anonymous-submission-acl2025 commited on
Commit
1bb4cbf
·
1 Parent(s): aa8ed31
36/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae326c505eaed43328dd88b15847f631880b1e6ffcd1fe45226d5e3400d5d563
3
+ size 923599
36/replication_package/README.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:778ec95c61e38a20b546da5eb725cb4d9e3607e0f9199eeae3a5e7358c5e12fb
3
+ size 6762
36/replication_package/categorized_studies.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfd1e876427672061ffd0b763bd74a42a513343fb343dc872e6448e1ec518db1
3
+ size 150770
36/replication_package/cces_code.Rmd ADDED
The diff for this file is too large to render. See raw diff
 
36/replication_package/cces_code.html ADDED
The diff for this file is too large to render. See raw diff
 
36/replication_package/cces_matched_data.rds ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e457a36519c2a2141b98e23a66e89dd697c2623d29c4b7bfe6a3673fab0017a
3
+ size 19492
36/replication_package/cces_unmatched_data.rds ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:527c134f2f9f40b52f4f3677a3f8edb3c552fe5583cb9d44739583c9ba7f9a8f
3
+ size 28969
36/replication_package/codebook.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fa15149248ecf8c6d985b8f953f3d274f12f43164942ef45f4f35c921e23743
3
+ size 316909
36/replication_package/lucid_code.Rmd ADDED
The diff for this file is too large to render. See raw diff
 
36/replication_package/lucid_code.html ADDED
The diff for this file is too large to render. See raw diff
 
36/replication_package/lucid_data.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e908953ac6a81862b2170a41d0fdf442d9f52f547526787f6cf4f82842d7c992
3
+ size 734289
36/replication_package/post.R ADDED
@@ -0,0 +1,493 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ####### post #######
2
+
3
+ setGeneric("post",
4
+ function(model,x1name=NULL,x1vals=NULL,x2name=NULL,x2vals=NULL,holds=NULL,
5
+ n.sims=1000,cut=NULL,quantiles=c(.025,.975),did=NULL,weights=NULL, digits=2){
6
+ standardGeneric("post")
7
+ }
8
+ )
9
+
10
+ setClassUnion("arrayORNULL", c("array","NULL"))
11
+ setClassUnion("listORcharacter", c("list","character"))
12
+
13
+ setClass("post",
14
+ slots = c(est = "array",
15
+ did = "arrayORNULL",
16
+ sims = "array",
17
+ model = "character",
18
+ link = "listORcharacter",
19
+ quantiles = "numeric",
20
+ call = "call")
21
+ )
22
+
23
+
24
+ post.glm <- function(model,x1name=NULL,x1vals=NULL,x2name=NULL,x2vals=NULL,holds=NULL,
25
+ n.sims=1000,cut=NULL,quantiles=c(.025,.975),did=NULL,weights=NULL, digits=2){
26
+
27
+ call <- match.call()
28
+
29
+ sims <- postSim(model, n.sims=n.sims)
30
+
31
+ if (family(model)[2]=="identity"){link <- identity}
32
+ else if (family(model)[2]=="probit"){link <- pnorm}
33
+ else if (family(model)[2]=="logit"){link <- plogis}
34
+ else if (family(model)[2]=="log"){link <- exp}
35
