Commit
·
48609bb
1
Parent(s):
1a79dcb
update
Browse files- .gitignore +1 -0
- 1/replication_package/README.txt +152 -0
- 1/replication_package/data/tpnw_aware_raw.csv +3 -0
- 1/replication_package/data/tpnw_orig_income.csv +3 -0
- 1/replication_package/data/tpnw_raw.csv +3 -0
- 1/replication_package/meta/hbg_codebook.txt +1009 -0
- 1/replication_package/meta/hbg_instrument.pdf +0 -0
- 1/replication_package/meta/hbg_pap.pdf +0 -0
- 1/replication_package/scripts/hbg_analysis.R +1033 -0
- 1/replication_package/scripts/hbg_cleaning.R +406 -0
- 1/replication_package/scripts/hbg_group_cue.R +53 -0
- 1/replication_package/scripts/helper_functions.R +16 -0
- 1/replication_package/scripts/run_hbg_replication.R +36 -0
- 80/replication_package/replication_code.ipynb +0 -0
- 80/replication_package/usa1.csv +3 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.DS_Store
|
1/replication_package/README.txt
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### README for Herzog, Baron, and Gibbons (Forthcoming), "Anti-Normative
|
2 |
+
### Messaging, Group Cues, and the Nuclear Ban Treaty"; forthcoming at The
|
3 |
+
### Journal of Politics.
|
4 |
+
|
5 |
+
### This README details instructions and files pertaining to survey, data, and
|
6 |
+
### analysis code for replication purposes. Please direct inquiries to
|
7 |
+
### [email protected]
|
8 |
+
|
9 |
+
## Meta information and instructions.
|
10 |
+
# Performance assessments:
|
11 |
+
- Measured total run time (seconds), using
|
12 |
+
R CMD BATCH run_hbg_replication.R 2>&1 replication_out.out
|
13 |
+
- 137.820 (see run_time outfile for machine-specific statistics).
|
14 |
+
- Hardware used.
|
15 |
+
- Lenovo ThinkPad X1 Carbon 5th Generation;
|
16 |
+
- Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz;
|
17 |
+
- Physical Memory Array; Maximum Capacity 16GB.
|
18 |
+
- Operating system used.
|
19 |
+
- Linux Mint 19 Tara Cinnamon 64-bit (4.10.0-38-generic).
|
20 |
+
|
21 |
+
# Dependencies:
|
22 |
+
1.) R version 3.6.3 (2020-02-09) -- "Holding the Windstock."
|
23 |
+
- Required packages.
|
24 |
+
- plyr
|
25 |
+
- car
|
26 |
+
- anesrake
|
27 |
+
- sandwich
|
28 |
+
2.) LaTeX (for typesetting tabular output).
|
29 |
+
- Required and recommended packages.
|
30 |
+
- array
|
31 |
+
- booktabs
|
32 |
+
- float
|
33 |
+
- makecell
|
34 |
+
- multirow
|
35 |
+
- siunitx
|
36 |
+
|
37 |
+
# Instructions:
|
38 |
+
1.) Set working directory to the replication-file parent directory.
|
39 |
+
- All scripts assume ~/Downloads/hbg_replication as the parent directory.
|
40 |
+
2.) For all operating systems, the scripts/run_hbg_replication.R script may be
|
41 |
+
executed in an R instance.
|
42 |
+
- Open the hbg_replication.R script in R.
|
43 |
+
- Run all commands in the console.
|
44 |
+
3.) For UNIX/UNIX-like systems (MacOS, Linux, Windows 10 Subsysten for Linux),
|
45 |
+
it is recommended to run the script in a terminal instance.
|
46 |
+
- Enter either
|
47 |
+
R CMD BATCH scripts/run_hbg_replication.R 2>&1 cli_script.out
|
48 |
+
which will produce an outfile containing command-line interface output in
|
49 |
+
the cli_script.out outfile; or,
|
50 |
+
Rscript scripts/run_hbg_replication.R
|
51 |
+
though Rscript will not echo output.
|
52 |
+
4.) Commands may also be run in an interactive R session without use of
|
53 |
+
run_hbg_replication.R, e.g., in RStudio.
|
54 |
+
- Working directory will have to be set manually; in the R console, enter
|
55 |
+
setwd("~/hbg_replication")
|
56 |
+
- The output directory will also need to be created separately; once the
|
57 |
+
working directory has been set to the parent directory, in the R console,
|
58 |
+
enter
|
59 |
+
dir.create("output")
|
60 |
+
|
61 |
+
## Directories and files.
|
62 |
+
# ./meta:
|
63 |
+
1.) hbg_instrument.pdf
|
64 |
+
- Herzog, Baron, and Gibbons (Forthcoming) survey instrument.
|
65 |
+
- The instrument does not describe randomization; treatment assignment was
|
66 |
+
randomized using Qualtrics embedded data, randomized using Qualtrics'
|
67 |
+
internal "Evenly Present Elements" algorithm. Some answer choice options
|
68 |
+
were also randomized in order to avoid ordering effects; questions employing
|
69 |
+
internal randomization include pid3, join_tpnw, and the row order of the
|
70 |
+
attitudinal outcomes battery.
|
71 |
+
2.) hbg_codebook.txt
|
72 |
+
- Herzog, Baron, and Gibbons codebook.
|
73 |
+
- Details coding values for embedded data and survey questions in
|
74 |
+
all included data files.
|
75 |
+
- Notes variable recoding values used in cleaned experimental data
|
76 |
+
(tpnw_data.csv), used for analysis.
|
77 |
+
3.) hbg_pap.pdf
|
78 |
+
- Herzog, Baron, and Gibbons pre-analysis plan.
|
79 |
+
- Details all analysis decisions, per research design pre-registered
|
80 |
+
with EGAP prior to collecting experimental data.
|
81 |
+
|
82 |
+
# ./data:
|
83 |
+
1.) tpnw_aware_raw.csv
|
84 |
+
- Data from Herzog, Baron, and Gibbons YouGov study.
|
85 |
+
- Note that some variables have been excluded as they are used in separate
|
86 |
+
studies.
|
87 |
+
2.) tpnw_orig_income.csv
|
88 |
+
- Data from original income coding from Herzog, Baron, and Gibbons.
|
89 |
+
- Note that some variables have been excluded as they are used in separate
|
90 |
+
studies.
|
91 |
+
3.) tpnw_raw.csv
|
92 |
+
- Data from Herzog, Baron, and Gibbons experimental survey.
|
93 |
+
- Note that some variables have been excluded as they are used in separate
|
94 |
+
studies.
|
95 |
+
|
96 |
+
# ./output (produced by either ../scripts/hbg.sh or
|
97 |
+
# ../scripts/run_hbg_replication.R):
|
98 |
+
1.) ./hbg_log.txt
|
99 |
+
- Output for experimental data cleaning and analysis (produced by either
|
100 |
+
../scripts/hbg.sh or ../scripts/run_hbg_replication.R).
|
101 |
+
2.) ./run_time
|
102 |
+
- Output for total run time (produced by either ../scripts/hbg.sh or
|
103 |
+
../scripts/run_hbg_replication.R).
|
104 |
+
4.) ./fg%.eps
|
105 |
+
- .eps images of figures produced by ../scripts/hbg_replication.R);
|
106 |
+
inventoried below.
|
107 |
+
5.) ./%_tab.tex
|
108 |
+
- .tex files containing LaTeX tables produced by
|
109 |
+
../scripts/hbg_replication.R; inventoried below.
|
110 |
+
|
111 |
+
# ./scripts:
|
112 |
+
1.) run_hbg_replication.R
|
113 |
+
- "Run file" to run replication code and produce console and run-time output
|
114 |
+
in R (all systems); produces
|
115 |
+
- ../output/hbg_log.txt
|
116 |
+
- Output for all analyses and results.
|
117 |
+
- ../output/run_time
|
118 |
+
- Output for total run time.
|
119 |
+
2.) helper_functions.R
|
120 |
+
- R source file containing replication code helper functions.
|
121 |
+
3.) hbg_cleaning.R
|
122 |
+
- Cleaning script; outputs cleaned experimental dataset including anesrake
|
123 |
+
weights.
|
124 |
+
- ../data/tpnw_data.csv
|
125 |
+
- Cleaned experimental data.
|
126 |
+
- ../data/tpnw_aware.csv
|
127 |
+
- Cleaned YouGov data.
|
128 |
+
4.) hbg_analysis.R
|
129 |
+
- Analysis script; outputs analysis results in graphical, tabular, and RData
|
130 |
+
formats.
|
131 |
+
- ../output/fg1.eps
|
132 |
+
- .eps image of Figure 1.
|
133 |
+
- ../output/%_tab.tex
|
134 |
+
- .tex files containing LaTeX markup of all tables.
|
135 |
+
- balance_tab.tex
|
136 |
+
- Table demonstrating covariate balance across arms.
|
137 |
+
- main_results_tab.tex
|
138 |
+
- Table containing main results.
|
139 |
+
- atts_tab.tex
|
140 |
+
- Table containing attitudinal battery results.
|
141 |
+
- pid_support_tab.tex
|
142 |
+
- Table containing results by partisan identification.
|
143 |
+
- ideo_support_tab.tex
|
144 |
+
- Table containing results by political ideology.
|
145 |
+
- weighted_main_results_tab.tex
|
146 |
+
- Table containing weighted main results.
|
147 |
+
- ../output/hbg_replication_out.RData
|
148 |
+
- .RData file containing all analysis results.
|
149 |
+
5.) hbg_group_cue.R
|
150 |
+
- Script to produce group cue graphic.
|
151 |
+
- hbg_fgc1.eps
|
152 |
+
- .eps image of Figure C1.
|
1/replication_package/data/tpnw_aware_raw.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9151d260624e3a451ce99b19a1e2c482998842153d870f996280fad9489a079a
|
3 |
+
size 222416
|
1/replication_package/data/tpnw_orig_income.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d17125db74665bbf70590e1d1d8a4f769c6ed86dc6ca7465b99a8ec5dd786bb1
|
3 |
+
size 6934
|
1/replication_package/data/tpnw_raw.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0830f9d626bebb6e8ab21f8a2a4a5ca49b8276f436ea6464533fcb9fcf09f2f8
|
3 |
+
size 352860
|
1/replication_package/meta/hbg_codebook.txt
ADDED
@@ -0,0 +1,1009 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
================================================================================
|
2 |
+
RAW EXPERIMENTAL DATA (tpnw_raw.csv)
|
3 |
+
================================================================================
|
4 |
+
|
5 |
+
--------------------------------------------------------------------------------
|
6 |
+
StartDate
|
7 |
+
--------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
Qualtrics embedded data field (more information is available on Qualtrics'
|
10 |
+
website at https://www.qualtrics.com/support/survey-platform/
|
11 |
+
data-and-analysis-module/data/download-data/understanding-your-dataset/)
|
12 |
+
|
13 |
+
Date and time that respondent started the survey
|
14 |
+
|
15 |
+
--------------------------------------------------------------------------------
|
16 |
+
EndDate
|
17 |
+
--------------------------------------------------------------------------------
|
18 |
+
|
19 |
+
Qualtrics embedded data field (more information is available on Qualtrics'
|
20 |
+
website at https://www.qualtrics.com/support/survey-platform/
|
21 |
+
data-and-analysis-module/data/download-data/understanding-your-dataset/)
|
22 |
+
|
23 |
+
Date and time that respondent finished the survey
|
24 |
+
|
25 |
+
--------------------------------------------------------------------------------
|
26 |
+
Status
|
27 |
+
--------------------------------------------------------------------------------
|
28 |
+
|
29 |
+
Qualtrics embedded data field (more information is available on Qualtrics'
|
30 |
+
website at https://www.qualtrics.com/support/survey-platform/
|
31 |
+
data-and-analysis-module/data/download-data/understanding-your-dataset/)
|
32 |
+
|
33 |
+
Indicator of the type of response collected.
|
34 |
+
|
35 |
+
0 - IP Address: A normal response
|
36 |
+
1 - Survey Preview: A preview response
|
37 |
+
2 - Survey Test: A test response
|
38 |
+
4 - Imported: An imported response
|
39 |
+
8 - Spam: A possible spam response
|
40 |
+
9 - Preview Spam: A possible spam response submitted through the preview link
|
41 |
+
12 - Imported Spam: A possible spam response that was imported
|
42 |
+
16 - Offline: A Qualtrics Offline App response
|
43 |
+
17 - Offline Preview: Previews submitted through the Qualtrics Offline App. This
|
44 |
+
feature is deprecated in latest versions of the app
|
45 |
+
|
46 |
+
--------------------------------------------------------------------------------
|
47 |
+
Progress
|
48 |
+
--------------------------------------------------------------------------------
|
49 |
+
|
50 |
+
Qualtrics embedded data field (more information is available on Qualtrics'
|
51 |
+
website at https://www.qualtrics.com/support/survey-platform/
|
52 |
+
data-and-analysis-module/data/download-data/understanding-your-dataset/)
|
53 |
+
|
54 |
+
Indicates the progress a respondent made before finishing the survey.
|
55 |
+
|
56 |
+
100 - Respondent completed the survey or was screened out
|
57 |
+
|
58 |
+
--------------------------------------------------------------------------------
|
59 |
+
Duration..in.seconds.
|
60 |
+
--------------------------------------------------------------------------------
|
61 |
+
|
62 |
+
Qualtrics embedded data field (more information is available on Qualtrics'
|
63 |
+
website at https://www.qualtrics.com/support/survey-platform/
|
64 |
+
data-and-analysis-module/data/download-data/understanding-your-dataset/)
|
65 |
+
|
66 |
+
Number of seconds it took a respondent to complete the survey.
|
67 |
+
|
68 |
+
--------------------------------------------------------------------------------
|
69 |
+
Finished
|
70 |
+
--------------------------------------------------------------------------------
|
71 |
+
|
72 |
+
Qualtrics embedded data field (more information is available on Qualtrics'
|
73 |
+
website at https://www.qualtrics.com/support/survey-platform/
|
74 |
+
data-and-analysis-module/data/download-data/understanding-your-dataset/)
|
75 |
+
|
76 |
+
Indicates whether a respondent finished the survey.
|
77 |
+
|
78 |
+
1 - Respondent finished the survey or was screened out
|
79 |
+
|
80 |
+
--------------------------------------------------------------------------------
|
81 |
+
RecordedDate
|
82 |
+
--------------------------------------------------------------------------------
|
83 |
+
|
84 |
+
Qualtrics embedded data field (more information is available on Qualtrics'
|
85 |
+
website at https://www.qualtrics.com/support/survey-platform/
|
86 |
+
data-and-analysis-module/data/download-data/understanding-your-dataset/)
|
87 |
+
|
88 |
+
Date that respondent's survey was recorded in Qualtrics.
|
89 |
+
|
90 |
+
--------------------------------------------------------------------------------
|
91 |
+
ResponseId
|
92 |
+
--------------------------------------------------------------------------------
|
93 |
+
|
94 |
+
Qualtrics embedded data field (more information is available on Qualtrics'
|
95 |
+
website at https://www.qualtrics.com/support/survey-platform/
|
96 |
+
data-and-analysis-module/data/download-data/understanding-your-dataset/)
|
97 |
+
|
98 |
+
Character variable indicating unique respondent ID.
|
99 |
+
|
100 |
+
--------------------------------------------------------------------------------
|
101 |
+
DistributionChannel
|
102 |
+
--------------------------------------------------------------------------------
|
103 |
+
|
104 |
+
Qualtrics embedded data field (more information is available on Qualtrics'
|
105 |
+
website at https://www.qualtrics.com/support/survey-platform/
|
106 |
+
data-and-analysis-module/data/download-data/understanding-your-dataset/)
|
107 |
+
|
108 |
+
Character variable indicating method of survey distribution.
|
109 |
+
|
110 |
+
"anonymous" - Survey was distributed without collecting respondent data
|
111 |
+
|
112 |
+
--------------------------------------------------------------------------------
|
113 |
+
UserLanguage
|
114 |
+
--------------------------------------------------------------------------------
|
115 |
+
|
116 |
+
Qualtrics embedded data field (more information is available on Qualtrics'
|
117 |
+
website at https://www.qualtrics.com/support/survey-platform/
|
118 |
+
data-and-analysis-module/data/download-data/understanding-your-dataset/)
|
119 |
+
|
120 |
+
Character variable indicating respondent's language code.
|
121 |
+
|
122 |
+
"EN" - Respondent took the survey in English
|
123 |
+
|
124 |
+
--------------------------------------------------------------------------------
|
125 |
+
psid
|
126 |
+
--------------------------------------------------------------------------------
|
127 |
+
|
128 |
+
Dynata embedded data field
|
129 |
+
|
130 |
+
Character variable uniquely identifying a respondent and specific project
|
131 |
+
(project specific ID).
|
132 |
+
|
133 |
+
--------------------------------------------------------------------------------
|
134 |
+
pid
|
135 |
+
--------------------------------------------------------------------------------
|
136 |
+
|
137 |
+
Dynata embedded data field
|
138 |
+
|
139 |
+
Numeric variable uniquely identifying a panelist (panelist ID).
|
140 |
+
|
141 |
+
--------------------------------------------------------------------------------
|
142 |
+
consent
|
143 |
+
--------------------------------------------------------------------------------
|
144 |
+
|
145 |
+
Custom embedded data field
|
146 |
+
|
147 |
+
Indicator of whether a respondent consented to participate in the survey.
|
148 |
+
|
149 |
+
0 - Respondent did not consent
|
150 |
+
1 - Respondent consented
|
151 |
+
|
152 |
+
--------------------------------------------------------------------------------
|
153 |
+
new_income_q
|
154 |
+
--------------------------------------------------------------------------------
|
155 |
+
|
156 |
+
Custom embedded data field
|
157 |
+
|
158 |
+
Indicator of usage of new income demographic question format.
