:nc) {
52
+ xi <- covariates[, i]
53
+ m.xi <- m.covariates[, i]
54
+ rr <- range(xi)
55
+
56
+
57
+ eqqplot <- function(x,y) {
58
+ sx <- sort(x)
59
+ sy <- sort(y)
60
+ lenx <- length(sx)
61
+ leny <- length(sy)
62
+ if (leny < lenx)
63
+ sx <- approx(1:lenx, sx, n = leny, method = "constant")$y
64
+ if (leny > lenx)
65
+ sy <- approx(1:leny, sy, n = lenx, method = "constant")$y
66
+ return(list(x = sx,y = sy))
67
+ }
68
+ toplot <- bind_rows(toplot,
69
+ bind_rows(data.frame(eqqplot(x = xi[treat == 0],y = xi[treat == 1]),type = "Raw",cov = nn[i],rrlb = rr[1],rrub = rr[2]),
70
+ data.frame(eqqplot(x = m.xi[m.treat == 0],y = m.xi[m.treat == 1]),type = "Matched",cov = nn[i],rrlb = rr[1],rrub = rr[2])))
71
+ }
72
+ return(list(toplot = toplot))
73
+ }
74
+
75
+
76
+ # Ineration plot
77
+ interaction_plot_continuous <- function(model, effect = "", moderator = "", varcov="default", minimum="min", maximum="max",colr = "grey",
78
+ incr="default", num_points = 10, conf=.95, mean=FALSE, median=FALSE, alph=80, rugplot=T,
79
+ histogram=F, title="Marginal effects plot", xlabel="Value of moderator",
80
+ ylabel="Estimated marginal coefficient",pointsplot = F,plot = F,show_est = F) {
81
+ # Extract Variance Covariance matrix
82
+ if (varcov == "default"){
83
+ covMat = vcov(model)
84
+ }else{
85
+ covMat = varcov
86
+ }
87
+
88
+ # Extract the data frame of the model
89
+ mod_frame = model.frame(model)
90
+
91
+ # Get coefficients of variables
92
+ if(effect == "") {
93
+ int.string <- rownames(summary(model)$coefficients)[grepl(":",rownames(summary(model)$coefficients))]
94
+ effect <- substr(int.string,1,regexpr(":",int.string)[1]-1)
95
+ }
96
+ if(moderator == "") {
97
+ int.string <- rownames(summary(model)$coefficients)[grepl(":",rownames(summary(model)$coefficients))]
98
+ moderator <- substr(int.string,regexpr(":",int.string)[1]+1,nchar(int.string))
99
+ }
100
+ interaction <- paste(effect,":",moderator,sep="")
101
+ beta_1 = summary(model)$coefficients[effect,1]
102
+ beta_3 = summary(model)$coefficients[interaction,1]
103
+
104
+ # Set range of the moderator variable
105
+ # Minimum
106
+ if (minimum == "min"){
107
+ min_val = min(mod_frame[[moderator]])
108
+ }else{
109
+ min_val = minimum
110
+ }
111
+ # Maximum
112
+ if (maximum == "max"){
113
+ max_val = max(mod_frame[[moderator]])
114
+ }else{
115
+ max_val = maximum
116
+ }
117
+
118
+ # Check if minimum smaller than maximum
119
+ if (min_val > max_val){
120
+ stop("Error: Minimum moderator value greater than maximum value.")