+ else if (family(model)[2]=="cloglog"){link <- function(x){1-exp(-exp(x))}}
36
+ else {stop("Link function is not supported")}
37
+
38
+ if (is.null(weights)){wi <- c(rep(1, length(model$model[,1])))} else{wi <- weights}
39
+ n.obs <- length(model.matrix(model)[,1])
40
+ k <- length(model.matrix(model)[1,])
41
+ n.q <- length(quantiles)
42
+
43
+ if (is.null(x1name)){
44
+ X <- array(NA, c(n.obs,k))
45
+ newdata <- data.frame(model$model)
46
+ if (!is.null(holds)){
47
+ for (i in 1:length(holds)){
48
+ newdata[ ,names(holds)[i]] <- as.numeric(holds[i])
49
+ }
50
+ }
51
+ X <- aperm(model.matrix(lm(formula(model), data=newdata)))
52
+ l1 <- array(NA, c(nrow(sims@coef),1))
53
+ l1[,1] <- apply(link(sims@coef %*% X), 1, function(x) weighted.mean(x, wi))
54
+ l2 <- array(NA, c(1,n.q+1))
55
+ l2[1,1] <- mean(l1)
56
+ l2[1,2:(n.q+1)] <- quantile(l1, probs=quantiles)
57
+ colnames(l2) <- c("mean",quantiles)
58
+
59
+ ans <- new("post",
60
+ est=round(l2, digits=digits),
61
+ did=NULL,
62
+ sims=l1,
63
+ model=class(model),
64
+ link=family(model)[2],
65
+ quantiles=quantiles,
66
+ call=call)
67
+ return(ans)
68
+ }
69
+
70
+ else if (is.null(x2name)){
71
+
72
+ n.x1 <- length(x1vals)
73
+ X <- array(NA, c(n.obs,k,n.x1))
74
+
75
+ for (i in 1:(n.x1)){
76
+ newdata <- data.frame(model$model)
77
+ if (!is.null(holds)){
78
+ for (j in 1:length(holds)){
79
+ newdata[ ,names(holds)[j]] <- as.numeric(holds[j])
80
+ }
81
+ }
82
+ newdata[ ,x1name] <- x1vals[i]
83
+ X[ , ,i] <- model.matrix(lm(formula(model), data=newdata))
84
+ }
85
+
86
+ X <- aperm(X, c(2,1,3))
87
+ l1 <- apply(apply(X, c(2,3), function(x) link(sims@coef %*% x)), c(1,3), function(x) weighted.mean(x, wi))
88
+ l2 <- array(NA, c(n.x1+1,n.q+1))
89
+ l2[1:n.x1,1] <- apply(l1, 2, mean)
90
+ l2[1:n.x1,2:(n.q+1)] <- aperm(apply(l1, 2, function(x) quantile(x, probs=quantiles)))
91
+
92
+ l2[nrow(l2),1] <- mean(l1[ ,n.x1] - l1[ ,1])
93
+ l2[nrow(l2),2:(n.q+1)] <- quantile(l1[ ,n.x1] - l1[ ,1], probs=quantiles)
94
+ rownames(l2) <- c(paste(c(rep(paste(x1name,"="),n.x1),
95
+ paste("\u0394","(",x1vals[1],",",x1vals[length(x1vals)],")")),
96
+ c(x1vals,"")))
97
+ colnames(l2) <- c("mean",quantiles)
98
+
99
+ ans <- new("post",
100
+ est=round(l2, digits=digits),
101
+ did=NULL,
102
+ sims=l1,
103
+ model=class(model),
104
+ link=family(model)[2],
105
+ quantiles=quantiles,
106
+ call=call)
107
+ return(ans)
108
+ }
109
+
110
+ else{
111
+
112
+ n.x1 <- length(x1vals)
113
+ n.x2 <- length(x2vals)
114
+ X <- array(NA, c(n.obs,k,n.x1,n.x2))
115
+
116
+ for (j in 1:n.x2){
117
+ for (i in 1:n.x1){
118
+ newdata <- data.frame(model$model)
119
+ if (!is.null(holds)){
120
+ for (k in 1:length(holds)){
121
+ newdata[ ,names(holds)[k]] <- as.numeric(holds[k])
122
+ }
123
+ }
124
+ newdata[ ,x1name] <- x1vals[i]
125
+ newdata[ ,x2name] <- x2vals[j]
126
+ X[ , ,i,j] <- model.matrix(lm(formula(model), data=newdata))