|
159 |
+
|
160 |
+
"" - Old income question
|
161 |
+
1 - new income question
|
162 |
+
|
163 |
+
--------------------------------------------------------------------------------
|
164 |
+
confirmation_code
|
165 |
+
--------------------------------------------------------------------------------
|
166 |
+
|
167 |
+
Custom embedded data field
|
168 |
+
|
169 |
+
Numeric code provided to each respondent for response recording after completing
|
170 |
+
the survey.
|
171 |
+
|
172 |
+
--------------------------------------------------------------------------------
|
173 |
+
treatment
|
174 |
+
--------------------------------------------------------------------------------
|
175 |
+
|
176 |
+
Custom embedded data field
|
177 |
+
|
178 |
+
Numeric variable indicating treatment arm to which a respondent was assigned
|
179 |
+
|
180 |
+
0 - Control
|
181 |
+
1 - Group Cue
|
182 |
+
2 - Security Cue
|
183 |
+
3 - Norms Cue
|
184 |
+
4 - Institutions Cue
|
185 |
+
|
186 |
+
--------------------------------------------------------------------------------
|
187 |
+
birthyr
|
188 |
+
--------------------------------------------------------------------------------
|
189 |
+
|
190 |
+
Demographic question
|
191 |
+
|
192 |
+
Respondent's birth year (numeric entry only).
|
193 |
+
|
194 |
+
--------------------------------------------------------------------------------
|
195 |
+
gender
|
196 |
+
--------------------------------------------------------------------------------
|
197 |
+
|
198 |
+
Demographic question
|
199 |
+
|
200 |
+
Respondent's self-reported gender.
|
201 |
+
|
202 |
+
0 - Male
|
203 |
+
1 - Female
|
204 |
+
95 - Other
|
205 |
+
|
206 |
+
--------------------------------------------------------------------------------
|
207 |
+
gender_95_TEXT
|
208 |
+
--------------------------------------------------------------------------------
|
209 |
+
|
210 |
+
Demographic question
|
211 |
+
|
212 |
+
Respondent's self-reported gender (if Other; text entry).
|
213 |
+
|
214 |
+
--------------------------------------------------------------------------------
|
215 |
+
state
|
216 |
+
--------------------------------------------------------------------------------
|
217 |
+
|
218 |
+
Demographic question
|
219 |
+
|
220 |
+
Respondent's state of residence (recoded to character strings in cleaned
|
221 |
+
experimental data).
|
222 |
+
|
223 |
+
1 - Alabama
|
224 |
+
2 - Alaska
|
225 |
+
4 - Arizona
|
226 |
+
5 - Arkansas
|
227 |
+
6 - California
|
228 |
+
8 - Colorado
|
229 |
+
9 - Connecticut
|
230 |
+
10 - Delaware
|
231 |
+
11 - District of Columbia
|
232 |
+
12 - Florida
|
233 |
+
13 - Georgia
|
234 |
+
15 - Hawaii
|
235 |
+
16 - Idaho
|
236 |
+
17 - Illinois
|
237 |
+
18 - Indiana
|
238 |
+
19 - Iowa
|
239 |
+
20 - Kansas
|
240 |
+
21 - Kentucky
|
241 |
+
22 - Louisiana
|
242 |
+
23 - Maine
|
243 |
+
24 - Maryland
|
244 |
+
25 - Massachusetts
|
245 |
+
26 - Michigan
|
246 |
+
27 - Minnesota
|
247 |
+
28 - Mississippi
|
248 |
+
29 - Missouri
|
249 |
+
30 - Montana
|
250 |
+
31 - Nebraska
|
251 |
+
32 - Nevada
|
252 |
+
33 - New Hampshire
|
253 |
+
34 - New Jersey
|
254 |
+
35 - New Mexico
|
255 |
+
36 - New York
|
256 |
+
37 - North Carolina
|
257 |
+
38 - North Dakota
|
258 |
+
39 - Ohio
|
259 |
+
40 - Oklahoma
|
260 |
+
41 - Oregon
|
261 |
+
42 - Pennsylvania
|
262 |
+
44 - Rhode Island
|
263 |
+
45 - South Carolina
|
264 |
+
46 - South Dakota
|
265 |
+
47 - Tennessee
|
266 |
+
48 - Texas
|
267 |
+
49 - Utah
|
268 |
+
50 - Vermont
|
269 |
+
51 - Virginia
|
270 |
+
53 - Washington
|
271 |
+
54 - West Virginia
|
272 |
+
55 - Wisconsin
|
273 |
+
56 - Wyoming
|
274 |
+
|
275 |
+
--------------------------------------------------------------------------------
|
276 |
+
income
|
277 |
+
--------------------------------------------------------------------------------
|
278 |
+
|
279 |
+
Demographic question
|
280 |
+
|
281 |
+
Respondent's self-reported, pre-tax family income.
|
282 |
+
|
283 |
+
1 - Less than $15,000
|
284 |
+
2 - $15,000 to $24,999
|
285 |
+
3 - $25,000 to $49,999
|
286 |
+
4 - $50,000 to $74,999
|
287 |
+
5 - $75,000 to $99,999
|
288 |
+
6 - $100,000 to $149,999
|
289 |
+
7 - $150,000 to $199,999
|
290 |
+
8 - $200,000 to $249,999
|
291 |
+
9 - $250,000 to $499,999
|
292 |
+
10 - $500,000 to $999,999
|
293 |
+
11 - More than $1 million
|
294 |
+
95 - Prefer not to say (recoded to NA in cleaned experimental data)
|
295 |
+
|
296 |
+
Note: income is coalesced with income from tpnw_orig_income.csv, described
|
297 |
+
below.
|
298 |
+
|
299 |
+
--------------------------------------------------------------------------------
|
300 |
+
educ
|
301 |
+
--------------------------------------------------------------------------------
|
302 |
+
|
303 |
+
Demographic question
|
304 |
+
|
305 |
+
Respondent's self-reported level of education.
|
306 |
+
|
307 |
+
|
308 |
+
1 - Did not graduate from high school
|
309 |
+
2 - High school graduate or equivalent (for example: GED)
|
310 |
+
3 - Some college, but no degree (yet)
|
311 |
+
4 - 2-year college degree
|
312 |
+
5 - 4-year college degree
|
313 |
+
6 - Postgraduate degree (MA, MBA, MD, JD, PhD, EdD, etc.)
|
314 |
+
95 - Other (recoded to NA in cleaned experimental data)
|
315 |
+
|
316 |
+
--------------------------------------------------------------------------------
|
317 |
+
educ_95_TEXT
|
318 |
+
--------------------------------------------------------------------------------
|
319 |
+
|
320 |
+
Demographic question
|
321 |
+
|
322 |
+
Respondent's self-reported education level (if Other; text entry).
|
323 |
+
|
324 |
+
--------------------------------------------------------------------------------
|
325 |
+
ideo
|
326 |
+
--------------------------------------------------------------------------------
|
327 |
+
|
328 |
+
Demographic question
|
329 |
+
|
330 |
+
Respondent's self-reported, five-point political ideology.
|
331 |
+
|
332 |
+
|
333 |
+
-2 - Very liberal
|
334 |
+
-1 - Liberal
|
335 |
+
0 - Moderate; middle of the road
|
336 |
+
1 - Conservative
|
337 |
+
2 - Very conservative
|
338 |
+
3 - Haven't thought much about this (recoded to NA in cleaned experimental data)
|
339 |
+
|
340 |
+
--------------------------------------------------------------------------------
|
341 |
+
pid3
|
342 |
+
--------------------------------------------------------------------------------
|
343 |
+
|
344 |
+
Demographic question
|
345 |
+
|
346 |
+
Three-point partisan identification.
|
347 |
+
|
348 |
+
-1 - Democrat
|
349 |
+
0 - Independent
|
350 |
+
1 - Republican
|
351 |
+
|
352 |
+
--------------------------------------------------------------------------------
|
353 |
+
pid_forc
|
354 |
+
--------------------------------------------------------------------------------
|
355 |
+
|
356 |
+
Demographic question
|
357 |
+
|
358 |
+
Follow-up question to pid3; displayed only if pid3 skipped or if respondent
|
359 |
+
replied "Independent" to pid3 (coalesced with pid3 in cleaned experimental
|
360 |
+
data).
|
361 |
+
|
362 |
+
-1 - Closer to Democratic
|
363 |
+
0 - Neither
|
364 |
+
1 - Closer to Republican
|
365 |
+
|
366 |
+
--------------------------------------------------------------------------------
|
367 |
+
join_tpnw
|
368 |
+
--------------------------------------------------------------------------------
|
369 |
+
|
370 |
+
Outcome question
|
371 |
+
|
372 |
+
Respondent's support for joining TPNW.
|
373 |
+
|
374 |
+
1 - Yes
|
375 |
+
2 - No (recoded to 0 in cleaned experimental data)
|
376 |
+
|
377 |
+
--------------------------------------------------------------------------------
|
378 |
+
tpnw_atts_danger
|
379 |
+
--------------------------------------------------------------------------------
|
380 |
+
|
381 |
+
Outcome question
|
382 |
+
|
383 |
+
Nuclear weapons are dangerous and present a threat to the world (reverse-coded
|
384 |
+
in cleaned experimental data).
|
385 |
+
|
386 |
+
2 - Strongly Agree
|
387 |
+
1 - Agree
|
388 |
+
-1 - Disagree
|
389 |
+
-2 - Strongly disagree
|
390 |
+
|
391 |
+
--------------------------------------------------------------------------------
|
392 |
+
tpnw_atts_peace
|
393 |
+
--------------------------------------------------------------------------------
|
394 |
+
|
395 |
+
Outcome question
|
396 |
+
|
397 |
+
Nuclear weapons contribute to peace by preventing conflict between countries.
|
398 |
+
|
399 |
+
2 - Strongly Agree
|
400 |
+
1 - Agree
|
401 |
+
-1 - Disagree
|
402 |
+
-2 - Strongly disagree
|
403 |
+
|
404 |
+
--------------------------------------------------------------------------------
|
405 |
+
tpnw_atts_safe
|
406 |
+
--------------------------------------------------------------------------------
|
407 |
+
|
408 |
+
Outcome question
|
409 |
+
|
410 |
+
Nuclear weapons help to keep my country safe.
|
411 |
+
|
412 |
+
2 - Strongly Agree
|
413 |
+
1 - Agree
|
414 |
+
-1 - Disagree
|
415 |
+
-2 - Strongly disagree
|
416 |
+
|
417 |
+
--------------------------------------------------------------------------------
|
418 |
+
tpnw_atts_use_unaccept
|
419 |
+
--------------------------------------------------------------------------------
|
420 |
+
|
421 |
+
Outcome question
|
422 |
+
|
423 |
+
It is unacceptable to use nuclear weapons in any situation (reverse-coded
|
424 |
+
in cleaned experimental data).
|
425 |
+
|
426 |
+
2 - Strongly Agree
|
427 |
+
1 - Agree
|
428 |
+
-1 - Disagree
|
429 |
+
-2 - Strongly disagree
|
430 |
+
|
431 |
+
--------------------------------------------------------------------------------
|
432 |
+
tpnw_atts_always_cheat
|
433 |
+
--------------------------------------------------------------------------------
|
434 |
+
|
435 |
+
Outcome question
|
436 |
+
|
437 |
+
Some countries will always cheat and disobey nuclear treaties (reverse-coded
|
438 |
+
in cleaned experimental data).
|
439 |
+
|
440 |
+
2 - Strongly Agree
|
441 |
+
1 - Agree
|
442 |
+
-1 - Disagree
|
443 |
+
-2 - Strongly disagree
|
444 |
+
|
445 |
+
--------------------------------------------------------------------------------
|
446 |
+
tpnw_atts_cannot_elim
|
447 |
+
--------------------------------------------------------------------------------
|
448 |
+
|
449 |
+
Outcome question
|
450 |
+
|
451 |
+
Now that nuclear weapons exist, they can never be eliminated (reverse-coded
|
452 |
+
in cleaned experimental data).
|
453 |
+
|
454 |
+
2 - Strongly Agree
|
455 |
+
1 - Agree
|
456 |
+
-1 - Disagree
|
457 |
+
-2 - Strongly disagree
|
458 |
+
|
459 |
+
--------------------------------------------------------------------------------
|
460 |
+
tpnw_atts_slow_reduc
|
461 |
+
--------------------------------------------------------------------------------
|
462 |
+
|
463 |
+
Outcome question
|
464 |
+
|
465 |
+
Reducing the number of nuclear weapons over time is safer than immediate nuclear
|
466 |
+
disarmament.
|
467 |
+
|
468 |
+
2 - Strongly Agree
|
469 |
+
1 - Agree
|
470 |
+
-1 - Disagree
|
471 |
+
-2 - Strongly disagree
|
472 |
+
|
473 |
+
================================================================================
|
474 |
+
YOUGOV DATA (tpnw_aware.csv)
|
475 |
+
================================================================================
|
476 |
+
|
477 |
+
--------------------------------------------------------------------------------
|
478 |
+
caseid
|
479 |
+
--------------------------------------------------------------------------------
|
480 |
+
|
481 |
+
YouGov embedded data field
|
482 |
+
|
483 |
+
Numeric variable indicating case ID.
|
484 |
+
|
485 |
+
--------------------------------------------------------------------------------
|
486 |
+
starttime
|
487 |
+
--------------------------------------------------------------------------------
|
488 |
+
|
489 |
+
YouGov embedded data field
|
490 |
+
|
491 |
+
Date that respondent started the survey
|
492 |
+
|
493 |
+
--------------------------------------------------------------------------------
|
494 |
+
endtime
|
495 |
+
--------------------------------------------------------------------------------
|
496 |
+
|
497 |
+
YouGov embedded data field
|
498 |
+
|
499 |
+
Date that respondent finished the survey
|
500 |
+
|
501 |
+
--------------------------------------------------------------------------------
|
502 |
+
weight
|
503 |
+
--------------------------------------------------------------------------------
|
504 |
+
|
505 |
+
YouGov weighting variable
|
506 |
+
|
507 |
+
Numeric variable containing post-stratification weights.
|
508 |
+
|
509 |
+
--------------------------------------------------------------------------------
|
510 |
+
birthyr
|
511 |
+
--------------------------------------------------------------------------------
|
512 |
+
|
513 |
+
YouGov demographic question
|
514 |
+
|
515 |
+
Respondent's birth year (numeric).
|
516 |
+
|
517 |
+
--------------------------------------------------------------------------------
|
518 |
+
gender
|
519 |
+
--------------------------------------------------------------------------------
|
520 |
+
|
521 |
+
YouGov demographic question
|
522 |
+
|
523 |
+
Respondent's self-reported gender.
|
524 |
+
|
525 |
+
1 - Male
|
526 |
+
2 - Female
|
527 |
+
|
528 |
+
--------------------------------------------------------------------------------
|
529 |
+
race
|
530 |
+
--------------------------------------------------------------------------------
|
531 |
+
|
532 |
+
YouGov demographic question
|
533 |
+
|
534 |
+
Respondent's self-reported race.
|
535 |
+
|
536 |
+
1 - White
|
537 |
+
2 - Black
|
538 |
+
3 - Hispanic
|
539 |
+
4 - Asian
|
540 |
+
5 - Native American
|
541 |
+
6 - Mixed
|
542 |
+
7 - Other
|
543 |
+
8 - Middle Eastern
|
544 |
+
|
545 |
+
--------------------------------------------------------------------------------
|
546 |
+
educ
|
547 |
+
--------------------------------------------------------------------------------
|
548 |
+
|
549 |
+
YouGov demographic question
|
550 |
+
|
551 |
+
Respondent's self-reported education level.
|
552 |
+
|
553 |
+
1 - No high school
|
554 |
+
2 - High school graduate
|
555 |
+
3 - Some college
|
556 |
+
4 - 2-year college degree
|
557 |
+
5 - 4-year college degree
|
558 |
+
6 - Post-graduate degree
|
559 |
+
|
560 |
+
--------------------------------------------------------------------------------
|
561 |
+
marstat
|
562 |
+
--------------------------------------------------------------------------------
|
563 |
+
|
564 |
+
YouGov demographic question
|
565 |
+
|
566 |
+
Respondent's self-reported marital status.
|
567 |
+
|
568 |
+
1 - Married
|
569 |
+
2 - Separated
|
570 |
+
3 - Divorced
|
571 |
+
4 - Widowed
|
572 |
+
5 - Never married
|
573 |
+
6 - Domestic / civil partnership
|
574 |
+
|
575 |
+
--------------------------------------------------------------------------------
|
576 |
+
employ
|
577 |
+
--------------------------------------------------------------------------------
|
578 |
+
|
579 |
+
YouGov demographic question
|
580 |
+
|
581 |
+
Respondent's self-reported employment status.
|
582 |
+
|
583 |
+
1 - Full-time
|
584 |
+
2 - Part-time
|
585 |
+
3 - Temporarily laid off
|
586 |
+
4 - Unemployed
|
587 |
+
5 - Retired
|
588 |
+
6 - Permanently disabled
|
589 |
+
7 - Homemaker
|
590 |
+
8 - Student
|
591 |
+
9 - Other
|
592 |
+
|
593 |
+
--------------------------------------------------------------------------------
|
594 |
+
faminc_new
|
595 |
+
--------------------------------------------------------------------------------
|
596 |
+
|
597 |
+
YouGov demographic question
|
598 |
+
|
599 |
+
Respondent's self-reported family income.
