Commit
·
1b9effb
1
Parent(s):
8aaef25
add 32
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- 32/paper.pdf +3 -0
- 32/replication_package/1-ReadMe.txt +3 -0
- 32/replication_package/ContextAnalysis_Appendix.R +719 -0
- 32/replication_package/ContextAnalysis_Main.R +214 -0
- 32/replication_package/Help.R +177 -0
- 32/replication_package/SurveyAnalysis_Appendix.R +810 -0
- 32/replication_package/SurveyAnalysis_Main.R +378 -0
- 32/replication_package/YouGov.dta +3 -0
- 32/replication_package/codebook_YouGov.pdf +3 -0
- 32/replication_package/codebook_context.pdf +3 -0
- 32/replication_package/codebook_context_placebo.pdf +3 -0
- 32/replication_package/codebook_survey.pdf +3 -0
- 32/replication_package/context.dta +3 -0
- 32/replication_package/context_placebo.dta +3 -0
- 32/replication_package/master.R +10 -0
- 32/replication_package/merge_context.R +217 -0
- 32/replication_package/merge_context_placebo.R +231 -0
- 32/replication_package/number_in_texts.R +223 -0
- 32/replication_package/out_count_table.rdata +3 -0
- 32/replication_package/produce_context_data.do +89 -0
- 32/replication_package/source_context.pdf +3 -0
- 32/replication_package/source_context_placebo.pdf +3 -0
- 32/replication_package/source_data/area_mun.dta +3 -0
- 32/replication_package/source_data/base.dta +3 -0
- 32/replication_package/source_data/base_pl.dta +3 -0
- 32/replication_package/source_data/crime.dta +3 -0
- 32/replication_package/source_data/education.dta +3 -0
- 32/replication_package/source_data/hate.dta +3 -0
- 32/replication_package/source_data/merged_context_1.dta +3 -0
- 32/replication_package/source_data/merged_context_2.dta +3 -0
- 32/replication_package/source_data/pop_gemeinde_2008_2018.dta +3 -0
- 32/replication_package/source_data/pop_kreise_2015_2017.dta +3 -0
- 32/replication_package/source_data/population.dta +3 -0
- 32/replication_package/source_data/refugee_gender.dta +3 -0
- 32/replication_package/source_data/refugees_2008_2017.dta +3 -0
- 32/replication_package/source_data/sectors.dta +3 -0
- 32/replication_package/source_data/unempl_gemeinde_2008_2017.dta +3 -0
- 32/replication_package/source_data/unemployment.dta +3 -0
- 32/replication_package/source_data/voting.dta +3 -0
- 32/replication_package/survey.dta +3 -0
- 32/replication_package/table1.tex +34 -0
- 32/replication_package/table_C1.tex +62 -0
- 32/replication_package/table_C2.tex +62 -0
- 32/replication_package/table_C3.tex +64 -0
- 32/replication_package/table_C4.tex +62 -0
- 32/replication_package/table_C5.tex +63 -0
- 32/replication_package/table_C6.tex +68 -0
- 32/replication_package/table_C7.tex +65 -0
- 32/replication_package/table_C9.tex +26 -0
- 32/replication_package/table_D5_1.tex +34 -0
32/paper.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcf5bb75e799ab4e1e3711ba7844a57acaa2d088d432e5da697abba065bb4d3f
|
3 |
+
size 411956
|
32/replication_package/1-ReadMe.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d5234931ac466ad3e769724309900ec8438f8fe1481002da79633f1fbca043a
|
3 |
+
size 7074
|
32/replication_package/ContextAnalysis_Appendix.R
ADDED
@@ -0,0 +1,719 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Replication File for Appendix Survey Analyses
|
2 |
+
# Table C1 in Appendix C1: The Effect of Excess Males on the Probability of Observing at least One Hate Crime
|
3 |
+
# Table C2 in Appendix C2: The Effect of Excess Males on the Probability of Observing at least One Hate Crime (Different Definition of “Excess Males”)
|
4 |
+
# Table C3 in Appendix C3: The Effect of Excess Males on the Probability of Observing at least One Hate Crime (linear probability model)
|
5 |
+
# Table C4 in Appendix C4: The Effect of Excess Males on the Probability of Observing at least One Physical Attack
|
6 |
+
# Table C5 in Appendix C5: Negative Binomial Regression
|
7 |
+
# Table C6 in Appendix C6: Interaction between Excess Males and East/West Germany
|
8 |
+
# Table C7 in Appendix C7: Interaction between Excess Males and Refugee Inflow
|
9 |
+
# Table C9 in Appendix C9: Placebo Analysis
|
10 |
+
# Appendix C10: Descriptive Statistics
|
11 |
+
|
12 |
+
# R version 4.0.2 (2020-06-22)
|
13 |
+
|
14 |
+
rm(list=ls())
|
15 |
+
# install.packages("readstata13") # readstata13_0.9.2
|
16 |
+
# install.packages("MASS") # MASS_7.3-51.6
|
17 |
+
# install.packages("sandwich") # sandwich_2.5-1
|
18 |
+
# install.packages("lmtest") # lmtest_0.9-37
|
19 |
+
# install.packages("stargazer") # stargazer_5.2.2
|
20 |
+
|
21 |
+
require(readstata13) # readstata13_0.9.2
|
22 |
+
require(MASS) # MASS_7.3-51.6
|
23 |
+
require(sandwich) # sandwich_2.5-1
|
24 |
+
require(lmtest) # lmtest_0.9-37
|
25 |
+
require(stargazer) # stargazer_5.2.2
|
26 |
+
source("Help.R")
|
27 |
+
|
28 |
+
dat <- read.dta13("context.dta")
|
29 |
+
|
30 |
+
dat_2015 <- dat[dat$year == 2015, ]
|
31 |
+
dat_2016 <- dat[dat$year == 2016, ]
|
32 |
+
dat_2017 <- dat[dat$year == 2017, ]
|
33 |
+
dat_2015$Hate_all_muni_1517 <- dat_2015$Hate_all_muni + dat_2016$Hate_all_muni + dat_2017$Hate_all_muni
|
34 |
+
dat_2015$Hate_all_muni_1517_bin <- ifelse(dat_2015$Hate_all_muni_1517 > 0, 1, 0)
|
35 |
+
|
36 |
+
# Remove Extreme Value of Excess Males
|
37 |
+