127
+ }
128
+ }
129
+
130
+ X <- aperm(X, c(2,1,3,4))
131
+ l1 <- apply(apply(X, c(2,3,4), function(x) link(sims@coef %*% x)), c(1,3,4), function(x) weighted.mean(x, wi))
132
+ l2 <- array(NA, c(n.x1+1,n.q+1,n.x2))
133
+ l2[1:n.x1,1,1:n.x2] <- apply(l1,c(2,3),mean)
134
+ l2[1:n.x1,2:(n.q+1),1:n.x2] <- aperm(apply(l1, c(2,3), function(x) quantile(x, probs=quantiles)), c(2,1,3))
135
+ l2[nrow(l2),1,1:n.x2] <- apply(l1[ ,n.x1,1:n.x2] - l1[ ,1,1:n.x2], 2, mean)
136
+ l2[nrow(l2),2:(n.q+1),1:n.x2] <- apply(l1[ ,n.x1,1:n.x2] - l1[ ,1,1:n.x2], 2, function(x) quantile(x, probs=quantiles))
137
+ dimnames(l2) <- list(paste(c(rep(paste(x1name,"="),n.x1),paste("\u0394","(",x1vals[1],",",x1vals[length(x1vals)],")")),c(x1vals,"")),
138
+ c("mean",quantiles),
139
+ paste(c(rep(paste(x2name,"="),n.x2)),
140
+ c(x2vals)))
141
+
142
+ if (is.null(did)){did <- c(x2vals[1],x2vals[n.x2])} else{did <- did}
143
+ l3 <- array(NA, c(1,n.q+1))
144
+ l3[1,1] <- mean((l1[ ,n.x1,match(did[2],x2vals)] - l1[ ,1,match(did[2],x2vals)]) - (l1[ ,n.x1,match(did[1],x2vals)] - l1[ ,1,match(did[1],x2vals)]))
145
+ l3[1,2:(n.q+1)] <- quantile((l1[ ,n.x1,match(did[2],x2vals)] - l1[ ,1,match(did[2],x2vals)]) - (l1[ ,n.x1,match(did[1],x2vals)] - l1[ ,1,match(did[1],x2vals)]), probs=quantiles)
146
+ dimnames(l3) <- list("did",c("mean",quantiles))
147
+
148
+ ans <- new("post",
149
+ est=round(l2, digits=digits),
150
+ did=round(l3, digits=digits),
151
+ sims=l1,
152
+ model=class(model),
153
+ link=family(model)[2],
154
+ quantiles=quantiles,
155
+ call=call)
156
+ return(ans)
157
+ }
158
+ }
159
+
160
+
161
+ post.polr <- function(model,x1name=NULL,x1vals=NULL,x2name=NULL,x2vals=NULL,holds=NULL,
162
+ n.sims=1000,cut=NULL,quantiles=c(.025,.975),did=NULL,weights=NULL, digits=2){
163
+
164
+ call <- match.call()
165
+
166
+ sims <- suppressMessages(postSim(model, n.sims=n.sims))
167
+
168
+ if (is.null(weights)){wi <- c(rep(1, length(model$model[,1])))} else{wi <- weights}
169
+
170
+ if (model$method=="probit"){link <- pnorm}
171
+ else if (model$method=="logistic"){link <- plogis}
172
+ else if (model$method=="cloglog"){link <- function(x){1-exp(-exp(x))}}
173
+ else {stop("Link function is not supported")}
174
+
175
+ n.obs <- length(model$model[,1])
176
+ k <- length(model.matrix(polr(getCall(model)$formula, model$model))[1,])
177
+ n.q <- length(quantiles)
178
+ n.y <- length(levels(model$model[,1]))
179
+ n.z <- length(model$zeta)
180
+ tau <- array(NA, c(n.sims,n.z+2))
181
+ tau[,1] <- -Inf
182
+ tau[,2:(ncol(tau)-1)] <- sims@zeta[,1:n.z]
183
+ tau[,ncol(tau)] <- Inf
184
+ beta <- sims@coef
185
+
186
+ if (is.null(cut)){
187
+
188
+ if (is.null(x1name)){
189
+
190
+ X_temp <- array(NA, c(n.obs,k))
191
+ X <- array(NA, c(n.obs,k-1))
192
+
193
+ newdata <- data.frame(model$model)
194
+ if (!is.null(holds)){
195