121
+ }
122
+
123
+ # Determine intervals between values of the moderator
124
+ if (incr == "default"){
125
+ increment = (max_val - min_val)/(num_points - 1)
126
+ }else{
127
+ increment = incr
128
+ }
129
+
130
+ # Create list of moderator values at which marginal effect is evaluated
131
+ x_2 <- seq(from=min_val, to=max_val, by=increment)
132
+
133
+ # Compute marginal effects
134
+ delta_1 = beta_1 + beta_3*x_2
135
+
136
+ # Compute variances
137
+ var_1 = covMat[effect,effect] + (x_2^2)*covMat[interaction, interaction] + 2*x_2*covMat[effect, interaction]
138
+
139
+ # Standard errors
140
+ se_1 = sqrt(var_1)
141
+
142
+ # Upper and lower confidence bounds
143
+ z_score = qnorm(1 - ((1 - conf)/2))
144
+ upper_bound = sapply(1:length(z_score), function(x) delta_1 + z_score[x]*se_1)
145
+ lower_bound = sapply(1:length(z_score), function(x) delta_1 - z_score[x]*se_1)
146
+
147
+ # Determine the bounds of the graphing area
148
+ max_y = max(upper_bound)
149
+ min_y = min(lower_bound)
150
+
151
+ # Make the histogram color
152
+ hist_col = colr
153
+
154
+ stars <- ifelse(abs(summary(model)$coefficients[interaction,3]) >2.6,"***",
155
+ ifelse(abs(summary(model)$coefficients[interaction,3]) > 1.96,"**",
156
+ ifelse(abs(summary(model)$coefficients[interaction,3]) > 1.65,"*","")))
157
+ est <- paste("Interaction: ",round(summary(model)$coefficients[interaction,1],3),stars," (",
158
+ round(summary(model)$coefficients[interaction,2],3),")",sep="")
159
+ # Initialize plotting window
160
+ if(plot) {
161
+ plot(x=c(), y=c(), ylim=c(min_y, max_y), xlim=c(min_val, max_val),
162
+ xlab=xlabel, ylab=ylabel, main=title)
163
+
164
+ # Plot estimated effects
165
+ if(!pointsplot) {
166
+ lines(y=delta_1, x=x_2,col = colr)
167
+ for(i in ncol(upper_bound):1) {
168
+ polygon(c(x_2,rev(x_2)),c(upper_bound[,i],rev(lower_bound[,i])),border = NA,col = colr)
169
+ }
170
+ }else{
171
+ points(y = delta_1,x = x_2,col = colr,pch = 19)
172
+ for(i in ncol(upper_bound):1) {
173
+ segments(x_2,upper_bound[,i],x_2,lower_bound[,i],col = colr,lwd = i)
174
+ }
175
+ }
176
+ # Add a dashed horizontal line for zero
177
+ abline(h=0, lty=3)
178
+
179
+ # Add a vertical line at the mean
180
+ if (mean){
181
+ abline(v = mean(mod_frame[[moderator]]), lty=2, col="red")
182
+ }
183
+
184
+ # Add a vertical line at the median
185
+ if (median){
186
+ abline(v = median(mod_frame[[moderator]]), lty=3, col="blue")
187
+ }
188
+
189
+ # Add Rug plot
190
+ if (rugplot){
191
+ rug(mod_frame[[moderator]])
192
+ }
193
+
194
+ if (show_est) {
195
+ text(par('usr')[ 2 ], par('usr')[ 4 ],adj=c(1.05,1.2),
196
+ labels = est)
197
+
198
+ }
199
+ #Add Histogram (Histogram only plots when minimum and maximum are the min/max of the moderator)
200
+ if (histogram & minimum=="min" & maximum=="max"){
201
+ par(new=T)
202
+ hist(mod_frame[[moderator]], axes=F, xlab="", ylab="",main="", border=hist_col, col=hist_col)
203
+ }
204
+ }
205
+ return(list(delta_1 = delta_1,x_2 = x_2,ub = upper_bound,lb = lower_bound,inc = increment,est = est))
206
+ }
29/replication_package/Code/zzSI_robust_prep.R ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File name: SI_robust_prep.R