|
600 |
+
|
601 |
+
1 - Less than $10,000
|
602 |
+
2 - $10,000 - $19,999
|
603 |
+
3 - $20,000 - $29,999
|
604 |
+
4 - $30,000 - $39,999
|
605 |
+
5 - $40,000 - $49,999
|
606 |
+
6 - $50,000 - $59,999
|
607 |
+
7 - $60,000 - $69,999
|
608 |
+
8 - $70,000 - $79,999
|
609 |
+
9 - $80,000 - $99,999
|
610 |
+
10 - $100,000 - $119,999
|
611 |
+
11 - $120,000 - $149,999
|
612 |
+
12 - $150,000 - $199,999
|
613 |
+
13 - $200,000 - $249,999
|
614 |
+
14 - $250,000 - $349,999
|
615 |
+
15 - $350,000 - $499,999
|
616 |
+
16 - $500,000 or more
|
617 |
+
97 - Prefer not to say
|
618 |
+
|
619 |
+
--------------------------------------------------------------------------------
|
620 |
+
pid3
|
621 |
+
--------------------------------------------------------------------------------
|
622 |
+
|
623 |
+
YouGov demographic question
|
624 |
+
|
625 |
+
Respondent's self-reported three-point partisan identification.
|
626 |
+
|
627 |
+
1 - Democrat
|
628 |
+
2 - Republican
|
629 |
+
3 - Independent
|
630 |
+
4 - Other
|
631 |
+
5 - Not sure
|
632 |
+
|
633 |
+
--------------------------------------------------------------------------------
|
634 |
+
pid7
|
635 |
+
--------------------------------------------------------------------------------
|
636 |
+
|
637 |
+
YouGov demographic question
|
638 |
+
|
639 |
+
Respondent's self-reported seven-point partisan identification.
|
640 |
+
|
641 |
+
1 - Strong Democrat
|
642 |
+
2 - Not very strong Democrat
|
643 |
+
3 - Lean Democrat
|
644 |
+
4 - Independent
|
645 |
+
5 - Lean Republican
|
646 |
+
6 - Not very strong Republican
|
647 |
+
7 - Strong Republican
|
648 |
+
8 - Not sure
|
649 |
+
9 - Don't know
|
650 |
+
|
651 |
+
--------------------------------------------------------------------------------
|
652 |
+
presvote2016post
|
653 |
+
--------------------------------------------------------------------------------
|
654 |
+
|
655 |
+
YouGov demographic question
|
656 |
+
|
657 |
+
Respondent's self-reported 2016 Presidential Election vote choice.
|
658 |
+
|
659 |
+
1 - Hillary Clinton
|
660 |
+
2 - Donald Trump
|
661 |
+
3 - Gary Johnson
|
662 |
+
4 - Jill Stein
|
663 |
+
5 - Evan McMullin
|
664 |
+
6 - Other
|
665 |
+
7 - Did not vote for President
|
666 |
+
|
667 |
+
--------------------------------------------------------------------------------
|
668 |
+
inputstate
|
669 |
+
--------------------------------------------------------------------------------
|
670 |
+
|
671 |
+
YouGov demographic question
|
672 |
+
|
673 |
+
Respondent's state of residence.
|
674 |
+
|
675 |
+
1 - Alabama
|
676 |
+
2 - Alaska
|
677 |
+
4 - Arizona
|
678 |
+
5 - Arkansas
|
679 |
+
6 - California
|
680 |
+
8 - Colorado
|
681 |
+
9 - Connecticut
|
682 |
+
10 - Delaware
|
683 |
+
11 - District of Columbia
|
684 |
+
12 - Florida
|
685 |
+
13 - Georgia
|
686 |
+
15 - Hawaii
|
687 |
+
16 - Idaho
|
688 |
+
17 - Illinois
|
689 |
+
18 - Indiana
|
690 |
+
19 - Iowa
|
691 |
+
20 - Kansas
|
692 |
+
21 - Kentucky
|
693 |
+
22 - Louisiana
|
694 |
+
23 - Maine
|
695 |
+
24 - Maryland
|
696 |
+
25 - Massachusetts
|
697 |
+
26 - Michigan
|
698 |
+
27 - Minnesota
|
699 |
+
28 - Mississippi
|
700 |
+
29 - Missouri
|
701 |
+
30 - Montana
|
702 |
+
31 - Nebraska
|
703 |
+
32 - Nevada
|
704 |
+
33 - New Hampshire
|
705 |
+
34 - New Jersey
|
706 |
+
35 - New Mexico
|
707 |
+
36 - New York
|
708 |
+
37 - North Carolina
|
709 |
+
38 - North Dakota
|
710 |
+
39 - Ohio
|
711 |
+
40 - Oklahoma
|
712 |
+
41 - Oregon
|
713 |
+
42 - Pennsylvania
|
714 |
+
44 - Rhode Island
|
715 |
+
45 - South Carolina
|
716 |
+
46 - South Dakota
|
717 |
+
47 - Tennessee
|
718 |
+
48 - Texas
|
719 |
+
49 - Utah
|
720 |
+
50 - Vermont
|
721 |
+
51 - Virginia
|
722 |
+
53 - Washington
|
723 |
+
54 - West Virginia
|
724 |
+
55 - Wisconsin
|
725 |
+
56 - Wyoming
|
726 |
+
|
727 |
+
--------------------------------------------------------------------------------
|
728 |
+
votereg
|
729 |
+
--------------------------------------------------------------------------------
|
730 |
+
|
731 |
+
YouGov demographic question
|
732 |
+
|
733 |
+
Respondent's self-reported voter registration status.
|
734 |
+
|
735 |
+
1 - Yes
|
736 |
+
2 - No
|
737 |
+
3 - Don't know
|
738 |
+
|
739 |
+
--------------------------------------------------------------------------------
|
740 |
+
ideo5
|
741 |
+
--------------------------------------------------------------------------------
|
742 |
+
|
743 |
+
YouGov demographic question
|
744 |
+
|
745 |
+
Respondent's self-reported, five-point political ideology.
|
746 |
+
|
747 |
+
1 - Very liberal
|
748 |
+
2 - Liberal
|
749 |
+
3 - Moderate
|
750 |
+
4 - Conservative
|
751 |
+
5 - Very conservative
|
752 |
+
6 - Not sure
|
753 |
+
|
754 |
+
--------------------------------------------------------------------------------
|
755 |
+
newsint
|
756 |
+
--------------------------------------------------------------------------------
|
757 |
+
|
758 |
+
YouGov demographic question
|
759 |
+
|
760 |
+
Respondent's self-reported political interest.
|
761 |
+
|
762 |
+
1 - Most of the time
|
763 |
+
2 - Some of the time
|
764 |
+
3 - Only now and then
|
765 |
+
4 - Hardly at all
|
766 |
+
7 - Don't know
|
767 |
+
|
768 |
+
--------------------------------------------------------------------------------
|
769 |
+
religpew
|
770 |
+
--------------------------------------------------------------------------------
|
771 |
+
|
772 |
+
YouGov demographic question
|
773 |
+
|
774 |
+
Pew religion
|
775 |
+
|
776 |
+
1 - Protestant
|
777 |
+
2 - Roman Catholic
|
778 |
+
3 - Mormon
|
779 |
+
4 - Eastern or Greek Orthodox
|
780 |
+
5 - Jewish
|
781 |
+
6 - Muslim
|
782 |
+
7 - Buddhist
|
783 |
+
8 - Hindu
|
784 |
+
9 - Atheist
|
785 |
+
10 - Agnostic
|
786 |
+
11 - Nothing in particular
|
787 |
+
12 - Something else
|
788 |
+
|
789 |
+
--------------------------------------------------------------------------------
|
790 |
+
awareness
|
791 |
+
--------------------------------------------------------------------------------
|
792 |
+
|
793 |
+
Outcome question
|
794 |
+
|
795 |
+
Has respondent heard of international treaty to ban nuclear weapons
|
796 |
+
|
797 |
+
1 - Yes, and I support it
|
798 |
+
2 - Yes, and I oppose it
|
799 |
+
3 - No, but it sounds like I would support it
|
800 |
+
4 - No, but it sounds like I would oppose it
|
801 |
+
8 - Skipped
|
802 |
+
|
803 |
+
================================================================================
|
804 |
+
ORIGINAL INCOME DATA (tpnw_orig_income.csv)
|
805 |
+
================================================================================
|
806 |
+
|
807 |
+
--------------------------------------------------------------------------------
|
808 |
+
income
|
809 |
+
--------------------------------------------------------------------------------
|
810 |
+
|
811 |
+
Demographic question
|
812 |
+
|
813 |
+
Numeric text-entry variable indicating respondent's self-reported income;
|
814 |
+
converted to categorical variable to match with income from tpnw_raw.csv,
|
815 |
+
described above.
|
816 |
+
|
817 |
+
--------------------------------------------------------------------------------
|
818 |
+
consent
|
819 |
+
--------------------------------------------------------------------------------
|
820 |
+
|
821 |
+
Custom embedded data field
|
822 |
+
|
823 |
+
Indicator of whether a respondent consented to participate in the survey.
|
824 |
+
|
825 |
+
0 - Respondent did not consent
|
826 |
+
1 - Respondent consented
|
827 |
+
|
828 |
+
--------------------------------------------------------------------------------
|
829 |
+
pid
|
830 |
+
--------------------------------------------------------------------------------
|
831 |
+
|
832 |
+
Dynata embedded data field
|
833 |
+
|
834 |
+
Numeric variable uniquely identifying a panelist (panelist ID).
|
835 |
+
|
836 |
+
================================================================================
|
837 |
+
CLEANED EXPERIMENTAL DATA (tpnw_data.csv)
|
838 |
+
|
839 |
+
Only newly instantiated variables are described below; any recodings of
|
840 |
+
variables described above are documented in the replication code cleaning script
|
841 |
+
(hbg_cleaning.R) available in ../scripts
|
842 |
+
================================================================================
|
843 |
+
|
844 |
+
--------------------------------------------------------------------------------
|
845 |
+
female
|
846 |
+
--------------------------------------------------------------------------------
|
847 |
+
|
848 |
+
Demographic question
|
849 |
+
|
850 |
+
Indicator of whether respondent self-reported female gender.
|
851 |
+
|
852 |
+
0 - No
|
853 |
+
1 - Yes
|
854 |
+
NA - Other/skipped
|
855 |
+
|
856 |
+
--------------------------------------------------------------------------------
|
857 |
+
age
|
858 |
+
--------------------------------------------------------------------------------
|
859 |
+
|
860 |
+
Demographic question
|
861 |
+
|
862 |
+
Numeric variable indicating respondent's age, subtracting self-reported birth
|
863 |
+
year from 2019, the year in which the survey was conducted (2019 - birthyr).
|
864 |
+
|
865 |
+
--------------------------------------------------------------------------------
|
866 |
+
northeast
|
867 |
+
--------------------------------------------------------------------------------
|
868 |
+
|
869 |
+
Demographic question
|
870 |
+
|
871 |
+
Indicator of whether respondent's state is in the Northeast region defined by
|
872 |
+
the U.S. Census Bureau.
|
873 |
+
|
874 |
+
0 - No
|
875 |
+
1 - Yes
|
876 |
+
NA - Skipped
|
877 |
+
|
878 |
+
--------------------------------------------------------------------------------
|
879 |
+
midwest
|
880 |
+
--------------------------------------------------------------------------------
|
881 |
+
|
882 |
+
Demographic question
|
883 |
+
|
884 |
+
Indicator of whether respondent's state is in the Midwest region defined by the
|
885 |
+
U.S. Census Bureau.
|
886 |
+
|
887 |
+
0 - No
|
888 |
+
1 - Yes
|
889 |
+
NA - Skipped
|
890 |
+
|
891 |
+
--------------------------------------------------------------------------------
|
892 |
+
south
|
893 |
+
--------------------------------------------------------------------------------
|
894 |
+
|
895 |
+
Demographic question
|
896 |
+
|
897 |
+
Indicator of whether respondent's state is in the South region defined by the
|
898 |
+
U.S. Census Bureau.
|
899 |
+
|
900 |
+
0 - No
|
901 |
+
1 - Yes
|
902 |
+
NA - Skipped
|
903 |
+
|
904 |
+
--------------------------------------------------------------------------------
|
905 |
+
west
|
906 |
+
--------------------------------------------------------------------------------
|
907 |
+
|
908 |
+
Demographic question
|
909 |
+
|
910 |
+
Indicator of whether respondent's state is in the West region defined by the
|
911 |
+
U.S. Census Bureau.
|
912 |
+
|
913 |
+
0 - No
|
914 |
+
1 - Yes
|
915 |
+
NA - Skipped
|
916 |
+
|
917 |
+
--------------------------------------------------------------------------------
|
918 |
+
caseid
|
919 |
+
--------------------------------------------------------------------------------
|
920 |
+
|
921 |
+
Weighting variable
|
922 |
+
|
923 |
+
Unique identifier for each respondent for the purposes of computing raked
|
924 |
+
post-stratification weights with anesrake.
|
925 |
+
|
926 |
+
--------------------------------------------------------------------------------
|
927 |
+
age_wtng
|
928 |
+
--------------------------------------------------------------------------------
|
929 |
+
|
930 |
+
Weighting variable
|
931 |
+
|
932 |
+
Coarsened and factorized age variable for the purposes of computing raked
|
933 |
+
post-stratification weights with anesrake.
|
934 |
+
|
935 |
+
age1824 - Respondent is in the 18-24-year-old age group
|
936 |
+
age2534 - Respondent is in the 25-34-year-old age group
|
937 |
+
age3544 - Respondent is in the 35-44-year-old age group
|
938 |
+
age4554 - Respondent is in the 45-54-year-old age group
|
939 |
+
age5564 - Respondent is in the 55-64-year-old age group
|
940 |
+
age6599 - Respondent is in the 65-99-year-old age group
|
941 |
+
|
942 |
+
--------------------------------------------------------------------------------
|
943 |
+
female_wtng
|
944 |
+
--------------------------------------------------------------------------------
|
945 |
+
|
946 |
+
Weighting variable
|
947 |
+
|
948 |
+
Factorized female variable for the purposes of computing raked
|
949 |
+
post-stratification weights with anesrake.
|
950 |
+
|
951 |
+
female - Respondent is female
|
952 |
+
na - Skipped/Other
|
953 |
+
male - Respondent is male
|
954 |
+
|
955 |
+
--------------------------------------------------------------------------------
|
956 |
+
northeast_wtng
|
957 |
+
--------------------------------------------------------------------------------
|
958 |
+
|
959 |
+
Weighting variable
|
960 |
+
|
961 |
+
Factorized northeast variable for the purposes of computing raked
|
962 |
+
post-stratification weights with anesrake.
|
963 |
+
|
964 |
+
northeast - Respondent is from the Northeast
|
965 |
+
other - Respondent is from another region
|
966 |
+
|
967 |
+
--------------------------------------------------------------------------------
|
968 |
+
midwest_wtng
|
969 |
+
--------------------------------------------------------------------------------
|
970 |
+
|
971 |
+
Weighting variable
|
972 |
+
|
973 |
+
Factorized midwest variable for the purposes of computing raked
|
974 |
+
post-stratification weights with anesrake.
|
975 |
+
|
976 |
+
midwest - Respondent is from the Midwest
|
977 |
+
other - Respondent is from another region
|
978 |
+
|
979 |
+
--------------------------------------------------------------------------------
|
980 |
+
south_wtng
|
981 |
+
--------------------------------------------------------------------------------
|
982 |
+
|
983 |
+
Weighting variable
|
984 |
+
|
985 |
+
Factorized south variable for the purposes of computing raked
|
986 |
+
post-stratification weights with anesrake.
|
987 |
+
|
988 |
+
south - Respondent is from the South
|
989 |
+
other - Respondent is from another region
|
990 |
+
|
991 |
+
--------------------------------------------------------------------------------
|
992 |
+
west_wtng
|
993 |
+
--------------------------------------------------------------------------------
|
994 |
+
|
995 |
+
Weighting variable
|
996 |
+
|
997 |
+
Factorized west variable for the purposes of computing raked
|
998 |
+
post-stratification weights with anesrake.
|
999 |
+
|
1000 |
+
west - Respondent is from the West
|
1001 |
+
other - Respondent is from another region
|
1002 |
+
|
1003 |
+
--------------------------------------------------------------------------------
|
1004 |
+
anesrake_weight
|
1005 |
+
--------------------------------------------------------------------------------
|
1006 |
+
|
1007 |
+
Custom weighting variable
|
1008 |
+
|
1009 |
+
Raked post-stratification weights computed with anesrake.
|
1/replication_package/meta/hbg_instrument.pdf
ADDED
Binary file (132 kB). View file
|
|
1/replication_package/meta/hbg_pap.pdf
ADDED
Binary file (264 kB). View file
|
|
1/replication_package/scripts/hbg_analysis.R
ADDED
@@ -0,0 +1,1033 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Initialize workspace.