+ for (j in 1:length(holds)){
196
+ newdata[ ,names(holds)[j]] <- as.numeric(holds[j])
197
+ }
198
+ }
199
+ X_temp[ , ] <- suppressWarnings(model.matrix(polr(getCall(model)$formula, data=newdata)))
200
+ X[ , ] <- X_temp[,-1]
201
+ X <- aperm(X)
202
+
203
+ l1 <- array(NA, c(n.sims, n.obs, n.y))
204
+ for (z in 1:n.y){
205
+ l1[,,z] <- link(tau[,z+1] - beta %*% X) - link(tau[,z] - beta %*% X)
206
+ }
207
+
208
+ l2 <- apply(l1, c(1,3), function(x) weighted.mean(x, wi))
209
+ l3 <- array(NA, c(n.y,n.q+1))
210
+ for (i in 1:n.y){
211
+ l3[i,1] <- mean(l2[,i])
212
+ l3[i,2:(n.q+1)] <- quantile(l2[,i], probs=quantiles)
213
+ }
214
+ rownames(l3) <- paste(c(rep("Y =",n.y)), c(1:n.y))
215
+ colnames(l3) <- c("mean",quantiles)
216
+
217
+ ans <- new("post",
218
+ est=round(l3, digits=digits),
219
+ did=NULL,
220
+ sims=l2,
221
+ model=class(model),
222
+ link=model$method,
223
+ quantiles=quantiles,
224
+ call=call)
225
+ return(ans)
226
+ }
227
+
228
+ else if (is.null(x2name)){
229
+
230
+ n.x1 <- length(x1vals)
231
+
232
+ X_temp <- array(NA, c(n.obs,k,n.x1))
233
+ X <- array(NA, c(n.obs,k-1,n.x1))
234
+
235
+ for (i in 1:(n.x1)){
236
+ newdata <- data.frame(model$model)
237
+ if (!is.null(holds)){
238
+ for (j in 1:length(holds)){
239
+ newdata[ ,names(holds)[j]] <- as.numeric(holds[j])
240
+ }
241
+ }
242
+ newdata[ ,x1name] <- x1vals[i]
243
+ X_temp[ , ,i] <- suppressWarnings(model.matrix(polr(getCall(model)$formula, data=newdata)))
244
+ X[ , ,i] <- X_temp[,-1,i]
245
+ }
246
+
247
+ l1 <- array(NA, c(n.sims, n.obs, n.x1, n.y))
248
+ X <- aperm(X, c(2,1,3))
249
+ for (z in 1:n.y){
250
+ l1[,,,z] <- apply(X, c(2,3), function(x) (link(tau[,z+1] - beta %*% x) - link(tau[,z] - beta %*% x)))
251
+ }
252
+
253
+ l2 <- apply(l1, c(1,3,4), function(x) weighted.mean(x, wi))
254
+ l3 <- array(NA, c(n.x1+1, n.q+1, n.y))
255
+ for (j in 1:n.y){
256
+ for (i in 1:n.x1){
257
+ l3[i,1,j] <- mean(l2[,i,j])
258
+ l3[i,2:(n.q+1),j] <- quantile(l2[,i,j], probs=quantiles)
259
+ }
260
+ l3[nrow(l3),1,j] <- mean(l2[ ,n.x1,j] - l2[ ,1,j])
261
+ l3[nrow(l3),2:(n.q+1),j] <- quantile(l2[ ,n.x1,j] - l2[ ,1,j], probs=quantiles)
262
+ }
263
+ dimnames(l3) <- list(paste(c(rep(paste(x1name,"="),n.x1),paste("\u0394","(",x1vals[1],",",x1vals[length(x1vals)],")")),c(x1vals,"")),
264
+ c("mean",quantiles),
265
+ paste(c(rep("Y =",length(levels(model$model[,1])))),
266
+ c(1:length(levels(model$model[,1])))))
267
+
268
+ ans <- new("post",
269
+ est=round(l3, digits=digits),
270
+ did=NULL,
271
+ sims=l2,
272
+ model=class(model),
273
+ link=model$method,
274
+ quantiles=quantiles,
275
+ call=call)
276
+ return(ans)
277
+ }
278
+
279
+ else{
280
+
281
+ n.x1 <- length(x1vals)
282
+ n.x2 <- length(x2vals)
283
+
284
+ X_temp <- array(NA, c(n.obs,k,n.x1,n.x2))
285
+ X <- array(NA, c(n.obs,k-1,n.x1,n.x2))
286
+
287
+ for (j in 1:n.x2){
288
+ for (i in 1:(n.x1)){
289