range_x <- quantile(dat_2015$pop_15_44_muni_gendergap_2015, c(0.025, 0.975), na.rm = TRUE)
|
38 |
+
dat_2015_s <- dat_2015[dat_2015$pop_15_44_muni_gendergap_2015 >= range_x[1] &
|
39 |
+
dat_2015$pop_15_44_muni_gendergap_2015 <= range_x[2], ]
|
40 |
+
dat_s <- dat[dat$pop_15_44_muni_gendergap_2015 >= range_x[1] &
|
41 |
+
dat$pop_15_44_muni_gendergap_2015 <= range_x[2], ]
|
42 |
+
|
43 |
+
# ##########################################
|
44 |
+
# Main Table (Table C1 in Appendix C1)
|
45 |
+
# ##########################################
|
46 |
+
bin_1_sum <- bin.summary(Hate_all_muni_1517_bin ~
|
47 |
+
pop_15_44_muni_gendergap_2015 +
|
48 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
49 |
+
as.factor(ags_county), # county fixed effects
|
50 |
+
id = "ags_county", data = dat_2015_s)
|
51 |
+
|
52 |
+
bin_1_p <- bin.summary(Hate_all_muni_bin ~
|
53 |
+
pop_15_44_muni_gendergap_2015 +
|
54 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
55 |
+
as.factor(ags_county) + as.factor(year), # county + year fixed effects
|
56 |
+
id = "ags_county", data = dat_s)
|
57 |
+
|
58 |
+
bin_2_sum <- bin.summary(Hate_all_muni_1517_bin ~
|
59 |
+
pop_15_44_muni_gendergap_2015 +
|
60 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
61 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
62 |
+
as.factor(ags_county), # county fixed effects
|
63 |
+
id = "ags_county", data = dat_2015_s)
|
64 |
+
|
65 |
+
bin_2_p <- bin.summary(Hate_all_muni_bin ~
|
66 |
+
pop_15_44_muni_gendergap_2015 +
|
67 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
68 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
69 |
+
as.factor(ags_county) + as.factor(year), # county + year fixed effects
|
70 |
+
id = "ags_county", data = dat_s)
|
71 |
+
|
72 |
+
bin_3_sum <- bin.summary(Hate_all_muni_1517_bin ~
|
73 |
+
pop_15_44_muni_gendergap_2015 +
|
74 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
75 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
76 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
77 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
78 |
+
unemp_gendergap_2015 +
|
79 |
+
as.factor(ags_state), # state fixed effects
|
80 |
+
id = "ags_county", data = dat_2015_s)
|
81 |
+
|
82 |
+
bin_3_p <- bin.summary(Hate_all_muni_bin ~
|
83 |
+
pop_15_44_muni_gendergap_2015 +
|
84 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
85 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
86 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
87 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
88 |
+
unemp_gendergap_2015 +
|
89 |
+
as.factor(ags_state) + as.factor(year), # state + year fixed effects
|
90 |
+
id = "ags_county", data = dat_s)
|
91 |
+
|
92 |
+
fit_list <- list(bin_1_sum$fit, bin_1_p$fit,
|
93 |
+
bin_2_sum$fit, bin_2_p$fit,
|
94 |
+
bin_3_sum$fit, bin_3_p$fit)
|
95 |
+
se_list <- list(sqrt(diag(bin_1_sum$vcov)), sqrt(diag(bin_1_p$vcov)),
|
96 |
+
sqrt(diag(bin_2_sum$vcov)), sqrt(diag(bin_2_p$vcov)),
|
97 |
+
sqrt(diag(bin_3_sum$vcov)), sqrt(diag(bin_3_p$vcov)))
|
98 |
+
|
99 |
+
star_out(stargazer(fit_list, se = se_list,
|
100 |
+
covariate.labels = c("Excess Males (Age 15 - 44)",
|
101 |
+
"Log (Population)","Log (Population Density)",
|
102 |
+
"Log (Unemployment Rate)",
|
103 |
+
"% of population change (2011 vs 2015)",
|
104 |
+
"Vote share for AfD (2013)",
|
105 |
+
"Log (Refugee Inflow) (2014 vs 2015)", "Log (Refugee Size) (2014)",
|
106 |
+
"Log (General Violence per capita)",
|
107 |
+
"% of High Education",
|
108 |
+
"Change in Manufacturing Share (2011 vs 2015)",
|
109 |
+
"Share of Manufacturing", "Male Disadvantage"),
|
110 |
+
keep=c("pop_15_44_muni_gendergap_2015",
|
111 |
+
"log_population_muni_2015",
|
112 |
+
"log_popdens_muni_2015", "log_unemp_all_muni_2015",
|
113 |
+
"d_pop1511_muni", "vote_afd_2013_muni",
|
114 |
+
"log_ref_inflow_1514", "log_pop_ref_2014",
|
115 |
+
"log_violence_percap_2015",
|
116 |
+
"pc_hidegree_all2011", "d_manuf1115", "pc_manufacturing_2015", "unemp_gendergap_2015")),
|
117 |
+
name = "table_C1.tex")
|
118 |
+
|
119 |
+
# ###############################################
|
120 |
+
# Replicate Table with 25-44 (Table C2 in C2)
|
121 |
+
# ###############################################
|
122 |
+
range_x2 <- quantile(dat_2015$pop_25_44_muni_gendergap_2015, c(0.025, 0.975), na.rm = TRUE)
|
123 |
+
dat_2015_s2 <- dat_2015[dat_2015$pop_25_44_muni_gendergap_2015 >= range_x2[1] &
|
124 |
+
dat_2015$pop_25_44_muni_gendergap_2015 <= range_x2[2], ]
|
125 |
+
dat_s2 <- dat[dat$pop_25_44_muni_gendergap_2015 >= range_x2[1] &
|
126 |
+
dat$pop_25_44_muni_gendergap_2015 <= range_x2[2], ]
|
127 |
+
|
128 |
+
|
129 |
+
bin_r_1_sum <- bin.summary(Hate_all_muni_1517_bin ~
|
130 |
+
pop_25_44_muni_gendergap_2015 +
|
131 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
132 |
+
as.factor(ags_county),
|
133 |
+
id = "ags_county", data = dat_2015_s2)
|
134 |
+
|
135 |
+
bin_r_1_p <- bin.summary(Hate_all_muni_bin ~
|
136 |
+
pop_25_44_muni_gendergap_2015 +
|
137 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
138 |
+
as.factor(ags_county) + as.factor(year),
|
139 |
+
id = "ags_county", data = dat_s2)
|
140 |
+
|
141 |
+