2
+ # In:
3
+ # - replication_data.RData
4
+ # Out:
5
+ # - /Data/Results/SI-data.RData
6
+
7
+ require(lme4)
8
+ require(lfe)
9
+ require(MatchIt)
10
+ require(WeightIt)
11
+ require(tjbal)
12
+ require(optmatch)
13
+ require(stargazer)
14
+ require(cobalt)
15
+ require(gridExtra)
16
+ require(ggridges)
17
+ require(ggrepel)
18
+ require(CBPS)
19
+ require(tidyverse)
20
+ rm(list = ls())
21
+ gc()
22
+
23
+ ####################################################################################################################### Loading data
24
+ load('../Data/replication_data.RData')
25
+
26
+
27
+
28
+
29
+ ####################################################################################################################### Loading functions
30
+ source('./helper_functions.R')
31
+
32
+
33
+
34
+ # ####################################################################################################################### Command line arguments
35
+ # args <- commandArgs(trailingOnly = T)
36
+ # # args <- c(3,2,2,2)
37
+ # # Y: 1-3
38
+ # # D: 1-2
39
+ # # FE: 1-4
40
+ # # GEO: 1-2
41
+ # yInd <- as.numeric(args[1])
42
+ # dInd <- as.numeric(args[2])
43
+ # feInd <- as.numeric(args[3])
44
+ # geoInd <- as.numeric(args[4])
45
+
46
+
47
+
48
+ ####################################################################################################################### Preparing variables
49
+ Y <- paste0(c("pct_","VAP_","pcttw_"),"sanders")
50
+ D <- unlist(lapply(c("sc_","ln_"),function(x) paste0(x,paste0(c("county_","DMA_","state_"),"cases"))))
51
+ FE <- c("0","DMA_CODE","date")
52
+ covariates <- c("sc_CTY_LTHS","sc_CTY_CollUp",
53
+ "sc_CTY_LT30yo","sc_CTY_60Up",
54
+ "sc_CTY_Below_poverty_level_AGE_18_64","sc_CTY_Female_hher_no_husbandhh",
55
+ "sc_CTY_Unem_rate_pop_16_over","sc_CTY_Labor_Force_Part_Rate_pop_16_over",
56
+ "sc_CTY_Manufactur","sc_CTY_Md_inc_hhs",
57
+ "sc_CTY_POPPCT_RURAL","sc_CTY_Speak_only_English","sc_CTY_White","sc_CTY_Black_or_African_American",
58
+ "ln_CTY_tot_pop","sc_turnout_pct_20")
59
+
60
+
61
+ set.seed(123)
62
+ resSI <- list()
63
+ for(y in 'pcttw_sanders') {
64
+ for(fe in c('DMA_CODE','0')) {
65
+ for(geo in 'DMA_') {
66
+ for(d in c('March10Cases','March17Cases')) {
67
+ for(pre in c("2020-03-01","2020-03-03","2020-03-10","2020-03-17")) {
68
+ for(post in c("2020-03-01","2020-03-03","2020-03-10","2020-03-17")) {
69
+ if(pre == post) { next }
70
+
71
+ if(pre == "2020-03-01") {
72
+ finalDat$post <- ifelse(finalDat$date == as.Date(post),1,
73
+ ifelse(finalDat$date <= as.Date(pre),0,NA))
74
+ } else if(post == "2020-03-01") {
75
+ finalDat$post <- ifelse(finalDat$date <= as.Date(post),1,
76
+ ifelse(finalDat$date == as.Date(pre),0,NA))
77
+ } else {
78
+ finalDat$post <- ifelse(finalDat$date == as.Date(post),1,
79
+ ifelse(finalDat$date == as.Date(pre),0,NA))
80
+ }
81
+ finalDat$treatBin <- ifelse(finalDat[[paste0(geo,d)]] > 1,1,0)
82
+ finalDat$treat <- ifelse(finalDat$post == 1 & finalDat$treatBin == 1,1,0)
83
+ tmpAnal <- finalDat %>% select(Y,treat,treatBin,c(covariates,paste0(y,"16")),pcttw_sanders16,VAP_sanders16,DMA_CODE,date,stab,matches("cases"),post) %>% filter(complete.cases(.))