+ newdata <- data.frame(model$model)
290
+ if (!is.null(holds)){
291
+ for (k in 1:length(holds)){
292
+ newdata[ ,names(holds)[k]] <- as.numeric(holds[k])
293
+ }
294
+ }
295
+ newdata[ ,x1name] <- x1vals[i]
296
+ newdata[ ,x2name] <- x2vals[j]
297
+ X_temp[ , ,i,j] <- suppressWarnings(model.matrix(polr(getCall(model)$formula, data=newdata)))
298
+ X[ , ,i,j] <- X_temp[,-1,i,j]
299
+ }
300
+ }
301
+
302
+ X <- aperm(X, c(2,1,3,4))
303
+
304
+ l1 <- array(NA, c(n.sims, n.obs, n.x1, n.x2, n.y))
305
+ for (z in 1:n.y){
306
+ l1[,,,,z] <- apply(X, c(2,3,4), function(x) (link(tau[,z+1] - beta %*% x) - link(tau[,z] - beta %*% x)))
307
+ }
308
+
309
+ l2 <- apply(l1, c(1,3,4,5), function(x) weighted.mean(x, wi))
310
+ l3 <- array(NA, c(n.x1+1, n.q+1, n.x2, n.y))
311
+ for (k in 1:n.y){
312
+ for (j in 1:n.x2){
313
+ for (i in 1:n.x1){
314
+ l3[i,1,j,k] <- mean(l2[,i,j,k])
315
+ l3[i,2:(n.q+1),j,k] <- quantile(l2[,i,j,k], probs=quantiles)
316
+ }
317
+ l3[n.x1+1,1,j,k] <- mean(l2[,n.x1,j,k] - l2[,1,j,k])
318
+ l3[n.x1+1,2:(n.q+1),j,k] <- quantile(l2[,n.x1,j,k] - l2[,1,j,k], probs=quantiles)
319
+ }
320
+ }
321
+ dimnames(l3) <- list(paste(c(rep(paste(x1name," ="),n.x1),paste("\u0394","(",x1vals[1],",",x1vals[length(x1vals)],")")),c(x1vals,"")),
322
+ c("mean",quantiles),
323
+ paste(c(rep(paste(x2name,"="),n.x2)),x2vals),
324
+ paste(c(rep("Y =",n.y)), c(1:n.y)))
325
+
326
+ if (is.null(did)){did <- c(x2vals[1],x2vals[n.x2])} else{did <- did}
327
+ l4 <- array(NA, c(n.y,n.q+1))
328
+ for (i in 1:n.y){
329
+ l4[i,1] <- mean((l2[ ,n.x1,match(did[2],x2vals),i] - l2[ ,1,match(did[2],x2vals),i]) - (l2[ ,n.x1,match(did[1],x2vals),i] - l2[ ,1,match(did[1],x2vals),i]))
330
+ l4[i,2:(n.q+1)] <- quantile((l2[ ,n.x1,match(did[2],x2vals),i] - l2[ ,1,match(did[2],x2vals),i]) - (l2[ ,n.x1,match(did[1],x2vals),i] - l2[ ,1,match(did[1],x2vals),i]), probs=quantiles)
331
+ }
332
+ yvals <- 1:n.y
333
+ dimnames(l4) <- list(paste(c(rep(paste("Y","="),n.y)),yvals),c("mean",quantiles))
334
+
335
+ ans <- new("post",
336
+ est=round(l3, digits=digits),
337
+ did=round(l4, digits=digits),
338
+ sims=l2,
339
+ model=class(model),
340
+ link=model$method,
341
+ quantiles=quantiles,
342
+ call=call)
343
+ return(ans)
344
+ }
345
+ }
346
+
347
+ else{
348
+
349
+ if (is.null(x1name)){
350
+
351
+ X_temp <- array(NA, c(n.obs,k))
352
+ X <- array(NA, c(n.obs,k-1))
353
+
354
+ newdata <- data.frame(model$model)
355
+ if (!is.null(holds)){
356
+ for (j in 1:length(holds)){
357
+ newdata[ ,names(holds)[j]] <- as.numeric(holds[j])
358
+ }
359
+ }
360
+ X_temp[ , ] <- suppressWarnings(model.matrix(polr(getCall(model)$formula, data=newdata)))
361
+ X[ , ] <- X_temp[,-1]
362
+ X <- aperm(X)
363
+
364
+ l1 <- apply(link(-tau[,cut+1] + beta %*% X), 1, function(x) weighted.mean(x, wi))
365
+ l2 <- array(NA, c(1,n.q+1))
366
+ l2[1,1] <- mean(l1)
367