bin_r_2_sum <- bin.summary(Hate_all_muni_1517_bin ~
|
142 |
+
pop_25_44_muni_gendergap_2015 +
|
143 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
144 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
145 |
+
as.factor(ags_county),
|
146 |
+
id = "ags_county", data = dat_2015_s2)
|
147 |
+
|
148 |
+
bin_r_2_p <- bin.summary(Hate_all_muni_bin ~
|
149 |
+
pop_25_44_muni_gendergap_2015 +
|
150 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
151 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
152 |
+
as.factor(ags_county) + as.factor(year),
|
153 |
+
id = "ags_county", data = dat_s2)
|
154 |
+
|
155 |
+
bin_r_3_sum <- bin.summary(Hate_all_muni_1517_bin ~
|
156 |
+
pop_25_44_muni_gendergap_2015 +
|
157 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
158 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
159 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
160 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
161 |
+
unemp_gendergap_2015 +
|
162 |
+
as.factor(ags_state),
|
163 |
+
id = "ags_county", data = dat_2015_s2)
|
164 |
+
|
165 |
+
bin_r_3_p <- bin.summary(Hate_all_muni_bin ~
|
166 |
+
pop_25_44_muni_gendergap_2015 +
|
167 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
168 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
169 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
170 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
171 |
+
unemp_gendergap_2015 +
|
172 |
+
as.factor(ags_state) + as.factor(year),
|
173 |
+
id = "ags_county", data = dat_s2)
|
174 |
+
|
175 |
+
|
176 |
+
## Table C2 in Appendix C2
|
177 |
+
fit_list2 <- list(bin_r_1_sum$fit, bin_r_1_p$fit,
|
178 |
+
bin_r_2_sum$fit, bin_r_2_p$fit,
|
179 |
+
bin_r_3_sum$fit, bin_r_3_p$fit)
|
180 |
+
se_list2 <- list(sqrt(diag(bin_r_1_sum$vcov)), sqrt(diag(bin_r_1_p$vcov)),
|
181 |
+
sqrt(diag(bin_r_2_sum$vcov)), sqrt(diag(bin_r_2_p$vcov)),
|
182 |
+
sqrt(diag(bin_r_3_sum$vcov)), sqrt(diag(bin_r_3_p$vcov)))
|
183 |
+
|
184 |
+
star_out(stargazer(fit_list2, se = se_list2,
|
185 |
+
covariate.labels = c("Excess Males (Age 25 - 44)",
|
186 |
+
"Log (Population)","Log (Population Density)",
|
187 |
+
"Log (Unemployment Rate)",
|
188 |
+
"% of population change (2011 vs 2015)",
|
189 |
+
"Vote share for AfD (2013)",
|
190 |
+
"Log (Refugee Inflow) (2014 vs 2015)", "Log (Refugee Size) (2014)",
|
191 |
+
"Log (General Violence per capita)",
|
192 |
+
"% of High Education",
|
193 |
+
"Change in Manufacturing Share (2011 vs 2015)",
|
194 |
+
"Share of Manufacturing", "Male Disadvantage"),
|
195 |
+
keep=c("pop_25_44_muni_gendergap_2015",
|
196 |
+
"log_population_muni_2015",
|
197 |
+
"log_popdens_muni_2015", "log_unemp_all_muni_2015",
|
198 |
+
"d_pop1511_muni", "vote_afd_2013_muni",
|
199 |
+
"log_ref_inflow_1514", "log_pop_ref_2014",
|
200 |
+
"log_violence_percap_2015",
|
201 |
+
"pc_hidegree_all2011", "d_manuf1115", "pc_manufacturing_2015", "unemp_gendergap_2015")),
|
202 |
+
name = "table_C2.tex")
|
203 |
+
|
204 |
+
# #####################################
|
205 |
+
# Linear Probability Model (Table C3 in Appendix C3)
|
206 |
+
# #####################################
|
207 |
+
lm_1_sum <- lm.summary(Hate_all_muni_1517_bin ~
|
208 |
+
pop_15_44_muni_gendergap_2015 +
|
209 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
210 |
+
as.factor(ags_county),
|
211 |
+
id = "ags_county", data = dat_2015_s)
|
212 |
+
|
213 |
+
lm_1_p <- lm.summary(Hate_all_muni_bin ~
|
214 |
+
pop_15_44_muni_gendergap_2015 +
|
215 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
216 |
+
as.factor(ags_county) + as.factor(year),
|
217 |
+
id = "ags_county", data = dat_s)
|
218 |
+
|
219 |
+
lm_2_sum <- lm.summary(Hate_all_muni_1517_bin ~
|
220 |
+
pop_15_44_muni_gendergap_2015 +
|
221 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
222 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
223 |
+
as.factor(ags_county),
|
224 |
+
id = "ags_county", data = dat_2015_s)
|
225 |
+
|
226 |
+
lm_2_p <- lm.summary(Hate_all_muni_bin ~
|
227 |
+
pop_15_44_muni_gendergap_2015 +
|
228 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
229 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
230 |
+
as.factor(ags_county) + as.factor(year),
|
231 |
+
id = "ags_county", data = dat_s)
|
232 |
+
|
233 |
+
lm_3_sum <- lm.summary(Hate_all_muni_1517_bin ~
|
234 |
+
pop_15_44_muni_gendergap_2015 +
|
235 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
236 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
237 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
238 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
239 |
+
unemp_gendergap_2015 +
|
240 |
+
as.factor(ags_state),
|
241 |
+
id = "ags_county", data = dat_2015_s)
|
242 |
+
|
243 |
+
lm_3_p <- lm.summary(Hate_all_muni_bin ~
|
244 |
+
pop_15_44_muni_gendergap_2015 +
|
245 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
246 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
247 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
248 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
249 |
+
unemp_gendergap_2015 +
|
250 |
+
as.factor(ags_state) + as.factor(year),
|
251 |
+
id = "ags_county", data = dat_s)