|
2 |
+
## Clear workspace.
|
3 |
+
rm(list = ls(all = TRUE))
|
4 |
+
|
5 |
+
## Confirm working directory.
|
6 |
+
setwd("~/Downloads/hbg_replication")
|
7 |
+
|
8 |
+
## Set seed.
|
9 |
+
set.seed(123)
|
10 |
+
|
11 |
+
## Set number of iterations for bootstrap replication.
|
12 |
+
n_iter <- 10000
|
13 |
+
|
14 |
+
## Load relevant packages.
|
15 |
+
library(sandwich)
|
16 |
+
library(car)
|
17 |
+
|
18 |
+
## Load relevant helper functions.
|
19 |
+
source("scripts/helper_functions.R")
|
20 |
+
|
21 |
+
## Load data.
|
22 |
+
# Load experimental data.
|
23 |
+
tpnw <- read.csv("data/tpnw_data.csv", row.names = 1,
|
24 |
+
stringsAsFactors = FALSE)
|
25 |
+
|
26 |
+
# Load YouGov data.
|
27 |
+
aware <- read.csv("data/tpnw_aware.csv", row.names = 1,
|
28 |
+
stringsAsFactors = FALSE)
|
29 |
+
|
30 |
+
### Define relevant objects.
|
31 |
+
## Define objects specifying outcomes.
|
32 |
+
# Specify join_tpnw object, representing main outcome.
|
33 |
+
join_tpnw <- "join_tpnw"
|
34 |
+
|
35 |
+
# Specify tpnw_atts object, representing attitudinal outcomes.
|
36 |
+
tpnw_atts <- names(tpnw)[startsWith(names(tpnw), "tpnw_atts")]
|
37 |
+
|
38 |
+
# Specify all_outs object, concatenating main and attitudinal outcomes.
|
39 |
+
all_outs <- c(join_tpnw, tpnw_atts)
|
40 |
+
|
41 |
+
## Define objects specifying predictors.
|
42 |
+
# Define object specifying main treatments.
|
43 |
+
treats <- c("group_cue", "security_cue", "norms_cue", "institutions_cue")
|
44 |
+
|
45 |
+
# Define object specifying general demographics.
|
46 |
+
demos <- c("age", "female", "midwest", "west", "south", "income", "educ")
|
47 |
+
|
48 |
+
# Define object specifying politically relevant demographics.
|
49 |
+
pol_demos <- c("ideo", "pid3")
|
50 |
+
|
51 |
+
# Define list of conditioning sets (NULL corresponds to Model 1, whereas the use
|
52 |
+
# of demographic and political covariates corresponds to Model 2).
|
53 |
+
covars <- list(NULL, c(demos, pol_demos))
|
54 |
+
|
55 |
+
### Produce analysis.
|
56 |
+
## Produce balance table.
|
57 |
+
# Specify covariates to be used for balance table.
|
58 |
+
bal_covars <- c("age", "female", "northeast", "midwest", "west",
|
59 |
+
"south", "income", "educ", "ideo", "pid3")
|
60 |
+
|
61 |
+
# Produce balance table matrix output, looping over treatment group.
|
62 |
+
bal_mat <- lapply(0:4, function (i) {
|
63 |
+
# For each treatment value ...
|
64 |
+
apply(tpnw[bal_covars][tpnw$treatment == i,], 2, function (x) {
|
65 |
+
|
66 |
+
# Calculate the mean of each covariate.
|
67 |
+
mean_x <- mean(x)
|
68 |
+
|
69 |
+
# Calculate SE estimates using 10,000 bootstrap replicates.
|
70 |
+
sd_x <- sd(replicate(10000, {
|
71 |
+
samp <- x[sample(length(x), replace = TRUE)]
|
72 |
+
return(mean(samp))
|
73 |
+
}))
|
74 |
+
|
75 |
+
# Return a list containing both point estimates.
|
76 |
+
return(list(mean = mean_x, sd = sd_x))
|
77 |
+
})
|
78 |
+
})
|
79 |
+
|
80 |
+
# Bind point estimates for each treatment group.
|
81 |
+
bal_mat <- lapply(bal_mat, function (treat) {
|
82 |
+
do.call("rbind", unlist(treat, recursive = FALSE))
|
83 |
+
})
|
84 |
+
|
85 |
+
# Convert list into a matrix, with columns representing treatment group.
|
86 |
+
bal_mat <- do.call("cbind", bal_mat)
|
87 |
+
|
88 |
+
# Round all estimates to within three decimal points and convert to character
|
89 |
+
# for the purposes of producing tabular output.
|
90 |
+
bal_tab <- apply(bal_mat, 2, function (x) format(round(x, 3), digits = 3))
|
91 |
+
|
92 |
+
# Specify rows containing mean point estimates.
|
93 |
+
mean_rows <- endsWith(rownames(bal_tab), ".mean")
|
94 |
+
|
95 |
+
# Specify rows containing SE point estimates.
|
96 |
+
se_rows <- endsWith(rownames(bal_tab), ".sd")
|
97 |
+
|
98 |
+
# Reformat SE estimates to be within parentheses.
|
99 |
+
bal_tab[se_rows,] <- apply(bal_tab[se_rows,], 2, function (x) {
|
100 |
+
paste0("(", x, ")")
|
101 |
+
})
|
102 |
+
|
103 |
+
# Remove row names for rows with SE estimates.
|
104 |
+
rownames(bal_tab)[se_rows] <- ""
|
105 |
+
|
106 |
+
# Remove ".mean" string in row names for rows with mean estimates.
|
107 |
+
rownames(bal_tab)[mean_rows] <- gsub(".mean", "", rownames(bal_tab)[mean_rows])
|
108 |
+
|
109 |
+
# Concatenate data to comport with LaTeX tabular markup.
|
110 |
+
bal_tab <- paste(paste(paste(
|
111 |
+
capwords(rownames(bal_tab)), apply(bal_tab, 1, function (x) {
|
112 |
+
paste(x, collapse = " & ")
|
113 |
+
}),
|
114 |
+
sep = " & "), collapse = " \\\\\n"), "\\\\\n")
|
115 |
+
bal_tab <- gsub("\\( ", "\\(", bal_tab)
|
116 |
+
|
117 |
+
# Produce tabular output.
|
118 |
+
sink("output/balance_tab.tex")
|
119 |
+
cat("\\begin{table}\n",
|
120 |
+
"\\caption{Covariate Balance Across Treatment Arms}\n",
|
121 |
+
"\\centering\\small\n",
|
122 |
+
"\\sisetup{\n",
|
123 |
+
"\tdetect-all,\n",
|
124 |
+
"\ttable-number-alignment = center,\n",
|
125 |
+
"\ttable-figures-integer = 1,\n",
|
126 |
+
"\ttable-figures-decimal = 3,\n",
|
127 |
+
"\tinput-symbols = {()}\n",
|
128 |
+
"}\n",
|
129 |
+
paste0("\\begin{tabular}{@{\\extracolsep{5pt}}L{2.75cm}*{5}",
|
130 |
+
"{S[table-number-alignment = center, table-column-width = 1.75cm]}}\n"),
|
131 |
+
"\\toprule\n",
|
132 |
+
"& \\multicolumn{5}{c}{Arm}\\\\\\cmidrule{2-6}\n",
|
133 |
+
"& {Control} & {Group} & {Security} & {Norms} & {Institutions} \\\\\\midrule\n",
|
134 |
+
bal_tab,
|
135 |
+
"\\bottomrule\n",
|
136 |
+
"\\end{tabular}\n",
|
137 |
+
"\\end{table}\n")
|
138 |
+
sink()
|
139 |
+
|
140 |
+
## Produce main results.
|
141 |
+
# Compute main results, looping over conditioning sets.
|
142 |
+
main_results <- lapply(covars, function (covar) {
|
143 |
+
# For each conditioning set ...
|
144 |
+
# Specify the relevant regression formula.
|
145 |
+
form <- as.formula(paste(join_tpnw, paste(c(treats, covar),
|
146 |
+
collapse = " + "), sep = " ~ "))
|
147 |
+
|
148 |
+
# Fit the OLS model per the specification.
|
149 |
+
fit <- lm(form, data = tpnw)
|
150 |
+
|
151 |
+
# Compute HC2 robust standard errors.
|
152 |
+
ses <- sqrt(diag(vcovHC(fit, type = "HC2")))
|
153 |
+
|
154 |
+
# Bind coefficient and SE output.
|
155 |
+
reg_out <- cbind(fit$coef[2:5], ses[2:5])
|
156 |
+
|
157 |
+
# Name output matrix columns and rows.
|
158 |
+
colnames(reg_out) <- c("coef", "se")
|
159 |
+
rownames(reg_out) <- treats
|
160 |
+
|
161 |
+
# Return output
|
162 |
+
return(as.data.frame(reg_out))
|
163 |
+
})
|
164 |
+
|
165 |
+
# Name results to distinguish between Model 1 and Model 2 estimates.
|
166 |
+
names(main_results) <- c("model_1", "model_2")
|
167 |
+
|
168 |
+
## Assess significance of effect estimates and differences.
|
169 |
+
# Estimate Bonferroni-Holm-adjusted p-values.
|
170 |
+
bf_ps <- lapply(main_results, function (x) {
|
171 |
+
round(p.adjust(pnorm(x[, 1] / x[, 2], lower.tail = TRUE),
|
172 |
+
method = "holm"), 3)
|
173 |
+
})
|
174 |
+
|
175 |
+
# Estimate FDR-adjusted p-values, as an added robustness check.
|
176 |
+
fdr_ps <- lapply(main_results, function (x) {
|
177 |
+
round(p.adjust(pnorm(x[, 1] / x[, 2], lower.tail = TRUE),
|
178 |
+
method = "fdr"), 3)
|
179 |
+
})
|
180 |
+
|
181 |
+
# Redefine the main model (Model 2), and store full VCOV matrix.
|
182 |
+
main_model <- lm(join_tpnw ~ group_cue + security_cue + norms_cue +
|
183 |
+
institutions_cue + age + female + midwest +
|
184 |
+
west + south + income + educ + ideo + pid3, tpnw)
|
185 |
+
main_vcov <- vcovHC(main_model, "HC2")
|
186 |
+
|
187 |
+
# Specify diff_sig function for assessing significance between two effect
|
188 |
+
# estimates (defined here for the sake of clarity).
|
189 |
+
diff_sig <- function (eff_1, eff_2) {
|
190 |
+
diff <- main_model$coef[eff_1] - main_model$coef[eff_2]
|
191 |
+
se <- sqrt(main_vcov[eff_1, eff_1] + main_vcov[eff_2, eff_2] -
|
192 |
+
2 * main_vcov[eff_1, eff_2])
|
193 |
+
p <- 2 * (1 - pnorm(abs(diff) / se))
|
194 |
+
return (p)
|
195 |
+
}
|
196 |
+
|
197 |
+
# Assess the significance of the difference between institution and security cue
|
198 |
+
# effect estimates .
|
199 |
+
inst_sec_diff_p <- diff_sig("institutions_cue", "security_cue")
|
200 |
+
|
201 |
+
# Assess the significance of the difference between institution and group cue
|
202 |
+
# effect estimates
|
203 |
+
inst_grp_diff_p <- diff_sig("institutions_cue", "group_cue")
|
204 |
+
|
205 |
+
# Assess the significance of the difference between security and group cue
|
206 |
+
# effect estimates
|
207 |
+
sec_grp_diff_p <- diff_sig("security_cue", "group_cue")
|
208 |
+
|
209 |
+
# Assess the significance of the difference between security and norms cue
|
210 |
+
# effect estimates
|
211 |
+
sec_norms_diff_p <- diff_sig("security_cue", "norms_cue")
|
212 |
+
|
213 |
+
# Assess the significance of the difference between institution and group cue
|
214 |
+
# effect estimates
|
215 |
+
inst_norms_diff_p <- diff_sig("institutions_cue", "norms_cue")
|
216 |
+
|
217 |
+
# Assess the significance of the difference between institution and group cue
|
218 |
+
# effect estimates
|
219 |
+
grp_norms_diff_p <- diff_sig("group_cue", "norms_cue")
|
220 |
+
|
221 |
+
# The significance of differences between effect estimates was also assessed
|
222 |
+
# using 10,000 bootstrap replicates and two-tailed p-values; relevant code is
|
223 |
+
# included below with the institutions and security cues, for posterity, but is
|
224 |
+
# not run.
|
225 |
+
|
226 |
+
# Compute SE estimates.
|
227 |
+
# diffs <- replicate(10000, {
|
228 |
+
# samp <- tpnw[sample(nrow(tpnw), replace = TRUE),]
|
229 |
+
# model <- lm(join_tpnw ~ group_cue + security_cue + norms_cue +
|
230 |
+
# institutions_cue + age + female + midwest +
|
231 |
+
# west + south + income + educ + ideo + pid3, samp)
|
232 |
+
# model$coef[5] - model$coef[3]
|
233 |
+
# })
|
234 |
+
# diffs_se <- sd(diffs)
|
235 |
+
#
|
236 |
+
# # Fit model.
|
237 |
+
# model <- lm(join_tpnw ~ group_cue + security_cue + norms_cue +
|
238 |
+
# institutions_cue + age + female + midwest +
|
239 |
+
# west + south + income + educ + ideo + pid3, tpnw)
|
240 |
+
#
|
241 |
+
# # Compute two-tailed p-value.
|
242 |
+
# 2 * (1 - pnorm(abs((model$coef[5] - model$coef[3])/diffs_se)))
|
243 |
+
|
244 |
+
## Assess YouGov results.
|
245 |
+
# Tabulate responses.
|
246 |
+
aware_table <- table(aware$awareness, useNA = "ifany")
|
247 |
+
names(aware_table) <- c("Yes, support", "Yes, oppose",
|
248 |
+
"No, support", "No, oppose", "Skipped")
|
249 |
+
|
250 |
+
# Compute both weighted and unweighted means.
|
251 |
+
aware_results <- lapply(1:4, function (resp) {
|
252 |
+
# Calculate weighted mean.
|
253 |
+
wt_mean <- with(aware, weighted.mean(awareness == resp,
|
254 |
+
w = weight, na.rm = TRUE))
|
255 |
+
|
256 |
+
# Calculate raw mean.
|
257 |
+
rw_mean <- with(aware, mean(awareness == resp, na.rm = TRUE))
|
258 |
+
|
259 |
+
# Concatenate means and rename vector.
|
260 |
+
means <- c(wt_mean, rw_mean)
|
261 |
+
names(means) <- c("weighted_mean", "raw_mean")
|
262 |
+
|
263 |
+
# Calculate SE estimates with 10,000 bootstrap replicates.
|
264 |
+
ses <- replicate(10000, {
|
265 |
+
samp <- aware[sample(nrow(aware),
|
266 |
+
replace = TRUE),]
|
267 |
+
wt_mean <- with(samp, weighted.mean(awareness == resp,
|
268 |
+
w = weight, na.rm = TRUE))
|
269 |
+
rw_mean <- with(samp, mean(awareness == resp,
|
270 |
+
na.rm = TRUE))
|
271 |
+
return(c(wt_mean, rw_mean))
|
272 |
+
})
|
273 |
+
ses <- apply(ses, 1, sd)
|
274 |
+
names(ses) <- c("weighted_mean", "raw_mean")
|
275 |
+
|
276 |
+
# Bind mean and SE estimates.
|
277 |
+
outs <- rbind(means, ses)
|
278 |
+
rownames(outs) <- paste(names(aware_table)[resp],
|
279 |
+
c("mean", "se"), sep = "_")
|
280 |
+
return(outs)
|
281 |
+
})
|
282 |
+
|
283 |
+
# Name results to distinguish between responses.
|
284 |
+
names(aware_results) <- c("Yes, support", "Yes, oppose",
|
285 |
+
"No, support", "No, oppose")
|
286 |
+
|
287 |
+
## Assess covariate means for experimental and YouGov data (used in Table A1).
|
288 |
+
# Indicate the list of covariates to be assessed.
|
289 |
+
demo_tab_vars <- c("age", "female", "northeast", "midwest", "west", "south")
|
290 |
+
|
291 |
+
# Compute covariate averages for experimental data.
|
292 |
+
tpnw_means <- apply(tpnw[demo_tab_vars], 2, mean, na.rm = TRUE)
|
293 |
+
|
294 |
+
# Compute covariate averages for YouGov data.
|
295 |
+
aware_means <- apply(aware[demo_tab_vars], 2, function (x) {
|
296 |
+
weighted.mean(x, na.rm = TRUE, w = aware$weight)
|
297 |
+
})
|
298 |
+
|
299 |
+
# Compute bootstrap standard errors for demographic means.
|
300 |
+
demo_ses <- replicate(10000, {
|
301 |
+
# Sample the experimental data.
|
302 |
+
samp_tpnw <- tpnw[sample(nrow(tpnw), replace = TRUE), demo_tab_vars]
|
303 |
+
|
304 |
+
# Sample the YouGov data.
|
305 |
+
samp_aware <- aware[sample(nrow(aware), replace = TRUE),
|
306 |
+
c(demo_tab_vars, "weight")]
|
307 |
+
|
308 |
+
# Compute bootstrap means for experimental data.
|
309 |
+
tpnw_means <- apply(samp_tpnw[demo_tab_vars], 2, mean, na.rm = TRUE)
|
310 |
+
|
311 |
+
# Compute bootstrap means for YouGov data.
|
312 |
+
aware_means <- apply(samp_aware[demo_tab_vars], 2, function (x) {
|
313 |
+
weighted.mean(x, na.rm = TRUE, w = samp_aware$weight)
|
314 |
+
})
|
315 |
+
|
316 |
+
# Return the results as a list, and ensure that replicate() also returns a
|
317 |
+
# list.
|
318 |
+
return(list(tpnw = tpnw_means, aware = aware_means))
|
319 |
+
}, simplify = FALSE)
|
320 |
+
|
321 |
+
# Compute SE estimates for each set of demographics.
|
322 |
+
demo_ses <- lapply(c("tpnw", "aware"), function (dataset) {
|
323 |
+
# Group all estimates from each dataset.
|
324 |
+
sep_res <- lapply(demo_ses, function (iteration) {
|
325 |
+
return(iteration[[dataset]])
|
326 |
+
})
|
327 |
+
|
328 |
+
# Bind estimates.
|
329 |
+
sep_res <- do.call("rbind", sep_res)
|
330 |
+
|
331 |
+
# Compute SE estimates.
|
332 |
+
sep_ses <- apply(sep_res, 2, sd)
|
333 |
+
|
334 |
+
# Return SE estimates.
|
335 |
+
return(sep_ses)
|
336 |
+
})