+ l2[1,2:(n.q+1)] <- quantile(l1, probs=quantiles)
368
+ colnames(l2) <- c("mean",quantiles)
369
+
370
+ ans <- new("post",
371
+ est=round(l2, digits=digits),
372
+ did=NULL,
373
+ sims=l1,
374
+ model=class(model),
375
+ link=model$method,
376
+ quantiles=quantiles,
377
+ call=call)
378
+ return(ans)
379
+ }
380
+
381
+
382
+ else if (is.null(x2name)){
383
+
384
+ n.x1 <- length(x1vals)
385
+
386
+ X_temp <- array(NA, c(n.obs,k,n.x1))
387
+ X <- array(NA, c(n.obs,k-1,n.x1))
388
+
389
+ for (i in 1:(n.x1)){
390
+ newdata <- data.frame(model$model)
391
+ if (!is.null(holds)){
392
+ for (j in 1:length(holds)){
393
+ newdata[ ,names(holds)[j]] <- as.numeric(holds[j])
394
+ }
395
+ }
396
+ newdata[ ,x1name] <- x1vals[i]
397
+ X_temp[ , ,i] <- suppressWarnings(model.matrix(polr(getCall(model)$formula, data=newdata)))
398
+ X[ , ,i] <- X_temp[,-1,i]
399
+ }
400
+
401
+ X <- aperm(X, c(2,1,3))
402
+ l1 <- apply(apply(X, c(2,3), function(x) link(-tau[,cut+1] + beta %*% x)),
403
+ c(1,3), function(x) weighted.mean(x, wi))
404
+ l2 <- array(NA, c(n.x1+1,n.q+1))
405
+ for (i in 1:n.x1){
406
+ l2[i,1] <- mean(l1[,i])
407
+ l2[i,2:(n.q+1)] <- quantile(l1[,i], probs=quantiles)
408
+ }
409
+ l2[nrow(l2),1] <- mean(l1[ ,ncol(l1)] - l1[ ,1])
410
+ l2[nrow(l2),2:(n.q+1)] <- quantile(l1[ ,ncol(l1)] - l1[ ,1], probs=quantiles)
411
+ rownames(l2) <- c(paste(c(rep(paste(x1name,"="),n.x1),
412
+ paste("\u0394","(",x1vals[1],",",x1vals[length(x1vals)],")")),
413
+ c(x1vals,"")))
414
+ colnames(l2) <- c("mean",quantiles)
415
+
416
+ ans <- new("post",
417
+ est=round(l2, digits=digits),
418
+ did=NULL,
419
+ sims=l1,
420
+ model=class(model),
421
+ link=model$method,
422
+ quantiles=quantiles,
423
+ call=call)
424
+ return(ans)
425
+ }
426
+
427
+ else{
428
+
429
+ n.x1 <- length(x1vals)
430
+ n.x2 <- length(x2vals)
431
+
432
+ X_temp <- array(NA, c(n.obs,k,n.x1,n.x2))
433
+ X <- array(NA, c(n.obs,k-1,n.x1,n.x2))
434
+
435
+ for (j in 1:n.x2){
436
+ for (i in 1:n.x1){
437
+ newdata <- data.frame(model$model)
438
+ if (!is.null(holds)){
439
+ for (k in 1:length(holds)){
440
+ newdata[ ,names(holds)[k]] <- as.numeric(holds[k])
441
+ }
442
+ }
443
+ newdata[ ,x1name] <- x1vals[i]
444
+ newdata[ ,x2name] <- x2vals[j]
445
+ X_temp[ , ,i,j] <- suppressWarnings(model.matrix(polr(getCall(model)$formula, data=newdata)))
446
+ X[ , ,i,j] <- X_temp[,-1,i,j]
447
+ }
448
+ }
449
+
450
+ X <- aperm(X, c(2,1,3,4))
451
+ l1 <- apply(apply(X, c(2,3,4), function(x) link(-tau[,cut+1] + beta %*% x)), c(1,3,4), function(x) weighted.mean(x, wi))
452
+ l2 <- array(NA, c(n.x1+1,n.q+1,n.x2))
453
+ for (j in 1:n.x2){
454
+ for (i in 1:n.x1){
455
+ l2[i,1,j] <- mean(l1[,i,j])
456
+ l2[i,2:(n.q+1),j] <- quantile(l1[,i,j], probs=quantiles)
457
+ }
458
+ l2[nrow(l2),1,j] <- mean(l1[ ,n.x1,j] - l1[ ,1,j])
459
+ l2[nrow(l2),2:(n.q+1),j] <- quantile(l1[ ,n.x1,j] - l1[ ,1,j], probs=quantiles)