|
252 |
+
|
253 |
+
|
254 |
+
fit_list_lm <- list(lm_1_sum$fit, lm_1_p$fit,
|
255 |
+
lm_2_sum$fit, lm_2_p$fit,
|
256 |
+
lm_3_sum$fit, lm_3_p$fit)
|
257 |
+
se_list_lm <- list(sqrt(diag(lm_1_sum$vcov)), sqrt(diag(lm_1_p$vcov)),
|
258 |
+
sqrt(diag(lm_2_sum$vcov)), sqrt(diag(lm_2_p$vcov)),
|
259 |
+
sqrt(diag(lm_3_sum$vcov)), sqrt(diag(lm_3_p$vcov)))
|
260 |
+
|
261 |
+
star_out(stargazer(fit_list_lm, se = se_list_lm,
|
262 |
+
covariate.labels = c("Excess Males (Age 15 - 44)",
|
263 |
+
"Log (Population)","Log (Population Density)",
|
264 |
+
"Log (Unemployment Rate)",
|
265 |
+
"% of population change (2011 vs 2015)",
|
266 |
+
"Vote share for AfD (2013)",
|
267 |
+
"Log (Refugee Inflow) (2014 vs 2015)", "Log (Refugee Size) (2014)",
|
268 |
+
"Log (General Violence per capita)",
|
269 |
+
"% of High Education",
|
270 |
+
"Change in Manufacturing Share (2011 vs 2015)",
|
271 |
+
"Share of Manufacturing", "Male Disadvantage"),
|
272 |
+
keep=c("pop_15_44_muni_gendergap_2015",
|
273 |
+
"log_population_muni_2015",
|
274 |
+
"log_popdens_muni_2015", "log_unemp_all_muni_2015",
|
275 |
+
"d_pop1511_muni", "vote_afd_2013_muni",
|
276 |
+
"log_ref_inflow_1514", "log_pop_ref_2014",
|
277 |
+
"log_violence_percap_2015",
|
278 |
+
"pc_hidegree_all2011", "d_manuf1115", "pc_manufacturing_2015", "unemp_gendergap_2015")),
|
279 |
+
name = "table_C3.tex")
|
280 |
+
|
281 |
+
|
282 |
+
## ############################################
|
283 |
+
## Physical Attacks (Table C4 in Appendix C4)
|
284 |
+
## ############################################
|
285 |
+
dat_2015$Physical_muni_1517 <- dat_2015$Physical_muni + dat_2016$Physical_muni + dat_2017$Physical_muni
|
286 |
+
dat_2015$Physical_muni_1517_bin <- ifelse(dat_2015$Physical_muni_1517 > 0, 1, 0)
|
287 |
+
range_x <- quantile(dat_2015$pop_15_44_muni_gendergap_2015, c(0.025, 0.975), na.rm = TRUE)
|
288 |
+
dat_2015_s <- dat_2015[dat_2015$pop_15_44_muni_gendergap_2015 >= range_x[1] &
|
289 |
+
dat_2015$pop_15_44_muni_gendergap_2015 <= range_x[2], ]
|
290 |
+
dat_s <- dat[dat$pop_15_44_muni_gendergap_2015 >= range_x[1] &
|
291 |
+
dat$pop_15_44_muni_gendergap_2015 <= range_x[2], ]
|
292 |
+
|
293 |
+
bin_phys_1_sum <- bin.summary(Physical_muni_1517_bin ~
|
294 |
+
pop_15_44_muni_gendergap_2015 +
|
295 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
296 |
+
as.factor(ags_county),
|
297 |
+
id = "ags_county", data = dat_2015_s)
|
298 |
+
|
299 |
+
bin_phys_1_p <- bin.summary(Physical_muni_bin ~
|
300 |
+
pop_15_44_muni_gendergap_2015 +
|
301 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
302 |
+
as.factor(ags_county) + as.factor(year),
|
303 |
+
id = "ags_county", data = dat_s)
|
304 |
+
|
305 |
+
bin_phys_2_sum <- bin.summary(Physical_muni_1517_bin ~
|
306 |
+
pop_15_44_muni_gendergap_2015 +
|
307 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
308 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
309 |
+
as.factor(ags_county),
|
310 |
+
id = "ags_county", data = dat_2015_s)
|
311 |
+
|
312 |
+
bin_phys_2_p <- bin.summary(Physical_muni_bin ~
|
313 |
+
pop_15_44_muni_gendergap_2015 +
|
314 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
315 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
316 |
+
as.factor(ags_county) + as.factor(year),
|
317 |
+
id = "ags_county", data = dat_s)
|
318 |
+
|
319 |
+
bin_phys_3_sum <- bin.summary(Physical_muni_1517_bin ~
|
320 |
+
pop_15_44_muni_gendergap_2015 +
|
321 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
322 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
323 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
324 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
325 |
+
unemp_gendergap_2015 +
|
326 |
+
as.factor(ags_state),
|
327 |
+
id = "ags_county", data = dat_2015_s)
|
328 |
+
|
329 |
+
bin_phys_3_p <- bin.summary(Physical_muni_bin ~
|
330 |
+
pop_15_44_muni_gendergap_2015 +
|
331 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
332 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
333 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
334 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
335 |
+
unemp_gendergap_2015 +
|
336 |
+
as.factor(ags_state) + as.factor(year),
|
337 |
+
id = "ags_county", data = dat_s)
|
338 |
+
|
339 |
+
## Table C4 in Appendix C4
|
340 |
+
fit_list_bin_phys <- list(bin_phys_1_sum$fit, bin_phys_1_p$fit,
|
341 |
+
bin_phys_2_sum$fit, bin_phys_2_p$fit,
|
342 |
+
bin_phys_3_sum$fit, bin_phys_3_p$fit)
|
343 |
+
se_list_bin_phys <- list(sqrt(diag(bin_phys_1_sum$vcov)), sqrt(diag(bin_phys_1_p$vcov)),
|
344 |
+
sqrt(diag(bin_phys_2_sum$vcov)), sqrt(diag(bin_phys_2_p$vcov)),
|
345 |
+
sqrt(diag(bin_phys_3_sum$vcov)), sqrt(diag(bin_phys_3_p$vcov)))
|
346 |
+
|
347 |
+
star_out(stargazer(fit_list_bin_phys, se = se_list_bin_phys,
|
348 |
+
covariate.labels = c("Excess Males (Age 15 - 44)",
|
349 |
+
"Log (Population)","Log (Population Density)",
|
350 |
+
"Log (Unemployment Rate)",
|
351 |
+
"% of population change (2011 vs 2015)",
|
352 |
+
"Vote share for AfD (2013)",
|
353 |
+
"Log (Refugee Inflow) (2014 vs 2015)", "Log (Refugee Size) (2014)",
|
354 |
+
"Log (General Violence per capita)",
|
355 |
+