|
337 |
+
|
338 |
+
## Assess responses to the attitudinal battery.
|
339 |
+
# Assess responses to the attitudinal battery, looping over treatment group. For
|
340 |
+
# each treatment value ...
|
341 |
+
att_results <- lapply(0:4, function (i) {
|
342 |
+
# Calculate the average response to each attitudinal battery question.
|
343 |
+
atts_mean <- apply(tpnw[tpnw$treatment == i, tpnw_atts], 2, function (x) {
|
344 |
+
mean(x, na.rm = TRUE)
|
345 |
+
})
|
346 |
+
|
347 |
+
# Calculate SE estimates using 10,000 bootstrap replicates.
|
348 |
+
bl_atts_boot <- replicate(10000, {
|
349 |
+
dat <- tpnw[tpnw$treatment == i, tpnw_atts]
|
350 |
+
samp <- dat[sample(nrow(dat), replace = TRUE),]
|
351 |
+
apply(samp, 2, function (x) mean(x, na.rm = TRUE))
|
352 |
+
})
|
353 |
+
bl_atts_ses <- apply(bl_atts_boot, 1, sd)
|
354 |
+
|
355 |
+
# Combine mean and SE estimates and return results.
|
356 |
+
return(cbind(atts_mean, bl_atts_ses))
|
357 |
+
})
|
358 |
+
|
359 |
+
# Compute treatment effects on responses to the attitudinal battery, looping
|
360 |
+
# over conditioning sets.
|
361 |
+
att_effs <- lapply(covars, function (covar) {
|
362 |
+
# For each conditioning set ...
|
363 |
+
model_res <- lapply(tpnw_atts, function (out) {
|
364 |
+
# Specify the relevant regression formula.
|
365 |
+
form <- as.formula(paste(out,
|
366 |
+
paste(c(treats, covar),
|
367 |
+
collapse = " + "),
|
368 |
+
sep = " ~ "))
|
369 |
+
|
370 |
+
# Fit the OLS model per the specification.
|
371 |
+
fit <- lm(form, data = tpnw)
|
372 |
+
|
373 |
+
# Compute HC2 robust standard errors.
|
374 |
+
ses <- sqrt(diag(vcovHC(fit, type = "HC2")))
|
375 |
+
|
376 |
+
# Bind coefficient and SE output.
|
377 |
+
reg_out <- cbind(fit$coef[2:5], ses[2:5])
|
378 |
+
|
379 |
+
# Name output matrix columns and rows.
|
380 |
+
colnames(reg_out) <- c("coef", "se")
|
381 |
+
rownames(reg_out) <- treats
|
382 |
+
|
383 |
+
# Return output.
|
384 |
+
return(as.data.frame(reg_out))
|
385 |
+
})
|
386 |
+
# Name results to distinguish between each attitudinal battery
|
387 |
+
# outcome and return results.
|
388 |
+
names(model_res) <- tpnw_atts
|
389 |
+
return(model_res)
|
390 |
+
})
|
391 |
+
|
392 |
+
# Name results to distinguish between Model 1 and Model 2 estimates.
|
393 |
+
names(att_effs) <- c("model_1", "model_2")
|
394 |
+
|
395 |
+
## Perform subgroup analysis.
|
396 |
+
# Compute mean support by political party, looping over treatment group.
|
397 |
+
pid_results <- lapply(0:4, function (treat) {
|
398 |
+
# For each partisan group ...
|
399 |
+
out <- lapply(-1:1, function (i) {
|
400 |
+
# Calculate average support.
|
401 |
+
pid_mean <- with(tpnw,
|
402 |
+
mean(join_tpnw[pid3 == i &
|
403 |
+
treatment == treat],
|
404 |
+
na.rm = TRUE))
|
405 |
+
|
406 |
+
# Calculate SE estimates with 10,000
|
407 |
+
# bootstrap replicates.
|
408 |
+
pid_boot <- replicate(10000, {
|
409 |
+
dat <- tpnw$join_tpnw[tpnw$pid3 == i &
|
410 |
+
tpnw$treatment == treat]
|
411 |
+
samp <- dat[sample(length(dat),
|
412 |
+
replace = TRUE)]
|
413 |
+
mean(samp, na.rm = TRUE)
|
414 |
+
})
|
415 |
+
|
416 |
+
# Concatenate and return mean and SE
|
417 |
+
# estimates.
|
418 |
+
return(c(mean = pid_mean, se = sd(pid_boot)))
|
419 |
+
})
|
420 |
+
|
421 |
+
# Name results to distinguish estimates by political party,
|
422 |
+
# and return output.
|
423 |
+
names(out) <- c("dem", "ind", "rep")
|
424 |
+
return(as.data.frame(out))
|
425 |
+
})
|
426 |
+
|
427 |
+
# Name results to distinguish between treatment groups.
|
428 |
+
names(pid_results) <- c("Control", paste(c("Group", "Security", "Norms",
|
429 |
+
"Institutions"), "Cue"))
|
430 |
+
|
431 |
+
# Assess significance between control-group means; for 10,000 bootstrap
|
432 |
+
# replicates ...
|
433 |
+
pid_diff_ses <- replicate(10000, {
|
434 |
+
# Sample with replacement.
|
435 |
+
samp <- tpnw[sample(nrow(tpnw), replace = TRUE),]
|
436 |
+
|
437 |
+
# Compute the difference between Democrats' and
|
438 |
+
# Independents' support.
|
439 |
+
dem_ind_diff <- with(samp[samp$treatment == 0,],
|
440 |
+
mean(join_tpnw[pid3 == -1],
|
441 |
+
na.rm = TRUE) -
|
442 |
+
mean(join_tpnw[pid3 == 0],
|
443 |
+
na.rm = TRUE))
|
444 |
+
# Compute the difference between Democrats' and
|
445 |
+
# Republicans' support.
|
446 |
+
dem_rep_diff <- with(samp[samp$treatment == 0,],
|
447 |
+
mean(join_tpnw[pid3 == -1],
|
448 |
+
na.rm = TRUE) -
|
449 |
+
mean(join_tpnw[pid3 == 1],
|
450 |
+
na.rm = TRUE))
|
451 |
+
# Compute the difference between Independents' and
|
452 |
+
# Republicans' support.
|
453 |
+
ind_rep_diff <- with(samp[samp$treatment == 0,],
|
454 |
+
mean(join_tpnw[pid3 == 1],
|
455 |
+
na.rm = TRUE) -
|
456 |
+
mean(join_tpnw[pid3 == 0],
|
457 |
+
na.rm = TRUE))
|
458 |
+
|
459 |
+
# Concatenate and name results.
|
460 |
+
out <- c(dem_ind_diff, dem_rep_diff, ind_rep_diff)
|
461 |
+
names(out) <- c("dem_ind", "dem_rep", "ind_rep")
|
462 |
+
return(out)
|
463 |
+
})
|
464 |
+
|
465 |
+
# Compute SE estimates for each difference.
|
466 |
+
pid_diff_ses <- apply(pid_diff_ses, 1, sd)
|
467 |
+
|
468 |
+
# Assess significance for each difference.
|
469 |
+
dem_ind_p <- 2 * (1 - pnorm(abs(pid_results$Control["mean", "dem"] -
|
470 |
+
pid_results$Control["mean", "ind"]) / pid_diff_ses["dem_ind"]))
|
471 |
+
dem_rep_p <- 2 * (1 - pnorm(abs(pid_results$Control["mean", "dem"] -
|
472 |
+
pid_results$Control["mean", "rep"]) / pid_diff_ses["dem_rep"]))
|
473 |
+
ind_rep_p <- 2 * (1 - pnorm(abs(pid_results$Control["mean", "ind"] -
|
474 |
+
pid_results$Control["mean", "rep"]) / pid_diff_ses["ind_rep"]))
|
475 |
+
|
476 |
+
# Compute mean support by political ideology, looping over treatment group.
|
477 |
+
tpnw$ideo <- recode(tpnw$ideo, "c(-2, -1) = 'liberal';
|
478 |
+
0 = 'moderate';
|
479 |
+
c(1, 2) = 'conservative'")
|
480 |
+
ideo_results <- lapply(0:4, function (treat) {
|
481 |
+
# For each ideological group ...
|
482 |
+
out <- lapply(c("liberal", "moderate", "conservative"), function (i) {
|
483 |
+
# Calculate average support.
|
484 |
+
pid_mean <- with(tpnw,
|
485 |
+
mean(join_tpnw[ideo == i &
|
486 |
+
treatment == treat],
|
487 |
+
na.rm = TRUE))
|
488 |
+
|
489 |
+
# Calculate SE estimates with 10,000
|
490 |
+
# bootstrap replicates.
|
491 |
+
pid_boot <- replicate(10000, {
|
492 |
+
dat <- tpnw$join_tpnw[tpnw$ideo == i &
|
493 |
+
tpnw$treatment == treat]
|
494 |
+
samp <- dat[sample(length(dat),
|
495 |
+
replace = TRUE)]
|
496 |
+
mean(samp, na.rm = TRUE)
|
497 |
+
})
|
498 |
+
|
499 |
+
# Concatenate and return mean and SE
|
500 |
+
# estimates.
|
501 |
+
return(c(mean = pid_mean, se = sd(pid_boot)))
|
502 |
+
})
|
503 |
+
|
504 |
+
# Name results to distinguish estimates by political ideology,
|
505 |
+
# and return output.
|
506 |
+
names(out) <- c("liberal", "moderate", "conservative")
|
507 |
+
return(as.data.frame(out))
|
508 |
+
})
|
509 |
+
|
510 |
+
# Name results to distinguish between treatment groups.
|
511 |
+
names(ideo_results) <- c("Control", paste(c("Group", "Security", "Norms",
|
512 |
+
"Institutions"), "Cue"))
|
513 |
+
|
514 |
+
## Produce weighted main results.
|
515 |
+
# Compute weighted main results, looping over conditioning sets.
|
516 |
+
w_main_results <- lapply(covars, function (covar) {
|
517 |
+
# For each conditioning set ...
|
518 |
+
# Specify the relevant regression formula.
|
519 |
+
form <- as.formula(paste(join_tpnw, paste(c(treats, covar),
|
520 |
+
collapse = " + "), sep = " ~ "))
|
521 |
+
|
522 |
+
# Fit the OLS model per the specification.
|
523 |
+
fit <- lm(form, data = tpnw, weights = anesrake_weight)
|
524 |
+
|
525 |
+
# Compute HC2 robust standard errors.
|
526 |
+
ses <- sqrt(diag(vcovHC(fit, type = "HC2")))
|
527 |
+
|
528 |
+
# Bind coefficient and SE output.
|
529 |
+
reg_out <- cbind(fit$coef[2:5], ses[2:5])
|
530 |
+
|
531 |
+
# Name output matrix columns and rows.
|
532 |
+
colnames(reg_out) <- c("coef", "se")
|
533 |
+
rownames(reg_out) <- treats
|
534 |
+
|
535 |
+
# Return output
|
536 |
+
return(as.data.frame(reg_out))
|
537 |
+
})
|
538 |
+
|
539 |
+
# Name results to distinguish between Model 1 and Model 2 estimates.
|
540 |
+
names(w_main_results) <- c("model_1", "model_2")
|
541 |
+
|
542 |
+
### Produce plots and tables.
|
543 |
+
## Produce main results plot.
|
544 |
+
# Produce main results matrix for plotting.
|
545 |
+
main_mat <- do.call("rbind", lapply(1:2, function (model) {
|
546 |
+
cbind(main_results[[model]], model)
|
547 |
+
}))
|
548 |
+
|
549 |
+
# Store values for constructing 90- and 95-percent CIs.
|
550 |
+
z_90 <- qnorm(.95)
|
551 |
+
z_95 <- qnorm(.975)
|
552 |
+
|
553 |
+
# Open new pdf device.
|
554 |
+
setEPS()
|
555 |
+
postscript("output/fg1.eps", width = 8, height = 5.5)
|
556 |
+
|
557 |
+
# Define custom graphical parameters.
|
558 |
+
par(mar = c(8, 7, 2, 2))
|
559 |
+
|
560 |
+
# Open new, empty plot.
|
561 |
+
plot(0, type = "n", axes = FALSE, ann = FALSE,
|
562 |
+
xlim = c(-.3, .05), ylim = c(.8, 4))
|
563 |
+
|
564 |
+
# Produce guidelines to go behind point estimates and error bars.
|
565 |
+
abline(v = seq(-.3, .05, .05)[-7], col = "lightgrey", lty = 3)
|
566 |
+
|
567 |
+
# Add Model 1 point estimates.
|
568 |
+
par(new = TRUE)
|
569 |
+
plot(x = main_mat$coef[main_mat$model == 1], y = 1:4 + .05,
|
570 |
+
xlim = c(-.3, .05), ylim = c(.8, 4), pch = 16, col = "steelblue2",
|
571 |
+
xlab = "", ylab = "", axes = FALSE)
|
572 |
+
|
573 |
+
# Add Model 2 point estimates.
|
574 |
+
par(new = TRUE)
|
575 |
+
plot(x = main_mat$coef[main_mat$model == 2], y = 1:4 - .05,
|
576 |
+
xlim = c(-.3, .05), ylim = c(.8, 4), pch = 16, col = "#FF8F37", main = "",
|
577 |
+
xlab = "", ylab = "", axes = FALSE)
|
578 |
+
|
579 |
+
# Add horizontal axis indicating effect estimate size.
|
580 |
+
axis(side = 1, at = round(seq(-.3, 0, .05), 2), labels = FALSE)
|
581 |
+
mtext(side = 1, at = seq(-.3, .1, .1), text = c("-30", "-20", "-10", "0"),
|
582 |
+
cex = .9, line = .75)
|
583 |
+
axis(side = 1, at = round(seq(-.25, .05, .05), 2), tck = -.01, labels = FALSE)
|
584 |
+
|
585 |
+
# Add vertical axis specifying treatment names corresponding to point estimates.
|
586 |
+
axis(side = 2, at = 1:4, labels = FALSE)
|
587 |
+
mtext(side = 2, line = .75, at = 1:4,
|
588 |
+
text = paste(c("Group", "Security", "Norms", "Institutions"), "Cue"),
|
589 |
+
las = 1, padj = .35, cex = .9)
|
590 |
+
|
591 |
+
# Add axis labels.
|
592 |
+
mtext(side = 2, line = 2.3, at = 4.2, text = "Treatment",
|
593 |
+
font = 2, las = 1, xpd = TRUE)
|
594 |
+
mtext(side = 1, text = "Estimated Effect Size", line = 2.5, at = -.15, font = 2)
|
595 |
+
|
596 |
+
# Add a dashed line at zero.
|
597 |
+
abline(v = 0.00, lty = 2)
|
598 |
+
|
599 |
+
# Add two-sided, 90-percent CIs.
|
600 |
+
with(main_mat[main_mat$model == 1,],
|
601 |
+
segments(x0 = coef - z_90 * se, y0 = 1:4 + .05, x1 = coef + z_90 * se,
|
602 |
+
y1 = 1:4 + .05, col = "steelblue2", lwd = 3))
|
603 |
+
with(main_mat[main_mat$model == 2,],
|
604 |
+
segments(x0 = coef - z_90 * se, y0 = 1:4 - .05, x1 = coef + z_90 * se,
|
605 |
+
y1 = 1:4 - .05, col = "#FF8F37", lwd = 3))
|
606 |
+
|
607 |
+
# Add two-sided 95-percent CIs.
|
608 |
+
with(main_mat[main_mat$model == 1,],
|
609 |
+
segments(x0 = coef - z_95 *se, y0 = 1:4 + .05, x1 = coef + z_95 *se,
|
610 |
+
y1 = 1:4 + .05, col = "steelblue2", lwd = 1))
|
611 |
+
with(main_mat[main_mat$model == 2,],
|
612 |
+
segments(x0 = coef - z_95 *se, y0 = 1:4 - .05, x1 = coef + z_95 *se,
|
613 |
+
y1 = 1:4 - .05, col = "#FF8F37", lwd = 1))
|
614 |
+
|
615 |
+
# Add legend.
|
616 |
+
legend(legend = paste("Model", 1:2), x = -.15, y = -.275, horiz = TRUE,
|
617 |
+
pch = 16, col = c("steelblue2", "#FF8F37"), xjust = .5, xpd = TRUE,
|
618 |
+
text.width = .05, cex = .9)
|
619 |
+
|
620 |
+
# Draw a box around the plot.
|
621 |
+
box()
|
622 |
+
|
623 |
+
# Close the grpahical device.
|
624 |
+
dev.off()
|
625 |
+
|
626 |
+
## Create tabular output for main results.
|
627 |
+
# Define matrix object of main results.
|
628 |
+
tab_dat <- do.call("cbind", main_results)
|
629 |
+
|
630 |
+
# Compute control-group means, with SE estimates; define OLS formula.
|
631 |
+
ctrl_form <- as.formula(paste(join_tpnw, paste(treats,
|
632 |
+
collapse = " + "), sep = " ~ "))
|
633 |
+
|
634 |
+
# Fit the OLS model per the specification and recover the control mean.
|
635 |
+
ctrl_fit <- lm(ctrl_form, data = tpnw)
|
636 |
+
|
637 |
+
# Recover the control-group mean.
|
638 |
+
ctrl_mean <- ctrl_fit$coef["(Intercept)"]
|
639 |
+
|
640 |
+
# Compute control SE.
|
641 |
+
ctrl_se <- sqrt(diag(vcovHC(ctrl_fit, "HC2")))["(Intercept)"]
|
642 |
+
|
643 |
+
# Concatenate mean and SE output with blank values for Model 2.
|
644 |
+
ctrl_results <- c(format(round(c(ctrl_mean, ctrl_se), 3) * 100, digits = 2),
|
645 |
+
"|", "|")