460
+ }
461
+ dimnames(l2) <- list(paste(c(rep(paste(x1name," ="),n.x1),paste("\u0394","(",x1vals[1],",",x1vals[length(x1vals)],")")),c(x1vals,"")),
462
+ c("mean",quantiles),
463
+ paste(c(rep(paste(x2name," ="),n.x2)),
464
+ c(x2vals)))
465
+
466
+ if (is.null(did)){did <- c(x2vals[1],x2vals[n.x2])} else{did <- did}
467
+ l3 <- array(NA, c(1,n.q+1))
468
+ l3[1,1] <- mean((l1[ ,n.x1,match(did[2],x2vals)] - l1[ ,1,match(did[2],x2vals)]) - (l1[ ,n.x1,match(did[1],x2vals)] - l1[ ,1,match(did[1],x2vals)]))
469
+ l3[1,2:(n.q+1)] <- quantile((l1[ ,n.x1,match(did[2],x2vals)] - l1[ ,1,match(did[2],x2vals)]) - (l1[ ,n.x1,match(did[1],x2vals)] - l1[ ,1,match(did[1],x2vals)]), probs=quantiles)
470
+ dimnames(l3) <- list("did",c("mean",quantiles))
471
+
472
+ ans <- new("post",
473
+ est=round(l2, digits=digits),
474
+ did=round(l3, digits=digits),
475
+ sims=l1,
476
+ model=class(model),
477
+ link=model$method,
478
+ quantiles=quantiles,
479
+ call=call)
480
+ return(ans)
481
+ }
482
+ }
483
+ }
484
+
485
+ setMethod("post", signature(model = "lm"), post.glm)
486
+ setMethod("post", signature(model = "glm"), post.glm)
487
+ setMethod("post", signature(model = "svyglm"), post.glm)
488
+ setMethod("post", signature(model = "polr"), post.polr)
489
+
490
+
491
+
492
+
493
+
36/replication_package/postSim.R ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ###### postSim ######
2
+
3
+ setGeneric("postSim",
4
+ function(object, n.sims=1000){
5
+ standardGeneric("postSim")
6
+ }
7
+ )
8
+
9
+ setClass("postSim",
10
+ slots = c(coef = "matrix",
11
+ sigma = "numeric")
12
+ )
13
+
14
+ setClass("postSim.polr",
15
+ slots = c(coef = "matrix",
16
+ zeta = "matrix")
17
+ )
18
+
19
+ setMethod("postSim", signature(object = "lm"),
20
+ function(object, n.sims=1000)
21
+ {
22
+ object.class <- class(object)[[1]]
23
+ summ <- summary (object)
24
+ coef <- summ$coef[,1:2,drop=FALSE]
25
+ dimnames(coef)[[2]] <- c("coef.est","coef.sd")
26
+ sigma.hat <- summ$sigma
27
+ beta.hat <- coef[,1,drop = FALSE]
28
+ V.beta <- summ$cov.unscaled
29
+ n <- summ$df[1] + summ$df[2]
30
+ k <- summ$df[1]
31
+ sigma <- rep (NA, n.sims)
32
+ beta <- array (NA, c(n.sims,k))
33
+ dimnames(beta) <- list (NULL, rownames(beta.hat))
34
+ for (s in 1:n.sims){
35
+ sigma[s] <- sigma.hat*sqrt((n-k)/rchisq(1,n-k))
36
+ beta[s,] <- MASS::mvrnorm (1, beta.hat, V.beta*sigma[s]^2)
37
+ }
38
+
39
+ ans <- new("postSim",
40
+ coef = beta,
41
+ sigma = sigma)
42
+ return (ans)
43
+ }
44
+ )
45
+
46
+
47
+ setMethod("postSim", signature(object = "glm"),
48
+ function(object, n.sims=1000)
49
+ {
50
+ object.class <- class(object)[[1]]
51
+ summ <- summary (object, correlation=TRUE, dispersion = object$dispersion)
52
+ coef <- summ$coef[,1:2,drop=FALSE]
53
+ dimnames(coef)[[2]] <- c("coef.est","coef.sd")
54
+ beta.hat <- coef[,1,drop=FALSE]
55