"% of High Education",
|
356 |
+
"Change in Manufacturing Share (2011 vs 2015)",
|
357 |
+
"Share of Manufacturing", "Male Disadvantage"),
|
358 |
+
keep=c("pop_15_44_muni_gendergap_2015",
|
359 |
+
"log_population_muni_2015",
|
360 |
+
"log_popdens_muni_2015", "log_unemp_all_muni_2015",
|
361 |
+
"d_pop1511_muni", "vote_afd_2013_muni",
|
362 |
+
"log_ref_inflow_1514", "log_pop_ref_2014",
|
363 |
+
"log_violence_percap_2015",
|
364 |
+
"pc_hidegree_all2011", "d_manuf1115", "pc_manufacturing_2015", "unemp_gendergap_2015")),
|
365 |
+
name = "table_C4.tex")
|
366 |
+
|
367 |
+
## ########################################
|
368 |
+
## Appendix C5: Count Model
|
369 |
+
## ########################################
|
370 |
+
rm(list=ls())
|
371 |
+
|
372 |
+
dat <- read.dta13("context.dta")
|
373 |
+
source("Help.R")
|
374 |
+
|
375 |
+
dat_2015 <- dat[dat$year == 2015, ]
|
376 |
+
dat_2016 <- dat[dat$year == 2016, ]
|
377 |
+
dat_2017 <- dat[dat$year == 2017, ]
|
378 |
+
dat_2015$Hate_all_muni_1517 <- dat_2015$Hate_all_muni + dat_2016$Hate_all_muni + dat_2017$Hate_all_muni
|
379 |
+
|
380 |
+
# Remove Extreme Value of Excess Males
|
381 |
+
range_x <- quantile(dat_2015$pop_15_44_muni_gendergap_2015, c(0.025, 0.975), na.rm = TRUE)
|
382 |
+
dat_2015_s <- dat_2015[dat_2015$pop_15_44_muni_gendergap_2015 >= range_x[1] &
|
383 |
+
dat_2015$pop_15_44_muni_gendergap_2015 <= range_x[2], ]
|
384 |
+
dat_s <- dat[dat$pop_15_44_muni_gendergap_2015 >= range_x[1] &
|
385 |
+
dat$pop_15_44_muni_gendergap_2015 <= range_x[2], ]
|
386 |
+
|
387 |
+
for_s <- as.formula(Hate_all_muni_1517 ~
|
388 |
+
pop_15_44_muni_gendergap_2015 +
|
389 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
390 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
391 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
392 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
393 |
+
unemp_gendergap_2015 +
|
394 |
+
as.factor(ags_state)) # state fixed effects
|
395 |
+
|
396 |
+
for_p <- as.formula(Hate_all_muni ~
|
397 |
+
pop_15_44_muni_gendergap_2015 +
|
398 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
399 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
400 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
401 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
402 |
+
unemp_gendergap_2015 + as.factor(ags_state) + as.factor(year)) # state + year fixed effects
|
403 |
+
|
404 |
+
## Use boostrap to compute standard errors (Use the "out_count.rdata" to get the exact same estimates)
|
405 |
+
## Note: the following codes take a while to run
|
406 |
+
full_run <- FALSE
|
407 |
+
if(full_run == TRUE){
|
408 |
+
# Sum
|
409 |
+
nb_1_sum_b <- glm.boot(for_s, family = "negative-binomial",
|
410 |
+
data = dat_2015_s,
|
411 |
+
cluster_id = dat_2015_s$ags_county)
|
412 |
+
|
413 |
+
# Panel
|
414 |
+
nb_1_p_b <- glm.boot(for_p, family = "negative-binomial",
|
415 |
+
data = dat_s,
|
416 |
+
cluster_id = dat_s$ags_county)
|
417 |
+
|
418 |
+
fit_list_nb <- list(nb_1_sum_b$fit, nb_1_p_b$fit)
|
419 |
+
se_list_nb <- list(nb_1_sum_b$se, nb_1_p_b$se)
|
420 |
+
|
421 |
+
out_count_table <- list(fit_list_nb, se_list_nb)
|
422 |
+
save(out_count_table, file = "out_count_table.rdata")
|
423 |
+
}
|
424 |
+
|
425 |
+
load(file = "out_count_table.rdata")
|
426 |
+
fit_list_nb <- out_count_table[[1]]
|
427 |
+
se_list_nb <- out_count_table[[2]]
|
428 |
+
|
429 |
+
star_out(stargazer(fit_list_nb, se = se_list_nb,
|
430 |
+
covariate.labels = c("Excess Males (Age 15 - 44)",
|
431 |
+
"Log (Population)","Log (Population Density)",
|
432 |
+
"Log (Unemployment Rate)",
|
433 |
+
"% of population change (2011 vs 2015)",
|
434 |
+
"Vote share for AfD (2013)",
|
435 |
+
"Log (Refugee Inflow) (2014 vs 2015)", "Log (Refugee Size) (2014)",
|
436 |
+
"Log (General Violence per capita)",
|
437 |
+
"% of High Education",
|
438 |
+
"Change in Manufacturing Share (2011 vs 2015)",
|
439 |
+
"Share of Manufacturing", "Male Disadvantage"),
|
440 |
+
keep=c("pop_15_44_muni_gendergap_2015",
|
441 |
+
"log_population_muni_2015",
|
442 |
+
"log_popdens_muni_2015", "log_unemp_all_muni_2015",
|
443 |
+
"d_pop1511_muni", "vote_afd_2013_muni",
|
444 |
+
"log_ref_inflow_1514", "log_pop_ref_2014",
|
445 |
+
"log_violence_percap_2015",
|
446 |
+
"pc_hidegree_all2011", "d_manuf1115", "pc_manufacturing_2015", "unemp_gendergap_2015")),
|
447 |
+
name = "table_C5.tex")
|
448 |
+
|
449 |
+
|
450 |
+
|
451 |
+
## ########################################################################
|
452 |
+
## Replicate Tables with East/West Interaction (Table C6 in Appendix C6)
|
453 |
+
## ########################################################################
|
454 |
+
rm(list=ls())
|
455 |
+
|
456 |
+
dat <- read.dta13("context.dta")
|
457 |
+
source("Help.R")
|
458 |
+
|
459 |
+
dat_2015 <- dat[dat$year == 2015, ]
|
460 |
+
dat_2016 <- dat[dat$year == 2016, ]
|
461 |
+
dat_2017 <- dat[dat$year == 2017, ]
|
462 |
+
dat_2015$Hate_all_muni_1517 <- dat_2015$Hate_all_muni + dat_2016$Hate_all_muni + dat_2017$Hate_all_muni
|
463 |
+
dat_2015$Hate_all_muni_1517_bin <- as.numeric(dat_2015$Hate_all_muni_1517 > 0)
|
464 |
+
|
465 |
+
# Remove Extreme Value of Excess Males
|