84
+ m.out <- matchit(formula = as.formula(paste("treatBin ~ ",paste(c(covariates,paste0(y,"16")),collapse = " + "))),
85
+ data = tmpAnal,
86
+ method = "nearest",
87
+ distance = "mahalanobis")
88
+
89
+ m.data <- match.data(m.out)
90
+ W.out <- weightit(formula(paste0("treatBin ~ ",paste(c(covariates,paste0(y,"16")),collapse = " + "))),
91
+ data = tmpAnal, estimand = "ATT", method = "cbps")
92
+
93
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$bin <- summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients
94
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$cont <- summary(felm(as.formula(paste0('scale(',y,") ~ ",paste0("scale(",geo,d,")")," + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients
95
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$did$coefs <- summary(tmp <- felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients
96
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$did$mfx <- interaction_plot_continuous(tmp,num_points = 2,pointsplot = T)
97
+
98
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$bin <- summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients
99
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$cont <- summary(felm(as.formula(paste0('scale(',y,") ~ ",paste0("scale(",geo,d,")")," + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients
100
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$did$coefs <- summary(tmp <- felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients
101
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$did$mfx <- interaction_plot_continuous(tmp,num_points = 2,pointsplot = T)
102
+
103
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$bin <- summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients
104
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$cont <- summary(felm(as.formula(paste0('scale(',y,") ~ ",paste0("scale(",geo,d,")")," + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients
105
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$did$coefs <- summary(tmp <- felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients
106
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$did$mfx <- interaction_plot_continuous(tmp,num_points = 2,pointsplot = T)
107
+
108
+ # Permutation SHEEYAHT
109
+ basic.bin.plac <- basic.cont.plac <- basic.did.plac <- matching.bin.plac <- matching.cont.plac <- matching.did.plac <- weighting.bin.plac <- weighting.cont.plac <- weighting.did.plac <- NULL
110
+ for(bs in 1:100) {
111
+ tmpAnal$perm <- sample(tmpAnal[[paste0(geo,d)]],size = nrow(tmpAnal))
112
+ tmpAnal$treatBin <- ifelse(tmpAnal$perm > 1,1,0)
113
+ tmpAnal$treat <- ifelse(tmpAnal$post == 1 & tmpAnal$treatBin == 1,1,0)
114
+ m.out <- matchit(formula = as.formula(paste("treatBin ~ ",paste(c(covariates,paste0(y,"16")),collapse = " + "))),
115
+ data = tmpAnal,
116
+ method = "full",
117
+ distance = "mahalanobis")
118
+
119
+ m.data <- match.data(m.out)
120
+ W.out <- weightit(formula(paste0("treatBin ~ ",paste(c(covariates,paste0(y,"16")),collapse = " + "))),
121
+ data = tmpAnal, estimand = "ATT", method = "cbps")
122
+
123
+ test <- tryCatch(felm(as.formula(paste0('scale(',y,") ~ ",paste0("scale(",geo,d,")")," + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights),error = function(e) e)
124
+ if(inherits(test,"error")) { next }
125
+ basic.bin.plac <- c(basic.bin.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients['treat',1])
126
+ basic.cont.plac <- c(basic.cont.plac,summary(felm(as.formula(paste0('scale(',y,") ~ scale(perm) + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients["scale(perm)",1])
127
+ basic.did.plac <- c(basic.did.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal))$coefficients["treatBin:post",1])
128
+
129
+ matching.bin.plac <- c(matching.bin.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients['treat',1])
130
+ matching.cont.plac <- c(matching.cont.plac,summary(felm(as.formula(paste0('scale(',y,") ~ scale(perm) + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients["scale(perm)",1])
131
+ matching.did.plac <- c(matching.did.plac,
132
+ summary(felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),m.data,weights = m.data$weights))$coefficients["treatBin:post",1])
133
+
134
+ weighting.bin.plac <- c(weighting.bin.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treat + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients['treat',1])
135
+ weighting.cont.plac <- c(weighting.cont.plac,summary(felm(as.formula(paste0('scale(',y,") ~ scale(perm) + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients["scale(perm)",1])
136
+ weighting.did.plac <- c(weighting.did.plac,summary(felm(as.formula(paste0('scale(',y,") ~ treatBin*post + ",paste(c(covariates,paste0(y,"16")),collapse = "+"),"| 0 | 0 | ",fe)),tmpAnal,weights = W.out$weights))$coefficients["treatBin:post",1])
137
+
138
+ cat(".")