|
646 |
+
|
647 |
+
# Reformat data to include a decimal point.
|
648 |
+
tab_dat <- apply(tab_dat, 2, function (y) format(round(y, 3) * 100, digits = 2))
|
649 |
+
|
650 |
+
# Bind control-group means with main results data.
|
651 |
+
tab <- rbind(ctrl_results, tab_dat)
|
652 |
+
|
653 |
+
# Rename row containing control-group means.
|
654 |
+
rownames(tab)[which(rownames(tab) == "1")] <- "control_mean"
|
655 |
+
|
656 |
+
# Relabel coefficient columns.
|
657 |
+
coef_cols <- grep("coef$", colnames(tab))
|
658 |
+
|
659 |
+
# Relabel SE columns.
|
660 |
+
se_cols <- grep("se$", colnames(tab))
|
661 |
+
|
662 |
+
# Reformat SE estimates to be within parentheses.
|
663 |
+
tab[,se_cols] <- apply(tab[, se_cols], 2, function (y) paste0("(", y, ")"))
|
664 |
+
|
665 |
+
# Concatenate data to comport with LaTeX tabular markup.
|
666 |
+
tab <- paste(paste(paste(capwords(gsub("_", " ", rownames(tab))),
|
667 |
+
apply(tab, 1, function (x) {
|
668 |
+
paste(x, collapse = " & ")
|
669 |
+
}), sep = " & "), collapse = " \\\\\n"), "\\\\\n")
|
670 |
+
|
671 |
+
# Produce tabular output.
|
672 |
+
sink("output/main_results_tab.tex")
|
673 |
+
cat("\\begin{table}\n",
|
674 |
+
"\\caption{Estimated Treatment Effects on Support for TPNW}\n",
|
675 |
+
"\\begin{adjustbox}{width = \\textwidth, center}\n",
|
676 |
+
"\\sisetup{\n",
|
677 |
+
"\tdetect-all,\n",
|
678 |
+
"\ttable-number-alignment = center,\n",
|
679 |
+
"\ttable-figures-integer = 1,\n",
|
680 |
+
"\ttable-figures-decimal = 3,\n",
|
681 |
+
"\ttable-space-text-post = *,\n",
|
682 |
+
"\tinput-symbols = {()}\n",
|
683 |
+
"}\n",
|
684 |
+
paste0("\\begin{tabular}{@{\\extracolsep{5pt}}L{3.5cm}*{4}",
|
685 |
+
"{S[table-number-alignment = right, table-column-width=1.25cm]}}\n"),
|
686 |
+
"\\toprule\n",
|
687 |
+
"& \\multicolumn{4}{c}{Model}\\\\\\cmidrule{2-5}\n",
|
688 |
+
"& \\multicolumn{2}{c}{{(1)}} & \\multicolumn{2}{c}{{(2)}} \\\\\\midrule\n",
|
689 |
+
tab,
|
690 |
+
"\\bottomrule\n",
|
691 |
+
"\\end{tabular}\n",
|
692 |
+
"\\end{adjustbox}\n",
|
693 |
+
"\\end{table}\n")
|
694 |
+
sink()
|
695 |
+
|
696 |
+
## Create tabular output for YouGov results.
|
697 |
+
# Restructure data as a matrix.
|
698 |
+
aware_tab <- rbind(do.call("rbind", aware_results))
|
699 |
+
|
700 |
+
# Reformat data to include three decimal points.
|
701 |
+
aware_tab <- apply(aware_tab, 2, function (y) format(round(y, 3) * 100,
|
702 |
+
digits = 3))
|
703 |
+
|
704 |
+
# Relabel mean rows.
|
705 |
+
mean_rows <- endsWith(rownames(aware_tab), "mean")
|
706 |
+
|
707 |
+
# Relabel SE rows.
|
708 |
+
se_rows <- endsWith(rownames(aware_tab), "se")
|
709 |
+
|
710 |
+
# Reformat SE estimates to be within parentheses.
|
711 |
+
aware_tab[se_rows,] <- paste0("(", aware_tab[se_rows,], ")")
|
712 |
+
|
713 |
+
# Remove row names for rows with SE estimates.
|
714 |
+
rownames(aware_tab)[se_rows] <- ""
|
715 |
+
|
716 |
+
# Remove "_mean" indication in mean_rows.
|
717 |
+
rownames(aware_tab)[mean_rows] <- gsub("_mean", "",
|
718 |
+
rownames(aware_tab)[mean_rows])
|
719 |
+
|
720 |
+
# Add an empty row, where excluded calculations of responses among skips are
|
721 |
+
# noted in the table, and rename the relevant row.
|
722 |
+
aware_tab <- rbind(aware_tab, c("|", "|"))
|
723 |
+
rownames(aware_tab)[nrow(aware_tab)] <- "Skipped"
|
724 |
+
|
725 |
+
# Add an empty column to the table, and insert the count column at the relevant
|
726 |
+
# indices.
|
727 |
+
aware_tab[which(rownames(aware_tab) %in% names(aware_table)),]
|
728 |
+
aware_tab <- cbind(aware_tab, "")
|
729 |
+
colnames(aware_tab)[ncol(aware_tab)] <- "N"
|
730 |
+
aware_tab[which(rownames(aware_tab) %in% names(aware_table)), "N"] <- aware_table
|
731 |
+
|
732 |
+
# Concatenate data to comport with LaTeX tabular markup.
|
733 |
+
aware_tab <- paste(paste(paste(capwords(gsub("_", " ", rownames(aware_tab))),
|
734 |
+
apply(aware_tab, 1, function (x) {
|
735 |
+
paste(x, collapse = " & ")
|
736 |
+
}),
|
737 |
+
sep = " & "), collapse = " \\\\\n"), "\\\\\n")
|
738 |
+
|
739 |
+
# Produce tabular output.
|
740 |
+
sink("output/yougov_tab.tex")
|
741 |
+
cat("\\begin{table}\n",
|
742 |
+
"\\caption{YouGov Survey Responses}\n",
|
743 |
+
"\\centering\\small\n",
|
744 |
+
"\\sisetup{\n",
|
745 |
+
"\tdetect-all,\n",
|
746 |
+
"\ttable-number-alignment = center,\n",
|
747 |
+
"\ttable-figures-integer = 1,\n",
|
748 |
+
"\ttable-figures-decimal = 3,\n",
|
749 |
+
"\tinput-symbols = {()}\n",
|
750 |
+
"}\n",
|
751 |
+
paste0("\\begin{tabular}{@{\\extracolsep{5pt}}L{3.5cm}*{5}",
|
752 |
+
"{S[table-number-alignment = right, table-column-width=1.25cm]}}\n"),
|
753 |
+
"\\toprule\n",
|
754 |
+
"& \\multicolumn{5}{c}{Arm}\\\\\\cmidrule{2-6}\n",
|
755 |
+
"& {Control} & {Group} & {Security} & {Norms} & {Institutions} \\\\\\midrule\n",
|
756 |
+
aware_tab,
|
757 |
+
"\\bottomrule\n",
|
758 |
+
"\\end{tabular}\n",
|
759 |
+
"\\end{table}\n")
|
760 |
+
sink()
|
761 |
+
|
762 |
+
## Create tabular output for attitudinal results.
|
763 |
+
# Define matrix object of main results.
|
764 |
+
tab_dat <- do.call("cbind", att_results)
|
765 |
+
|
766 |
+
# Reformat matrix to alternate mean and SE estimates.
|
767 |
+
tab <- sapply(seq(0, 8, 2), function (i) {
|
768 |
+
matrix(c(t(tab_dat[,1:2 + i])), 14, 1)
|
769 |
+
})
|
770 |
+
|
771 |
+
# Reformat data to include three decimal points.
|
772 |
+
tab <- apply(tab, 2, function (y) format(round(y, 3), digits = 3))
|
773 |
+
|
774 |
+
# Rename rows to indicate mean and SE estimates.
|
775 |
+
rownames(tab) <- paste(rep(rownames(tab_dat), each = 2),
|
776 |
+
c("mean", "se"), sep = "_")
|
777 |
+
|
778 |
+
# Relabel mean rows.
|
779 |
+
mean_rows <- grep("_mean", rownames(tab))
|
780 |
+
|
781 |
+
# Relabel SE rows
|
782 |
+
se_rows <- grep("_se", rownames(tab))
|
783 |
+
|
784 |
+
# Reformat SE estimates to be within parentheses.
|
785 |
+
tab[se_rows,] <- apply(tab[se_rows,], 1, function (y) {
|
786 |
+
paste0("(", gsub(" ", "", y), ")")
|
787 |
+
})
|
788 |
+
|
789 |
+
# Rename rows to improve tabular labels; remove "tpnw_atts, "mean," and "se" row
|
790 |
+
# name strings.
|
791 |
+
rownames(tab) <- gsub("tpnw_atts|mean$|se$", "", rownames(tab))
|
792 |
+
|
793 |
+
# Remove leading and tailing underscores.
|
794 |
+
rownames(tab) <- gsub("^_|_$", "", rownames(tab))
|
795 |
+
|
796 |
+
# Remove row names for rows with SE estimates.
|
797 |
+
rownames(tab)[se_rows] <- ""
|
798 |
+
|
799 |
+
# Concatenate data to comport with LaTeX tabular markup.
|
800 |
+
tab <- paste(paste(paste(capwords(gsub("_", " ", rownames(tab))),
|
801 |
+
apply(tab, 1, function (x) {
|
802 |
+
paste(x, collapse = " & ")
|
803 |
+
}),
|
804 |
+
sep = " & "), collapse = " \\\\\n"), "\\\\\n")
|
805 |
+
|
806 |
+
# Produce tabular output.
|
807 |
+
sink("output/atts_tab.tex")
|
808 |
+
cat("\\begin{table}\n",
|
809 |
+
"\\caption{Attitudes Toward Nuclear Weapons by Arm}\n",
|
810 |
+
"\\centering\\small\n",
|
811 |
+
"\\sisetup{\n",
|
812 |
+
"\tdetect-all,\n",
|
813 |
+
"\ttable-number-alignment = center,\n",
|
814 |
+
"\ttable-figures-integer = 1,\n",
|
815 |
+
"\ttable-figures-decimal = 3,\n",
|
816 |
+
"\ttable-space-text-post = *,\n",
|
817 |
+
"\tinput-symbols = {()}\n",
|
818 |
+
"}\n",
|
819 |
+
paste0("\\begin{tabular}{@{\\extracolsep{5pt}}L{3.5cm}*{5}",
|
820 |
+
"{S[table-number-alignment = center, table-column-width=1.25cm]}}\n"),
|
821 |
+
"\\toprule\n",
|
822 |
+
"& \\multicolumn{5}{c}{Arm}\\\\\\cmidrule{2-6}\n",
|
823 |
+
"& {Control} & {Group} & {Security} & {Norms} & {Institutions} \\\\\\midrule\n",
|
824 |
+
tab,
|
825 |
+
"\\bottomrule\n",
|
826 |
+
"\\end{tabular}\n",
|
827 |
+
"\\end{table}\n")
|
828 |
+
sink()
|
829 |
+
|
830 |
+
## Create tabular output for results by political party.
|
831 |
+
# Restructure data such that mean and SE estimates are alternating rows in a
|
832 |
+
# 1 x 6 matrix, in each of five list elements, corresponding to each treatment
|
833 |
+
# group; and bind the results for each treatment group.
|
834 |
+
pid_tab <- lapply(pid_results, function (x) {
|
835 |
+
matrix(unlist(x), nrow = 6, ncol = 1)
|
836 |
+
})
|
837 |
+
pid_tab <- do.call("cbind", pid_tab)
|
838 |
+
|
839 |
+
# Assign row names to distinguish results for each partisan group, and mean and
|
840 |
+
# SE estimates.
|
841 |
+
rownames(pid_tab) <- paste(rep(c("democrat", "independent", "republican"),
|
842 |
+
each = 2), c("mean", "se"))
|
843 |
+
|
844 |
+
# Relabel mean rows.
|
845 |
+
mean_rows <- endsWith(rownames(pid_tab), "mean")
|
846 |
+
|
847 |
+
# Relabel SE rows.
|
848 |
+
se_rows <- endsWith(rownames(pid_tab), "se")
|
849 |
+
|
850 |
+
# Label columns per treatment, for the computation of ATEs.
|
851 |
+
colnames(pid_tab) <- c("control", treats)
|
852 |
+
|
853 |
+
# Compute ATEs, with control as baseline, and update tabular data.
|
854 |
+
pid_tab[mean_rows, treats] <- pid_tab[mean_rows, treats] -
|
855 |
+
pid_tab[mean_rows, "control"]
|
856 |
+
|
857 |
+
# Reformat data to include three decimal points.
|
858 |
+
pid_tab <- apply(pid_tab, 2, function (y) format(round(y, 3) * 100, digits = 3))
|
859 |
+
|
860 |
+
# Remove extraneous spacing.
|
861 |
+
pid_tab <- gsub(" ", "", pid_tab)
|
862 |
+
|
863 |
+
# Reformat SE estimates to be within parentheses.
|
864 |
+
pid_tab[se_rows,] <- paste0("(", pid_tab[se_rows,], ")")
|
865 |
+
|
866 |
+
# Remove row names for rows with SE estimates.
|
867 |
+
rownames(pid_tab)[se_rows] <- ""
|
868 |
+
|
869 |
+
# Concatenate data to comport with LaTeX tabular markup.
|
870 |
+
pid_tab <- paste(paste(paste(capwords(gsub("_", " ", rownames(pid_tab))),
|
871 |
+
apply(pid_tab, 1, function (x) {
|
872 |
+
paste(x, collapse = " & ")
|
873 |
+
}),
|
874 |
+
sep = " & "), collapse = " \\\\\n"), "\\\\\n")
|
875 |
+
|
876 |
+
# Produce tabular output.
|
877 |
+
sink("output/pid_support.tex")
|
878 |
+
cat("\\begin{table}\n",
|
879 |
+
"\\caption{Support for Joining TPNW by Party ID}\n",
|
880 |
+
"\\centering\\small\n",
|
881 |
+
"\\sisetup{\n",
|
882 |
+
"\tdetect-all,\n",
|
883 |
+
"\ttable-number-alignment = center,\n",
|
884 |
+
"\ttable-figures-integer = 1,\n",
|
885 |
+
"\ttable-figures-decimal = 3,\n",
|
886 |
+
"\tinput-symbols = {()}\n",
|
887 |
+
"}\n",
|
888 |
+
paste0("\\begin{tabular}{@{\\extracolsep{5pt}}L{3.5cm}*{5}",
|
889 |
+
"{S[table-number-alignment = right, table-column-width=1.25cm]}}\n"),
|
890 |
+
"\\toprule\n",
|
891 |
+
"& \\multicolumn{5}{c}{Arm}\\\\\\cmidrule{2-6}\n",
|
892 |
+
"& {Control} & {Group} & {Security} & {Norms} & {Institutions} \\\\\\midrule\n",
|
893 |
+
pid_tab,
|
894 |
+
"\\bottomrule\n",
|
895 |
+
"\\end{tabular}\n",
|
896 |
+
"\\end{table}\n")
|
897 |
+
sink()
|
898 |
+
|
899 |
+
## Create tabular output for results by political ideology.
|
900 |
+
# Restructure data such that mean and SE estimates are alternating rows in a
|
901 |
+
# 1 x 6 matrix, in each of five list elements, corresponding to each treatment
|
902 |
+
# group; and bind the results for each treatment group.
|
903 |
+
ideo_tab <- lapply(ideo_results, function (x) {
|
904 |
+
matrix(unlist(x), nrow = 6, ncol = 1)
|
905 |
+
})
|
906 |
+
ideo_tab <- do.call("cbind", ideo_tab)
|
907 |
+
|
908 |
+
# Assign row names to distinguish results for each idelogical group, and mean
|
909 |
+
# and SE estimates.
|
910 |
+
rownames(ideo_tab) <- paste(rep(c("liberal", "moderate", "conservative"),
|
911 |
+
each = 2), c("mean", "se"))
|
912 |
+
|
913 |
+
# Reformat data to include three decimal points.
|
914 |
+
ideo_tab <- apply(ideo_tab, 2, function (y) format(round(y, 3) * 100,
|
915 |
+
digits = 3))
|
916 |
+
|
917 |
+
# Relabel mean rows.
|
918 |
+
mean_rows <- endsWith(rownames(ideo_tab), "mean")
|
919 |
+
|
920 |
+
# Relabel SE rows.
|
921 |
+
se_rows <- endsWith(rownames(ideo_tab), "se")
|
922 |
+
|
923 |
+
# Reformat SE estimates to be within parentheses.
|
924 |
+
ideo_tab[se_rows,] <- paste0("(", ideo_tab[se_rows,], ")")
|
925 |
+
|
926 |
+
# Remove row names for rows with SE estimates.
|
927 |
+
rownames(ideo_tab)[se_rows] <- ""
|
928 |
+
|
929 |
+
# Concatenate data to comport with LaTeX tabular markup.
|
930 |
+
ideo_tab <- paste(paste(paste(capwords(gsub("_", " ", rownames(ideo_tab))),
|
931 |
+
apply(ideo_tab, 1, function (x) {
|
932 |
+
paste(x, collapse = " & ")
|
933 |
+
}),
|
934 |
+
sep = " & "), collapse = " \\\\\n"), "\\\\\n")