466 |
+
range_x <- quantile(dat_2015$pop_15_44_muni_gendergap_2015, c(0.025, 0.975), na.rm = TRUE)
|
467 |
+
dat_2015_s <- dat_2015[dat_2015$pop_15_44_muni_gendergap_2015 >= range_x[1] &
|
468 |
+
dat_2015$pop_15_44_muni_gendergap_2015 <= range_x[2], ]
|
469 |
+
dat_s <- dat[dat$pop_15_44_muni_gendergap_2015 >= range_x[1] &
|
470 |
+
dat$pop_15_44_muni_gendergap_2015 <= range_x[2], ]
|
471 |
+
|
472 |
+
dat_2015_s$west <- 1 - dat_2015_s$east
|
473 |
+
dat_s$west <- 1 - dat_s$east
|
474 |
+
|
475 |
+
bin_2_sum_ew <- bin.summary(Hate_all_muni_1517_bin ~
|
476 |
+
pop_15_44_muni_gendergap_2015 + west +
|
477 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
478 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
479 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
480 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
481 |
+
unemp_gendergap_2015,
|
482 |
+
id = "ags_county", data = dat_2015_s)
|
483 |
+
|
484 |
+
bin_2_p_ew <- bin.summary(Hate_all_muni_bin ~
|
485 |
+
pop_15_44_muni_gendergap_2015 + west +
|
486 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
487 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
488 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
489 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
490 |
+
unemp_gendergap_2015 + as.factor(year),
|
491 |
+
id = "ags_county", data = dat_s)
|
492 |
+
|
493 |
+
bin_3_sum_ew <- bin.summary(Hate_all_muni_1517_bin ~
|
494 |
+
pop_15_44_muni_gendergap_2015*west +
|
495 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
496 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
497 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
498 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
499 |
+
unemp_gendergap_2015,
|
500 |
+
id = "ags_county", data = dat_2015_s)
|
501 |
+
|
502 |
+
bin_3_p_ew <- bin.summary(Hate_all_muni_bin ~
|
503 |
+
pop_15_44_muni_gendergap_2015*west +
|
504 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
505 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
506 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
507 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
508 |
+
unemp_gendergap_2015 + as.factor(year),
|
509 |
+
id = "ags_county", data = dat_s)
|
510 |
+
|
511 |
+
fit_list_ew <- list(bin_2_sum_ew$fit, bin_2_p_ew$fit,
|
512 |
+
bin_3_sum_ew$fit, bin_3_p_ew$fit)
|
513 |
+
se_list_ew <- list(sqrt(diag(bin_2_sum_ew$vcov)), sqrt(diag(bin_2_p_ew$vcov)),
|
514 |
+
sqrt(diag(bin_3_sum_ew$vcov)), sqrt(diag(bin_3_p_ew$vcov)))
|
515 |
+
|
516 |
+
star_out(stargazer(fit_list_ew, se = se_list_ew,
|
517 |
+
covariate.labels = c("Excess Males (Age 15 - 44)", "West",
|
518 |
+
"Log (Population)","Log (Population Density)",
|
519 |
+
"Log (Unemployment Rate)",
|
520 |
+
"% of population change (2011 vs 2015)",
|
521 |
+
"Vote share for AfD (2013)",
|
522 |
+
"Log (Refugee Inflow) (2014 vs 2015)",
|
523 |
+
"Log (Refugee Size) (2014)",
|
524 |
+
"Log (General Violence per capita)",
|
525 |
+
"% of High Education",
|
526 |
+
"Change in Manufacturing Share (2011 vs 2015)",
|
527 |
+
"Share of Manufacturing", "Male Disadvantage",
|
528 |
+
"Excess Males x West"),
|
529 |
+
keep=c("pop_15_44_muni_gendergap_2015", "west",
|
530 |
+
"log_population_muni_2015",
|
531 |
+
"log_popdens_muni_2015", "log_unemp_all_muni_2015",
|
532 |
+
"d_pop1511_muni", "vote_afd_2013_muni",
|
533 |
+
"log_ref_inflow_1514",
|
534 |
+
"log_pop_ref_2014",
|
535 |
+
"log_violence_percap_2015",
|
536 |
+
"pc_hidegree_all2011", "d_manuf1115", "pc_manufacturing_2015", "unemp_gendergap_2015",
|
537 |
+
"pop_15_44_muni_gendergap_2015:west")),
|
538 |
+
name = "table_C6.tex")
|
539 |
+
|
540 |
+
|
541 |
+
## ##############################################################
|
542 |
+
## Interaction with Refugee Inflow (Table C7 in Appendix C7)
|
543 |
+
## ##############################################################
|
544 |
+
bin_sum_int <- bin.summary(Hate_all_muni_1517_bin ~
|
545 |
+
pop_15_44_muni_gendergap_2015*log_ref_inflow_1514 +
|
546 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
547 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
548 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
549 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
550 |
+
unemp_gendergap_2015 +
|
551 |
+
as.factor(ags_state),
|
552 |
+
id = "ags_county", data = dat_2015_s)
|
553 |
+
|
554 |
+
bin_p_int <- bin.summary(Hate_all_muni_bin ~
|
555 |
+
pop_15_44_muni_gendergap_2015*log_ref_inflow_1514 +
|
556 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
557 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
558 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
559 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
560 |
+
unemp_gendergap_2015 +
|
561 |
+
as.factor(ags_state) + as.factor(year),
|
562 |
+
id = "ags_county", data = dat_s)
|
563 |
+
|
564 |
+
## Table C7 in Appendix C7
|
565 |
+
fit_list_int <- list(bin_sum_int$fit, bin_p_int$fit)
|
566 |
+
se_list_int <- list(sqrt(diag(bin_sum_int$vcov)), sqrt(diag(bin_p_int$vcov)))
|
567 |
+
|
568 |
+
star_out(stargazer(fit_list_int, se = se_list_int,
|
569 |
+
covariate.labels = c("Excess Males (Age 15 - 44)",
|