139
+ }
140
+ cat('\n')
141
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$plac$bin <- basic.bin.plac
142
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$plac$cont <- basic.cont.plac
143
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$basic$plac$did <- basic.did.plac
144
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$plac$bin <- matching.bin.plac
145
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$plac$cont <- matching.cont.plac
146
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$matching$plac$did <- matching.did.plac
147
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$plac$bin <- weighting.bin.plac
148
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$plac$cont <- weighting.cont.plac
149
+ resSI[[y]][[geo]][[d]][[fe]][[pre]][[post]]$felm$weighting$plac$did <- weighting.did.plac
150
+ }
151
+ }
152
+ }
153
+ }
154
+ }
155
+ cat(y," done\n")
156
+ }
157
+
158
+
159
+ save(resSI,file = paste0("../Data/Results/SI-data.RData"))
160
+
161
+
29/replication_package/Data/Pew/biden_sanders_ideo_feb_march_PEW.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:159d10048cec7aa71a84121e6cef5bc270bbfd91af5da4f82cbd7a4288479289
3
+ size 758
29/replication_package/Data/Results/SI-data.RData ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab476e6942ab301cc9c95915213a0f0c1503878dc5cd1139c0dbe96579a0d2d2
3
+ size 612519
29/replication_package/Data/Results/tjbalWgtsNEW.RData ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08ae796fec1e3fc0255d86b57fe7aa2cd06d6395ea53a5f7f1757f4467e4008d
3
+ size 694122
29/replication_package/Data/france_data.RData ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6f0c86de924e700ca3bf8758cf1bd89256c7b7820ae0a52b2243a900fcb9d1b
3
+ size 4168
29/replication_package/Data/gtrends_data.RData ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27e035cbf2594a8efdc2b95f2e3171d435ed835cd498c8577d785c5a3c83e4d1
3
+ size 197370
29/replication_package/Data/mobility_data.RData ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae2ed4bc824bd34c0af6e2093730363c61fff688686ece88ba953d6825433e30
3
+ size 469100
29/replication_package/Data/nationscape_data.RData ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:788e8ad26b105cd3aa19e0960a47fc44a0d37c32292d7c4a205ea3a075ea9cd6
3
+ size 27497508
29/replication_package/Data/primary_data.RData ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cc73e721d0b93cb122a077fbf0711c0388668d1a6bf66ea468f96423ca87b49
3
+ size 60772
29/replication_package/Data/replication_data.RData ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9e444e6793f7dd569fc17e9ca8b42df53960580c8144456648ca3379d1ed82f
3
+ size 9279609
29/replication_package/Data/survey_experiment_data.RData ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edab07dfde669772bac532ec9b86741db8ff6f367a0c56397928d8bb10a09de1
3
+ size 23389
29/replication_package/Figures/SI_figure1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7192c65016253a89ff73933b49c0848a63e427512d6bebf07b5dbb91699c0b95
3
+ size 6336
29/replication_package/Figures/SI_figure10.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c1ab6e919d917bc6b968e548f16759b1ed3e0823172a7afc22df391ede2745d
3
+ size 5579
29/replication_package/Figures/SI_figure11.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d04e684de9173271a239189e07d683b05227fbf95e64243b1a465f021f8b8fa
3
+ size 62125
29/replication_package/Figures/SI_figure12.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b1ab107ee1d2fae07f5b450291aefd3749efb07f0a8a9778dbb37c94b7dbe63
3
+ size 4449
29/replication_package/Figures/SI_figure13.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bb03b2674f7465f06b2a3eef9c65d101817e2367b14fe963b564bab9fef56ff
3
+ size 515152
29/replication_package/Figures/SI_figure14.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c3b82229f49e0e1d322910ada6ddc2731f280a100a0b648037f4fc6340cf83c
3
+ size 134261
29/replication_package/Figures/SI_figure15.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40dedefec9dc40ccb32f4dcb04b2ffd8f6b796e0c6a98e615461f4d4bc7c6f4f
3
+ size 64107
29/replication_package/Figures/SI_figure16.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbd3b1a7a87b2224dcb0ada95c68aec54129a0b64c79d11d804f52e211c0a106
3
+ size 176520
29/replication_package/Figures/SI_figure17.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfd85007fd61ae94a998ff23d0046a0f2d84da9bb520e7101e226dd71b4c2c55
3
+ size 4881