|
935 |
+
|
936 |
+
# Produce tabular output.
|
937 |
+
sink("output/ideo_support_tab.tex")
|
938 |
+
cat("\\begin{table}\n",
|
939 |
+
"\\caption{Support for Joining TPNW by Ideology}\n",
|
940 |
+
"\\centering\\small\n",
|
941 |
+
"\\sisetup{\n",
|
942 |
+
"\tdetect-all,\n",
|
943 |
+
"\ttable-number-alignment = center,\n",
|
944 |
+
"\ttable-figures-integer = 1,\n",
|
945 |
+
"\ttable-figures-decimal = 3,\n",
|
946 |
+
"\tinput-symbols = {()}\n",
|
947 |
+
"}\n",
|
948 |
+
paste0("\\begin{tabular}{@{\\extracolsep{5pt}}L{3.5cm}*{5}",
|
949 |
+
"{S[table-number-alignment = right, table-column-width=1.25cm]}}\n"),
|
950 |
+
"\\toprule\n",
|
951 |
+
"& \\multicolumn{5}{c}{Arm}\\\\\\cmidrule{2-6}\n",
|
952 |
+
"& {Control} & {Group} & {Security} & {Norms} & {Institutions} \\\\\\midrule\n",
|
953 |
+
ideo_tab,
|
954 |
+
"\\bottomrule\n",
|
955 |
+
"\\end{tabular}\n",
|
956 |
+
"\\end{table}\n")
|
957 |
+
sink()
|
958 |
+
|
959 |
+
## Create tabular output for weighted main results.
|
960 |
+
# Define matrix object of weighted main results.
|
961 |
+
w_tab_dat <- do.call("cbind", w_main_results)
|
962 |
+
|
963 |
+
# Compute weighted control-group means, with SE estimates; define OLS formula.
|
964 |
+
w_ctrl_form <- as.formula(paste(join_tpnw, paste(treats,
|
965 |
+
collapse = " + "), sep = " ~ "))
|
966 |
+
|
967 |
+
# Fit the OLS model per the specification and recover the control mean.
|
968 |
+
w_ctrl_fit <- lm(w_ctrl_form, data = tpnw,
|
969 |
+
weights = anesrake_weight)
|
970 |
+
|
971 |
+
# Recover the control-group mean.
|
972 |
+
w_ctrl_mean <- w_ctrl_fit$coef["(Intercept)"]
|
973 |
+
|
974 |
+
# Compute control SE.
|
975 |
+
w_ctrl_se <- sqrt(diag(vcovHC(w_ctrl_fit, "HC2")))["(Intercept)"]
|
976 |
+
|
977 |
+
|
978 |
+
# Concatenate mean and SE output with blank values for Model 2.
|
979 |
+
w_ctrl_results <- c(format(round(c(w_ctrl_mean, w_ctrl_se), 3) * 100,
|
980 |
+
digits = 2), "|", "|")
|
981 |
+
|
982 |
+
# Reformat data to include a decimal point.
|
983 |
+
w_tab_dat <- apply(w_tab_dat, 2, function (y) format(round(y, 3) * 100,
|
984 |
+
digits = 2))
|
985 |
+
|
986 |
+
# Bind control-group means with main results data.
|
987 |
+
w_tab <- rbind(w_ctrl_results, w_tab_dat)
|
988 |
+
|
989 |
+
# Rename row containing control-group means.
|
990 |
+
rownames(w_tab)[which(rownames(w_tab) == "1")] <- "control_mean"
|
991 |
+
|
992 |
+
# Relabel coefficient columns.
|
993 |
+
coef_cols <- grep("coef$", colnames(w_tab))
|
994 |
+
|
995 |
+
# Relabel SE columns.
|
996 |
+
se_cols <- grep("se$", colnames(w_tab))
|
997 |
+
|
998 |
+
# Reformat SE estimates to be within parentheses.
|
999 |
+
w_tab[,se_cols] <- apply(w_tab[, se_cols], 2, function (y) paste0("(", y, ")"))
|
1000 |
+
|
1001 |
+
# Concatenate data to comport with LaTeX tabular markup.
|
1002 |
+
w_tab <- paste(paste(paste(capwords(gsub("_", " ", rownames(w_tab))),
|
1003 |
+
apply(w_tab, 1, function (x) {
|
1004 |
+
paste(x, collapse = " & ")
|
1005 |
+
}), sep = " & "), collapse = " \\\\\n"), "\\\\\n")
|
1006 |
+
|
1007 |
+
# Produce tabular output.
|
1008 |
+
sink("output/weighted_main_results_tab.tex")
|
1009 |
+
cat("\\begin{table}\n",
|
1010 |
+
"\\caption{Estimated Treatment Effects on Support for TPNW (Weighted)}\n",
|
1011 |
+
"\\begin{adjustbox}{width = \\textwidth, center}\n",
|
1012 |
+
"\\sisetup{\n",
|
1013 |
+
"\tdetect-all,\n",
|
1014 |
+
"\ttable-number-alignment = center,\n",
|
1015 |
+
"\ttable-figures-integer = 1,\n",
|
1016 |
+
"\ttable-figures-decimal = 3,\n",
|
1017 |
+
"\ttable-space-text-post = *,\n",
|
1018 |
+
"\tinput-symbols = {()}\n",
|
1019 |
+
"}\n",
|
1020 |
+
paste0("\\begin{tabular}{@{\\extracolsep{5pt}}L{3.5cm}*{4}",
|
1021 |
+
"{S[table-number-alignment = right, table-column-width=1.25cm]}}\n"),
|
1022 |
+
"\\toprule\n",
|
1023 |
+
"& \\multicolumn{4}{c}{Model}\\\\\\cmidrule{2-5}\n",
|
1024 |
+
"& \\multicolumn{2}{c}{{(1)}} & \\multicolumn{2}{c}{{(2)}} \\\\\\midrule\n",
|
1025 |
+
w_tab,
|
1026 |
+
"\\bottomrule\n",
|
1027 |
+
"\\end{tabular}\n",
|
1028 |
+
"\\end{adjustbox}\n",
|
1029 |
+
"\\end{table}\n")
|
1030 |
+
sink()
|
1031 |
+
|
1032 |
+
### Save image containing all objects.
|
1033 |
+
save.image(file = "output/hbg_replication_out.RData")
|
1/replication_package/scripts/hbg_cleaning.R
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Initialize workspace.
|
2 |
+
rm(list = ls(all = TRUE))
|
3 |
+
setwd("~/Downloads/hbg_replication")
|
4 |
+
|
5 |
+
# Load required packages
|
6 |
+
library(plyr)
|
7 |
+
library(car)
|
8 |
+
library(anesrake)
|
9 |
+
|
10 |
+
# Load relevant functions.
|
11 |
+
source("scripts/helper_functions.R")
|
12 |
+
|
13 |
+
## Load data.
|
14 |
+
# Load TPNW experimental data.
|
15 |
+
tpnw <- read.csv("data/tpnw_raw.csv", stringsAsFactors = FALSE, row.names = 1)
|
16 |
+
|
17 |
+
# Load original income question data.
|
18 |
+
orig_inc <- read.csv("data/tpnw_orig_income.csv", stringsAsFactors = FALSE,
|
19 |
+
row.names = 1)
|
20 |
+
|
21 |
+
# Load YouGov data (including covariates and awareness question).
|
22 |
+
aware <- read.csv("data/tpnw_aware_raw.csv", stringsAsFactors = FALSE,
|
23 |
+
row.names = 1)
|
24 |
+
|
25 |
+
### Clean TPNW data.
|
26 |
+
## Clean data.
|
27 |
+
# Remove first two (extraneous) rows.
|
28 |
+
tpnw <- tpnw[-c(1, 2),]
|
29 |
+
orig_inc <- orig_inc[-c(1, 2),]
|
30 |
+
|
31 |
+
# Remove respondents who did not consent.
|
32 |
+
tpnw <- tpnw[tpnw$consent == "1",]
|
33 |
+
orig_inc <- orig_inc[orig_inc$consent == "1",]
|
34 |
+
|
35 |
+
# Coalesce income variables.
|
36 |
+
orig_inc <- within(orig_inc, {
|
37 |
+
income <- as.numeric(income)
|
38 |
+
income <- ifelse(income < 1000, NA, income)
|
39 |
+
income <- ifelse(income < 15000, 1, income)
|
40 |
+
income <- ifelse(income >= 15000 & income < 25000, 2, income)
|
41 |
+
income <- ifelse(income >= 25000 & income < 50000, 3, income)
|
42 |
+
income <- ifelse(income >= 50000 & income < 75000, 4, income)
|
43 |
+
income <- ifelse(income >= 75000 & income < 100000, 5, income)
|
44 |
+
income <- ifelse(income >= 100000 & income < 150000, 6, income)
|
45 |
+
income <- ifelse(income >= 150000 & income < 200000, 7, income)
|
46 |
+
income <- ifelse(income >= 200000 & income < 250000, 8, income)
|
47 |
+
income <- ifelse(income >= 250000 & income < 500000, 9, income)
|
48 |
+
income <- ifelse(income >= 500000 & income < 1000000, 10, income)
|
49 |
+
income <- ifelse(income >= 1000000, 11, income)
|
50 |
+
})
|
51 |
+
orig_inc <- data.frame(pid = orig_inc$pid, income_old = orig_inc$income)
|
52 |
+
tpnw <- plyr::join(tpnw, orig_inc, by = "pid", type = "left")
|
53 |
+
tpnw <- within(tpnw, {
|
54 |
+
income <- coalesce(as.numeric(income), as.numeric(income_old))
|
55 |
+
})
|
56 |
+
|
57 |
+
# Note meta variables.
|
58 |
+
meta <- c("consent", "confirmation_code", "new_income_q")
|
59 |
+
|
60 |
+
# Note Qualtrics variables.
|
61 |
+
qualtrics_vars <- c("StartDate", "EndDate", "Status", "Progress",
|
62 |
+
"Duration..in.seconds.", "Finished", "RecordedDate",
|
63 |
+
"DistributionChannel", "UserLanguage")
|
64 |
+
|
65 |
+
# Note Dynata variables.
|
66 |
+
dynata_vars <- c("pid", "psid")
|
67 |
+
|
68 |
+
# Note non-numeric variables.
|
69 |
+
char_vars <- c(qualtrics_vars, dynata_vars,
|
70 |
+
c("ResponseId"), names(tpnw)[grep("text", tolower(names(tpnw)))])
|
71 |
+
char_cols <- which(names(tpnw) %in% char_vars)
|
72 |
+
|
73 |
+
# Numericize other variables
|
74 |
+
tpnw <- data.frame(apply(tpnw[, -char_cols], 2, as.numeric), tpnw[char_cols])
|
75 |
+
|
76 |
+
tpnw_atts <- which(names(tpnw) %in% c("danger", "peace", "safe", "use_unaccept",
|
77 |
+
"always_cheat", "cannot_elim", "slow_reduc"))
|
78 |
+
names(tpnw)[tpnw_atts] <- paste("tpnw_atts", names(tpnw)[tpnw_atts], sep = "_")
|
79 |
+
|
80 |
+
# Coalesce relevant variables.
|
81 |
+
tpnw <- within(tpnw, {
|
82 |
+
# Clean gender variable.
|
83 |
+
female <- ifelse(gender == 95, NA, gender)
|
84 |
+
|
85 |
+
# Transform birthyr variable to age.
|
86 |
+
age <- 2019 - birthyr
|
87 |
+
|
88 |
+
# Transform income variable.
|
89 |
+
income <- car::recode(income, "95 = NA")
|
90 |
+
|
91 |
+
# Combine pid and pid_forc variables.
|
92 |
+
pid3 <- ifelse(pid3 == 0, pid_forc, pid3)
|
93 |
+
|
94 |
+
# Recode ideology variable.
|
95 |
+
ideo <- car::recode(ideo, "3 = NA")
|
96 |
+
|
97 |
+
# Recode education variable.
|
98 |
+
educ <- car::recode(educ, "95 = NA")
|
99 |
+
|
100 |
+
# Recode state variable.
|
101 |
+
state <- recode(state, "1 = 'Alabama';
|
102 |
+
2 = 'Alaska';
|
103 |
+
4 = 'Arizona';
|
104 |
+
5 = 'Arkansas';
|
105 |
+
6 = 'California';
|
106 |
+
8 = 'Colorado';
|
107 |
+
9 = 'Connecticut';
|
108 |
+
10 = 'Delaware';
|
109 |
+
11 = 'Washington DC';
|
110 |
+
12 = 'Florida';
|
111 |
+
13 = 'Georgia';
|
112 |
+
15 = 'Hawaii';
|
113 |
+
16 = 'Idaho';
|
114 |
+
17 = 'Illinois';
|
115 |
+
18 = 'Indiana';
|
116 |
+
19 = 'Iowa';
|
117 |
+
20 = 'Kansas';
|
118 |
+
21 = 'Kentucky';
|
119 |
+
22 = 'Louisiana';
|
120 |
+
23 = 'Maine';
|
121 |
+
24 = 'Maryland';
|
122 |
+
25 = 'Massachusetts';
|
123 |
+
26 = 'Michigan';
|
124 |
+
27 = 'Minnesota';
|
125 |
+
28 = 'Mississippi';
|
126 |
+
29 = 'Missouri';
|
127 |
+
30 = 'Montana';
|
128 |
+
31 = 'Nebraska';
|
129 |
+
32 = 'Nevada';
|
130 |
+
33 = 'New Hampshire';
|
131 |
+
34 = 'New Jersey';
|
132 |
+
35 = 'New Mexico';
|
133 |
+
36 = 'New York';
|
134 |
+
37 = 'North Carolina';
|
135 |
+
38 = 'North Dakota';
|
136 |
+
39 = 'Ohio';
|
137 |
+
40 = 'Oklahoma';
|
138 |
+
41 = 'Oregon';
|
139 |
+
42 = 'Pennsylvania';
|
140 |
+
44 = 'Rhode Island';
|
141 |
+
45 = 'South Carolina';
|
142 |
+
46 = 'South Dakota';
|
143 |
+
47 = 'Tennessee';
|
144 |
+
48 = 'Texas';
|
145 |
+
49 = 'Utah';
|
146 |
+
50 = 'Vermont';
|
147 |
+
51 = 'Virginia';
|
148 |
+
53 = 'Washington';
|
149 |
+
54 = 'West Virginia';
|
150 |
+
55 = 'Wisconsin';
|
151 |
+
56 = 'Wyoming'")
|
152 |
+
|
153 |
+
# Create regional indicators.
|
154 |
+
northeast <- state %in% c("Connecticut", "Maine", "Massachusetts",
|
155 |
+
"New Hampshire", "Rhode Island", "Vermont",
|
156 |
+
"New Jersey", "New York", "Pennsylvania")
|
157 |
+
midwest <- state %in% c("Illinois", "Indiana", "Michigan", "Ohio",
|
158 |
+
"Wisconsin", "Iowa", "Kansas", "Minnesota",
|
159 |
+
"Missouri", "Nebraska", "North Dakota",
|
160 |
+
"South Dakota")
|
161 |
+
south <- state %in% c("Delaware", "Florida", "Georgia", "Maryland",
|
162 |
+
"North Carolina", "South Carolina", "Virginia",
|
163 |
+
"Washington DC", "West Virginia", "Alabama",
|
164 |
+
"Kentucky", "Mississippi", "Tennessee", "Arkansas",
|
165 |
+
"Louisiana", "Oklahoma", "Texas")
|
166 |
+
west <- state %in% c("Arizona", "Colorado", "Idaho", "Montana", "Nevada",
|
167 |
+
"New Mexico", "Utah", "Wyoming", "Alaska",
|
168 |
+
"California", "Hawaii", "Oregon", "Washington")
|
169 |
+
|
170 |
+
# Recode join_tpnw outcome.
|
171 |
+
join_tpnw <- car::recode(join_tpnw, "2 = 0")
|
172 |
+
|
173 |
+
# Create indicator variables for each treatment arm.
|
174 |
+
control <- treatment == 0
|
175 |
+
group_cue <- treatment == 1
|
176 |
+
security_cue <- treatment == 2
|
177 |
+
norms_cue <- treatment == 3
|
178 |
+
institutions_cue <- treatment == 4
|
179 |
+
|
180 |
+
# Recode attitudinal outcomes.
|
181 |
+
tpnw_atts_danger <- recode(tpnw_atts_danger, "-2 = 2; -1 = 1; 1 = -1; 2 = -2")
|
182 |
+
tpnw_atts_use_unaccept <- recode(tpnw_atts_use_unaccept, "-2 = 2; -1 = 1;
|
183 |
+
1 = -1; 2 = -2")
|
184 |
+
tpnw_atts_always_cheat <- recode(tpnw_atts_always_cheat, "-2 = 2; -1 = 1;
|
185 |
+
1 = -1; 2 = -2")
|
186 |
+
tpnw_atts_cannot_elim <- recode(tpnw_atts_cannot_elim, "-2 = 2; -1 = 1;
|
187 |
+
1 = -1; 2 = -2")
|
188 |
+
})
|
189 |
+
|
190 |
+
# Use mean imputation for missingness.
|
191 |
+
# Redefine char_cols object.
|
192 |
+
char_cols <- which(names(tpnw) %in% c(char_vars, meta, "state", "pid_forc",
|
193 |
+
"income_old", "gender"))
|
194 |
+
|
195 |
+
# Define out_vars object.
|
196 |
+
out_vars <- which(names(tpnw) %in% c("join_tpnw", "n_nukes", "n_tests") |
|
197 |
+
startsWith(names(tpnw), "tpnw_atts") |
|
198 |
+
startsWith(names(tpnw), "physical_eff") |
|
199 |
+
startsWith(names(tpnw), "testing_matrix"))
|
200 |
+
|
201 |
+
# Mean impute.
|
202 |
+
tpnw[,-c(char_cols, out_vars)] <-
|
203 |
+
data.frame(apply(tpnw[, -c(char_cols, out_vars)], 2, function (x) {
|
204 |
+
replace(x, is.na(x), mean(x, na.rm = TRUE))
|
205 |
+
}))