570 |
+
"Log (Refugee Inflow) (2014 vs 2015)",
|
571 |
+
"Log (Population)","Log (Population Density)",
|
572 |
+
"Log (Unemployment Rate)",
|
573 |
+
"% of population change (2011 vs 2015)",
|
574 |
+
"Vote share for AfD (2013)",
|
575 |
+
"Log (Refugee Size) (2014)",
|
576 |
+
"Log (General Violence per capita)",
|
577 |
+
"% of High Education",
|
578 |
+
"Change in Manufacturing Share (2011 vs 2015)",
|
579 |
+
"Share of Manufacturing", "Male Disadvantage",
|
580 |
+
"Excess Males × Log (Refugee Inflow)"),
|
581 |
+
keep=c("pop_15_44_muni_gendergap_2015", "log_ref_inflow_1514",
|
582 |
+
"log_population_muni_2015",
|
583 |
+
"log_popdens_muni_2015", "log_unemp_all_muni_2015",
|
584 |
+
"d_pop1511_muni", "vote_afd_2013_muni",
|
585 |
+
"log_pop_ref_2014",
|
586 |
+
"log_violence_percap_2015",
|
587 |
+
"pc_hidegree_all2011", "d_manuf1115", "pc_manufacturing_2015", "unemp_gendergap_2015",
|
588 |
+
"pop_15_44_muni_gendergap_2015:log_ref_inflow_1514")),
|
589 |
+
name = "table_C7.tex")
|
590 |
+
|
591 |
+
# ################################################################
|
592 |
+
# Appendix C9. Placebo Analysis
|
593 |
+
# ###############################################################
|
594 |
+
rm(list=ls())
|
595 |
+
|
596 |
+
dat_pl <- read.dta13("context_placebo.dta") # data for placebo analysis
|
597 |
+
source("Help.R")
|
598 |
+
|
599 |
+
dat_2015_s <- dat_pl[dat_pl$year == 2015, ]
|
600 |
+
dat_2016_s <- dat_pl[dat_pl$year == 2016, ]
|
601 |
+
dat_2017_s <- dat_pl[dat_pl$year == 2017, ]
|
602 |
+
|
603 |
+
# ##########################################
|
604 |
+
# 2015
|
605 |
+
# ##########################################
|
606 |
+
# main model + Placebo Treatment
|
607 |
+
bin_15_sum_pl <- bin.summary(Hate_all_muni_bin ~
|
608 |
+
pop_15_44_muni_gendergap_future +
|
609 |
+
pop_15_44_muni_gendergap_anu +
|
610 |
+
log(population_muni_anu) + log(popdens_muni_anu) +
|
611 |
+
log_unemp_all_muni_anu + d_pop_muni_anu + vote_afd_2013_muni +
|
612 |
+
log_ref_inflow_anu + log(pop_ref_anu) + log(violence_percap_anu) + ## county level
|
613 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
614 |
+
unemp_gendergap_anu +
|
615 |
+
as.factor(ags_state), # state fixed effects
|
616 |
+
id = "ags_county", data = dat_2015_s)
|
617 |
+
|
618 |
+
# ##########################################
|
619 |
+
# 2016
|
620 |
+
# ##########################################
|
621 |
+
# Main model + Placebo
|
622 |
+
bin_16_sum_pl <- bin.summary(Hate_all_muni_bin ~ pop_15_44_muni_gendergap_future +
|
623 |
+
pop_15_44_muni_gendergap_anu +
|
624 |
+
log(population_muni_anu) + log(popdens_muni_anu) +
|
625 |
+
log_unemp_all_muni_anu + d_pop_muni_anu + vote_afd_2013_muni +
|
626 |
+
log_ref_inflow_anu + log(pop_ref_anu) + log(violence_percap_anu) + ## county level
|
627 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
628 |
+
unemp_gendergap_anu +
|
629 |
+
as.factor(ags_state), # state fixed effects
|
630 |
+
id = "ags_county", data = dat_2016_s)
|
631 |
+
|
632 |
+
# ##########################
|
633 |
+
# 2017
|
634 |
+
# #########################
|
635 |
+
# Main model + Placebo
|
636 |
+
bin_17_sum_pl <- bin.summary(Hate_all_muni_bin ~ pop_15_44_muni_gendergap_future +
|
637 |
+
pop_15_44_muni_gendergap_anu +
|
638 |
+
log(population_muni_anu) + log(popdens_muni_anu) +
|
639 |
+
log_unemp_all_muni_anu + d_pop_muni_anu + vote_afd_2013_muni +
|
640 |
+
log_ref_inflow_anu + log(pop_ref_anu) + log(violence_percap_anu) + ## county level
|
641 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
642 |
+
unemp_gendergap_anu +
|
643 |
+
as.factor(ags_state), # state fixed effects
|
644 |
+
id = "ags_county", data = dat_2017_s)
|
645 |
+
|
646 |
+
## ####################
|
647 |
+
## Pooled Analysis
|
648 |
+
## ####################
|
649 |
+
# Final model + Placebo
|
650 |
+
bin_pool_sum_pl <- bin.summary(Hate_all_muni_bin ~ pop_15_44_muni_gendergap_future +
|
651 |
+
pop_15_44_muni_gendergap_anu +
|
652 |
+
log(population_muni_anu) + log(popdens_muni_anu) +
|
653 |
+
log_unemp_all_muni_anu + d_pop_muni_anu + vote_afd_2013_muni +
|
654 |
+
log_ref_inflow_anu + log(pop_ref_anu) + log(violence_percap_anu) + ## county level
|
655 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
656 |
+
unemp_gendergap_anu +
|
657 |
+
as.factor(ags_state) + as.factor(year), # state + year fixed effects
|
658 |
+
id = "ags_county", data = dat_pl)
|
659 |
+
|
660 |
+
# Repeat the analysis for Large Counties
|
661 |
+
dat_pool_s_l <- dat_pl[dat_pl$population_muni_anu >
|
662 |
+
quantile(dat_pl$population_muni_anu, prob = 0.5), ]
|
663 |
+
|
664 |
+
# Main model + Placebo
|
665 |
+
bin_pool_sum_pl_l <- bin.summary(Hate_all_muni_bin ~ pop_15_44_muni_gendergap_future +
|
666 |
+
pop_15_44_muni_gendergap_anu +
|
667 |
+
log(population_muni_anu) + log(popdens_muni_anu) +
|
668 |
+
log_unemp_all_muni_anu + d_pop_muni_anu + vote_afd_2013_muni +
|
669 |
+
log_ref_inflow_anu + log(pop_ref_anu) + log(violence_percap_anu) + ## county level
|
670 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
671 |
+
unemp_gendergap_anu +
|
672 |
+
as.factor(ags_state) + as.factor(year), # state + year fixed effects
|
673 |
+