+ sd.beta <- coef[,2,drop=FALSE]
56
+ corr.beta <- summ$corr
57
+ n <- summ$df[1] + summ$df[2]
58
+ k <- summ$df[1]
59
+ V.beta <- corr.beta * array(sd.beta,c(k,k)) * t(array(sd.beta,c(k,k)))
60
+ beta <- array (NA, c(n.sims,k))
61
+ dimnames(beta) <- list (NULL, dimnames(beta.hat)[[1]])
62
+ for (s in 1:n.sims){
63
+ beta[s,] <- MASS::mvrnorm (1, beta.hat, V.beta)
64
+ }
65
+ # Added by Masanao
66
+ beta2 <- array (0, c(n.sims,length(coefficients(object))))
67
+ dimnames(beta2) <- list (NULL, names(coefficients(object)))
68
+ beta2[,dimnames(beta2)[[2]]%in%dimnames(beta)[[2]]] <- beta
69
+ # Added by Masanao
70
+ sigma <- rep (sqrt(summ$dispersion), n.sims)
71
+
72
+ ans <- new("postSim",
73
+ coef = beta2,
74
+ sigma = sigma)
75
+ return(ans)
76
+ }
77
+ )
78
+
79
+
80
+ setMethod("postSim", signature(object = "polr"),
81
+ function(object, n.sims=1000){
82
+ x <- as.matrix(model.matrix(object))
83
+ coefs <- coef(object)
84
+ k <- length(coefs)
85
+ zeta <- object$zeta
86
+ Sigma <- vcov(object)
87
+
88
+ if(n.sims==1){
89
+ parameters <- t(MASS::mvrnorm(n.sims, c(coefs, zeta), Sigma))
90
+ }else{
91
+ parameters <- MASS::mvrnorm(n.sims, c(coefs, zeta), Sigma)
92
+ }
93
+ ans <- new("postSim.polr",
94
+ coef = parameters[,1:k,drop=FALSE],
95
+ zeta = parameters[,-(1:k),drop=FALSE])
96
+ return(ans)
97
+ }
98
+ )
99
+
100
+
101
+ setMethod("postSim", signature(object = "svyglm"),
102
+ function(object, n.sims=1000)
103
+ {
104
+ object.class <- class(object)[[2]]
105
+ summ <- summary (object, correlation=TRUE, dispersion = object$dispersion)
106
+ coef <- summ$coef[,1:2,drop=FALSE]
107
+ dimnames(coef)[[2]] <- c("coef.est","coef.sd")
108
+ beta.hat <- coef[,1,drop=FALSE]
109
+ sd.beta <- coef[,2,drop=FALSE]
110
+ corr.beta <- summ$corr
111
+ n <- summ$df[1] + summ$df[2]
112
+ k <- summ$df[1]
113
+ V.beta <- corr.beta * array(sd.beta,c(k,k)) * t(array(sd.beta,c(k,k)))
114
+ beta <- array (NA, c(n.sims,k))
115
+ dimnames(beta) <- list (NULL, dimnames(beta.hat)[[1]])
116
+ for (s in 1:n.sims){
117
+ beta[s,] <- MASS::mvrnorm (1, beta.hat, V.beta)
118
+ }
119
+ beta2 <- array (0, c(n.sims,length(coefficients(object))))
120
+ dimnames(beta2) <- list (NULL, names(coefficients(object)))
121
+ beta2[,dimnames(beta2)[[2]]%in%dimnames(beta)[[2]]] <- beta
122
+ sigma <- rep (sqrt(summ$dispersion), n.sims)
123
+
124
+ ans <- new("postSim",
125
+ coef = beta2,
126
+ sigma = sigma)
127
+ return(ans)
128
+ }
129
+ )
130
+
131
+
132
+
133
+
134
+
135
+
136
+
137
+
138
+
139
+
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+
148
+
149
+
150
+
151
+
152
+
153
+
154
+
155
+
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+
164
+
165
+
166
+
167
+
168
+
169
+
170
+
171
+
172
+
173
+
36/should_reproduce.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5e35976e408ddac58129b747106217d47cd00a01cac05276e73bdb6794b4c0c
3
+ size 46