|
206 |
+
|
207 |
+
### Clean YouGov data.
|
208 |
+
## Indicate all non-numeric variables.
|
209 |
+
# Indicate YouGov metadata variables (e.g., start/end time, respondent ID) that
|
210 |
+
# may contain characters.
|
211 |
+
yougov_vars <- c("starttime", "endtime")
|
212 |
+
|
213 |
+
# Numericize all numeric variables
|
214 |
+
aware <- data.frame(apply(aware[, -which(names(aware) %in% yougov_vars)], 2,
|
215 |
+
as.numeric), aware[which(names(aware) %in% yougov_vars)])
|
216 |
+
|
217 |
+
# Coalesce relevant variables.
|
218 |
+
aware <- within(aware, {
|
219 |
+
# Clean gender variable to an indicator of female gender (renamed below).
|
220 |
+
gender <- recode(gender, "8 = NA") - 1
|
221 |
+
|
222 |
+
# Transform birthyr variable to age (renamed below).
|
223 |
+
birthyr <- 2020 - birthyr
|
224 |
+
|
225 |
+
# Recode pid3 variable.
|
226 |
+
pid3 <- recode(pid3, "1 = -1; 2 = 1; 3 = 0; c(5, 8, 9) = NA")
|
227 |
+
|
228 |
+
# Recode pid7
|
229 |
+
pid7 <- recode(pid7, "1 = -3; 2 = -2; 3 = -1; 4 = 0; 5 = 1; 6 = 2; 7 = 3;
|
230 |
+
c(8, 98) = NA")
|
231 |
+
|
232 |
+
# Code pid variable from pid7.
|
233 |
+
party <- recode(pid7, "c(-3, -2, -1) = -1; c(1, 2, 3) = 1")
|
234 |
+
|
235 |
+
# Recode ideology variable.
|
236 |
+
ideo5 <- recode(ideo5, "c(6, 8, 9) = NA") - 3
|
237 |
+
|
238 |
+
# Recode education variable.
|
239 |
+
educ <- recode(educ, "c(8, 9) = NA")
|
240 |
+
|
241 |
+
# Recode state variable.
|
242 |
+
state <- recode(inputstate, "1 = 'Alabama';
|
243 |
+
2 = 'Alaska';
|
244 |
+
4 = 'Arizona';
|
245 |
+
5 = 'Arkansas';
|
246 |
+
6 = 'California';
|
247 |
+
8 = 'Colorado';
|
248 |
+
9 = 'Connecticut';
|
249 |
+
10 = 'Delaware';
|
250 |
+
11 = 'Washington DC';
|
251 |
+
12 = 'Florida';
|
252 |
+
13 = 'Georgia';
|
253 |
+
15 = 'Hawaii';
|
254 |
+
16 = 'Idaho';
|
255 |
+
17 = 'Illinois';
|
256 |
+
18 = 'Indiana';
|
257 |
+
19 = 'Iowa';
|
258 |
+
20 = 'Kansas';
|
259 |
+
21 = 'Kentucky';
|
260 |
+
22 = 'Louisiana';
|
261 |
+
23 = 'Maine';
|
262 |
+
24 = 'Maryland';
|
263 |
+
25 = 'Massachusetts';
|
264 |
+
26 = 'Michigan';
|
265 |
+
27 = 'Minnesota';
|
266 |
+
28 = 'Mississippi';
|
267 |
+
29 = 'Missouri';
|
268 |
+
30 = 'Montana';
|
269 |
+
31 = 'Nebraska';
|
270 |
+
32 = 'Nevada';
|
271 |
+
33 = 'New Hampshire';
|
272 |
+
34 = 'New Jersey';
|
273 |
+
35 = 'New Mexico';
|
274 |
+
36 = 'New York';
|
275 |
+
37 = 'North Carolina';
|
276 |
+
38 = 'North Dakota';
|
277 |
+
39 = 'Ohio';
|
278 |
+
40 = 'Oklahoma';
|
279 |
+
41 = 'Oregon';
|
280 |
+
42 = 'Pennsylvania';
|
281 |
+
44 = 'Rhode Island';
|
282 |
+
45 = 'South Carolina';
|
283 |
+
46 = 'South Dakota';
|
284 |
+
47 = 'Tennessee';
|
285 |
+
48 = 'Texas';
|
286 |
+
49 = 'Utah';
|
287 |
+
50 = 'Vermont';
|
288 |
+
51 = 'Virginia';
|
289 |
+
53 = 'Washington';
|
290 |
+
54 = 'West Virginia';
|
291 |
+
55 = 'Wisconsin';
|
292 |
+
56 = 'Wyoming'")
|
293 |
+
|
294 |
+
# Define US Census geographic regions.
|
295 |
+
northeast <- inputstate %in% c(9, 23, 25, 33, 44, 50, 34, 36, 42)
|
296 |
+
midwest <- inputstate %in% c(18, 17, 26, 39, 55, 19, 20, 27, 29, 31, 38, 46)
|
297 |
+
south <- inputstate %in% c(10, 11, 12, 13, 24, 37, 45, 51,
|
298 |
+
54, 1, 21, 28, 47, 5, 22, 40, 48)
|
299 |
+
west <- inputstate %in% c(4, 8, 16, 35, 30, 49, 32, 56, 2, 6, 15, 41, 53)
|
300 |
+
|
301 |
+
# Recode employment.
|
302 |
+
employ <- recode(employ, "c(9, 98, 99) = NA")
|
303 |
+
|
304 |
+
# Recode outcome.
|
305 |
+
awareness <- recode(awareness, "8 = NA")
|
306 |
+
|
307 |
+
# Normalize weights.
|
308 |
+
weight <- weight / sum(weight)
|
309 |
+
})
|
310 |
+
|
311 |
+
# Rename demographic questions.
|
312 |
+
aware <- rename(aware, c("gender" = "female", "birthyr" = "age",
|
313 |
+
"faminc_new" = "income", "ideo5" = "ideo"))
|
314 |
+
|
315 |
+
## Impute missing values.
|
316 |
+
# Specify non-covariate numerical variables (other is exempted since over 10% of
|
317 |
+
# responses are missing; state is exempted since the variable is categorical).
|
318 |
+
non_covars <- names(aware)[names(aware) %in% c("caseid", "starttime", "endtime",
|
319 |
+
"awareness", "state", "weight")]
|
320 |
+
|
321 |
+
# Use mean imputation for missingness in covariates.
|
322 |
+
aware[, -which(names(aware) %in% non_covars)] <-
|
323 |
+
data.frame(apply(aware[, -which(names(aware) %in%
|
324 |
+
non_covars)], 2, function (x) {
|
325 |
+
replace(x, is.na(x), mean(x, na.rm = TRUE))
|
326 |
+
}))
|
327 |
+
|
328 |
+
### Produce weights for TPNW experimental data using anesrake.
|
329 |
+
## Create unique identifier variable for assigning weights.
|
330 |
+
tpnw$caseid <- 1:nrow(tpnw)
|
331 |
+
|
332 |
+
## Recode relevant covariates for reweighting: coarsen age; recode female; and
|
333 |
+
## recode geographic covariates.
|
334 |
+
# Coarsen age into a categorical variable for age groups.
|
335 |
+
tpnw$age_wtng <- cut(tpnw$age, c(0, 25, 35, 45, 55, 65, 99))
|
336 |
+
levels(tpnw$age_wtng) <- c("age1824", "age2534", "age3544",
|
337 |
+
"age4554", "age5564", "age6599")
|
338 |
+
|
339 |
+
# Recode female as a factor to account for NA values.
|
340 |
+
tpnw$female_wtng <- as.factor(tpnw$female)
|
341 |
+
levels(tpnw$female_wtng) <- c("male", "na", "female")
|
342 |
+
|
343 |
+
# Recode northeast as a factor.
|
344 |
+
tpnw$northeast_wtng <- as.factor(tpnw$northeast)
|
345 |
+
levels(tpnw$northeast_wtng) <- c("other", "northeast")
|
346 |
+
|
347 |
+
# Recode midwest as a factor.
|
348 |
+
tpnw$midwest_wtng <- as.factor(tpnw$midwest)
|
349 |
+
levels(tpnw$midwest_wtng) <- c("other", "midwest")
|
350 |
+
|
351 |
+
# Recode south as a factor.
|
352 |
+
tpnw$south_wtng <- as.factor(tpnw$south)
|
353 |
+
levels(tpnw$south_wtng) <- c("other", "south")
|
354 |
+
|
355 |
+
# Recode west as a factor.
|
356 |
+
tpnw$west_wtng <- as.factor(tpnw$west)
|
357 |
+
levels(tpnw$west_wtng) <- c("other", "west")
|
358 |
+
|
359 |
+
## Specify population targets for balancing (from US Census 2018 data).
|
360 |
+
# Specify gender proportion targets and assign names to comport with factors.
|
361 |
+
femaletarg <- c(.508, 0, .492)
|
362 |
+
names(femaletarg) <- c("female", "na", "male")
|
363 |
+
|
364 |
+
# Specify age-group proportion targets and assign names to comport with factors.
|
365 |
+
agetarg <- c(29363, 44854, 40659, 41537, 41700, 51080)/249193
|
366 |
+
names(agetarg) <- c("age1824", "age2534", "age3544",
|
367 |
+
"age4554", "age5564", "age6599")
|
368 |
+
|
369 |
+
# Specify northeast proportion targets and assign names to comport with factors.
|
370 |
+
northeasttarg <- c(1 - .173, .173)
|
371 |
+
names(northeasttarg) <- c("other", "northeast")
|
372 |
+
|
373 |
+
# Specify midwest proportion targets and assign names to comport with factors.
|
374 |
+
midwesttarg <- c(1 - .209, .209)
|
375 |
+
names(midwesttarg) <- c("other", "midwest")
|
376 |
+
|
377 |
+
# Specify south proportion targets and assign names to comport with factors.
|
378 |
+
southtarg <- c(1 - .380, .380)
|
379 |
+
names(southtarg) <- c("other", "south")
|
380 |
+
|
381 |
+
# Specify west proportion targets and assign names to comport with factors.
|
382 |
+
westtarg <- c(1 - .238, .238)
|
383 |
+
names(westtarg) <- c("other", "west")
|
384 |
+
|
385 |
+
# Create a list of all targets, with names to comport with relevant variables.
|
386 |
+
targets <- list(femaletarg, agetarg, northeasttarg,
|
387 |
+
midwesttarg, southtarg, westtarg)
|
388 |
+
names(targets) <- c("female_wtng", "age_wtng", "northeast_wtng",
|
389 |
+
"midwest_wtng", "south_wtng", "west_wtng")
|
390 |
+
|
391 |
+
# Produce anesrake weights.
|
392 |
+
anesrake_out <- anesrake(targets, tpnw, caseid = tpnw$caseid,
|
393 |
+
verbose = TRUE)
|
394 |
+
|
395 |
+
# Append anesrake weights to TPNW experimental data.
|
396 |
+
tpnw$anesrake_weight <- anesrake_out$weightvec
|
397 |
+
|
398 |
+
# Remove variables used for weighting.
|
399 |
+
tpnw <- tpnw[-grep("wtng$", names(tpnw))]
|
400 |
+
|
401 |
+
## Write data.
|
402 |
+
# Write full experimental dataset.
|
403 |
+
write.csv(tpnw, "data/tpnw_data.csv")
|
404 |
+
|
405 |
+
# write full YouGov dataset.
|
406 |
+
write.csv(aware, "data/tpnw_aware.csv")
|
1/replication_package/scripts/hbg_group_cue.R
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Initialize workspace.
|
2 |
+
# Remove objects.
|
3 |
+
rm(list = ls(all = TRUE))
|
4 |
+
|
5 |
+
## Generate data.
|
6 |
+
# Create count object storing count data.
|
7 |
+
count <- as.matrix(c(1547, 54, 2346))
|
8 |
+
|
9 |
+
# Convert count object to an object storing percentages.
|
10 |
+
perc <- sapply(count, function (x) x/sum(count))
|
11 |
+
|
12 |
+
# Create a cumulative percentage object.
|
13 |
+
cum_perc <- cumsum(perc)
|
14 |
+
|
15 |
+
# Create separate objects for the plotting of each proportion.
|
16 |
+
power_x <- c(0, rep(.74, 2), 0)
|
17 |
+
both_x <- c(.74, rep(.96, 2), .74)
|
18 |
+
weap_x <- c(.96, rep(1, 2), .96)
|
19 |
+
|
20 |
+
# Create an object representing the y-axis plotting points for each polygon.
|
21 |
+
plot_y <- c(2.25, 2.25, 3, 3)
|
22 |
+
|
23 |
+
# Open new .pdf file.
|
24 |
+
setEPS()
|
25 |
+
postscript("fgc1.eps", width = 10, height = 3)
|
26 |
+
|
27 |
+
# Modify graphical parameters (margins).
|
28 |
+
par(mar = c(0, 6, 6, 1))
|
29 |
+
|
30 |
+
# Create an empty plot.
|
31 |
+
plot(1, type = "n", xlab = "", ylab = "", xlim = c(0, 1), ylim = c(1.5, 3), axes = FALSE)
|
32 |
+
|
33 |
+
# Create polygons representing each proportion.
|
34 |
+
polygon(power_x, plot_y, col = "#FF8F37", border = "white")
|
35 |
+
polygon(both_x, plot_y, col = "steelblue3", border = "white")
|
36 |
+
polygon(weap_x, plot_y, col = "gray", border = "white")
|
37 |
+
|
38 |
+
# Create an axis and tick and axis labels.
|
39 |
+
axis(side = 3, at = seq(0, 1, .1), labels = FALSE)
|
40 |
+
text(x = seq(0, 1, .2), y = par("usr")[4] + .2, labels = c("0%", "20%", "40%", "60%", "80%", "100%"), xpd = TRUE)
|
41 |
+
mtext(text = "Proportion of Responses", side = 3, line = 2.5, cex = 1.25, font = 2)
|
42 |
+
|
43 |
+
# Add text denoting the percentage number associated of each proportion.
|
44 |
+
text(x = .74/2, y = 2.2, pos = 1, cex = 2, labels = "74%", col = "#FF8F37", font = 2)
|
45 |
+
text(x = .85, y = 2.2, pos = 1, cex = 2, labels = "22%", col = "steelblue3", font = 2)
|
46 |
+
text(x = .98, y = 2.2, labels = "4%", pos = 1, cex = 2, col = "grey", font = 2, xpd = TRUE)
|
47 |
+
|
48 |
+
# Add a legend.
|
49 |
+
leg = legend(x = -.16,, y = 2.625, legend = c("Oppose", "Support", "Prefer not\nto answer"), xpd = TRUE,
|
50 |
+
pch = 16, col = c("#FF8F37", "steelblue3", "grey"), box.lty = 0, cex = .9, y.intersp = 1.5, yjust = .5)
|
51 |
+
|
52 |
+
# Close the device.
|
53 |
+
dev.off()
|
1/replication_package/scripts/helper_functions.R
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define coalesce function for recoding of post-election thermometers.
|
2 |
+
coalesce <- function (...) {
|
3 |
+
Reduce(function(x, y) {
|
4 |
+
i <- which(is.na(x))
|
5 |
+
x[i] <- y[i]
|
6 |
+
x},
|
7 |
+
list(...))
|
8 |
+
}
|
9 |
+
|
10 |
+
# Define capwords() function from the toupper() documentation.
|
11 |
+
capwords <- function(s, strict = FALSE) {
|
12 |
+
cap <- function(s) paste(toupper(substring(s, 1, 1)),
|
13 |
+
{s <- substring(s, 2); if(strict) tolower(s) else s},
|
14 |
+
sep = "", collapse = " " )
|
15 |
+
sapply(strsplit(s, split = " "), cap, USE.NAMES = !is.null(names(s)))
|
16 |
+
}
|
1/replication_package/scripts/run_hbg_replication.R
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Initialize workspace.
|
2 |
+
# Clear workspace.
|
3 |
+
rm(list = ls(all = TRUE))
|
4 |
+
|
5 |
+
# Set working directory to abp_replication directory.
|
6 |
+
setwd("~/Downloads/hbg_replication")
|
7 |
+
|
8 |
+
## Prepare output directory and main output files.
|
9 |
+
# If an output directory does not exist, create the directory.
|
10 |
+
if (!file.exists("output")) {
|
11 |
+
dir.create("output")
|
12 |
+
}
|
13 |
+
|
14 |
+
# Create a log file for console output.
|
15 |
+
hbg_log <- file("output/hbg_log.txt", open = "wt")
|
16 |
+
|
17 |
+
# Echo and sink console log to psv_log file.
|
18 |
+
sink(hbg_log, append = TRUE)
|
19 |
+
sink(hbg_log, append = TRUE, type = "message")
|
20 |
+
|
21 |
+
## Replicate files and produce main output.
|
22 |
+
# Run abp_replication_code.R script, storing run-time statistics.
|
23 |
+
run_time <- system.time({source("scripts/hbg_cleaning.R", echo = TRUE,
|
24 |
+
max.deparse.length = 10000)
|
25 |
+
source("scripts/hbg_analysis.R", echo = TRUE,
|
26 |
+
max.deparse.length = 10000)})
|
27 |
+
|
28 |
+
# Close main output sink.
|
29 |
+
sink()
|
30 |
+
sink(type = "message")
|
31 |
+
|
32 |
+
## Sink run-time statistics to a run_time output file.
|
33 |
+
run_time_file <- file("output/run_time", open = "wt")
|
34 |
+
sink(run_time_file, append = TRUE)
|
35 |
+
print(run_time)
|
36 |
+
sink()
|
80/replication_package/replication_code.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
80/replication_package/usa1.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4989666171cd42ab74a4e1a9a5de80f1428a7f02771718466d36582e43721701
|
3 |
+
size 786373887
|