id = "ags_county", data = dat_pool_s_l)
|
674 |
+
|
675 |
+
# Table
|
676 |
+
pl_fit_list_m <- list(bin_15_sum_pl$fit,
|
677 |
+
bin_16_sum_pl$fit,
|
678 |
+
bin_17_sum_pl$fit,
|
679 |
+
bin_pool_sum_pl$fit,
|
680 |
+
bin_pool_sum_pl_l$fit)
|
681 |
+
pl_se_list_m <- list(sqrt(diag(bin_15_sum_pl$vcov)),
|
682 |
+
sqrt(diag(bin_16_sum_pl$vcov)),
|
683 |
+
sqrt(diag(bin_17_sum_pl$vcov)),
|
684 |
+
sqrt(diag(bin_pool_sum_pl$vcov)),
|
685 |
+
sqrt(diag(bin_pool_sum_pl_l$vcov)))
|
686 |
+
|
687 |
+
star_out(stargazer(pl_fit_list_m, se = pl_se_list_m,
|
688 |
+
covariate.labels = c("Future-Treatment"),
|
689 |
+
keep=c("pop_15_44_muni_gendergap_future")),
|
690 |
+
name = "table_C9.tex")
|
691 |
+
|
692 |
+
|
693 |
+
# ##############################
|
694 |
+
# Appendix C10. Descriptive Statistics
|
695 |
+
# ##############################
|
696 |
+
rm(list=ls())
|
697 |
+
|
698 |
+
dat <- read.dta13("context.dta")
|
699 |
+
|
700 |
+
min15 <- round(min(dat$pc_ref_male[dat$year == 2015], na.rm = TRUE),2)
|
701 |
+
min16 <- round(min(dat$pc_ref_male[dat$year == 2016], na.rm = TRUE),2)
|
702 |
+
|
703 |
+
pdf("figure_C10.pdf", height = 5, width = 10)
|
704 |
+
par(mfrow = c(1, 2))
|
705 |
+
plot(density(dat$pc_ref_male[dat$year == 2015], na.rm = TRUE),
|
706 |
+
main = "Proportion of Male Refugees (2015)",
|
707 |
+
xlim = c(50, 100), xlab = "Percent of Male Refugees Among Refugees (county)")
|
708 |
+
text(x = 90, y = 0.08, paste0("min = ", min15), font = 2)
|
709 |
+
polygon(density(dat$pc_ref_male[dat$year == 2015], na.rm = TRUE)$x,
|
710 |
+
density(dat$pc_ref_male[dat$year == 2015], na.rm = TRUE)$y,col='grey80')
|
711 |
+
|
712 |
+
plot(density(dat$pc_ref_male[dat$year == 2016], na.rm = TRUE),
|
713 |
+
main = "Proportion of Male Refugees (2016)", xlim = c(50, 100),
|
714 |
+
xlab = "Percent of Male Refugees Among Refugees (county)")
|
715 |
+
text(x = 90, y = 0.12, paste0("min = ", min16), font = 2)
|
716 |
+
polygon(density(dat$pc_ref_male[dat$year == 2016], na.rm = TRUE)$x,
|
717 |
+
density(dat$pc_ref_male[dat$year == 2016], na.rm = TRUE)$y,col='grey80')
|
718 |
+
dev.off()
|
719 |
+
|
32/replication_package/ContextAnalysis_Main.R
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Replication File for
|
2 |
+
# Figure 1 (Effects of Excess Males on Prob of Hate Crime)
|
3 |
+
# Appendix: Figure C8 (Effects of Male Diadvantage on Prob of Hate Crime)
|
4 |
+
|
5 |
+
# R version 4.0.2 (2020-06-22)
|
6 |
+
|
7 |
+
rm(list=ls())
|
8 |
+
# install.packages("readstata13") # readstata13_0.9.2
|
9 |
+
# install.packages("MASS") # MASS_7.3-51.6
|
10 |
+
# install.packages("sandwich") # sandwich_2.5-1
|
11 |
+
# install.packages("lmtest") # lmtest_0.9-37
|
12 |
+
|
13 |
+
require(readstata13) # readstata13_0.9.2
|
14 |
+
require(MASS) # MASS_7.3-51.6
|
15 |
+
require(sandwich) # sandwich_2.5-1
|
16 |
+
require(lmtest) # lmtest_0.9-37
|
17 |
+
source("Help.R")
|
18 |
+
|
19 |
+
dat <- read.dta13("context.dta")
|
20 |
+
|
21 |
+
dat_2015 <- dat[dat$year == 2015, ]
|
22 |
+
dat_2016 <- dat[dat$year == 2016, ]
|
23 |
+
dat_2017 <- dat[dat$year == 2017, ]
|
24 |
+
dat_2015$Hate_all_muni_1517 <- dat_2015$Hate_all_muni + dat_2016$Hate_all_muni + dat_2017$Hate_all_muni
|
25 |
+
dat_2015$Hate_all_muni_1517_bin <- ifelse(dat_2015$Hate_all_muni_1517 > 0, 1, 0)
|
26 |
+
|
27 |
+
## #########################
|
28 |
+
## Main Figure (Figure 1)
|
29 |
+
## #########################
|
30 |
+
# Remove Extreme Value of Excess Males
|
31 |
+
range_x <- quantile(dat_2015$pop_15_44_muni_gendergap_2015, c(0.025, 0.975), na.rm = TRUE)
|
32 |
+
dat_2015_s <- dat_2015[dat_2015$pop_15_44_muni_gendergap_2015 >= range_x[1] &
|
33 |
+
dat_2015$pop_15_44_muni_gendergap_2015 <= range_x[2], ]
|
34 |
+
dat_s <- dat[dat$pop_15_44_muni_gendergap_2015 >= range_x[1] &
|
35 |
+
dat$pop_15_44_muni_gendergap_2015 <= range_x[2], ]
|
36 |
+
|
37 |
+
# sum
|
38 |
+
bin_1_sum <- bin.summary(Hate_all_muni_1517_bin ~
|
39 |
+
pop_15_44_muni_gendergap_2015 +
|
40 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
41 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
42 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
43 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
44 |
+
unemp_gendergap_2015 + as.factor(ags_state),
|
45 |
+
id = "ags_county", data = dat_2015_s)
|
46 |
+
|
47 |
+
# annual
|
48 |
+
bin_1_p <- bin.summary(Hate_all_muni_bin ~
|
49 |
+
pop_15_44_muni_gendergap_2015 +
|
50 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
51 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
52 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
53 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
54 |
+
unemp_gendergap_2015 + as.factor(ags_state) + as.factor(year),
|
55 |
+
id = "ags_county", data = dat_s)
|
56 |
+
|
57 |
+
# Excess Males
|
58 |
+
# Effect Estimation
|
59 |
+
bin_1_sum_effect <- marginal_effect(bin_1_sum,
|
60 |
+
newdata = dat_2015_s, family = "logit",
|
61 |
+
main_var = "pop_15_44_muni_gendergap_2015",
|
62 |
+
difference = TRUE,
|
63 |
+
treat_range = c(1, 1.2))
|
64 |
+
|
65 |
+
bin_1_p_effect <- marginal_effect(bin_1_p,
|
66 |
+
newdata = dat_s, family = "logit",
|
67 |
+
main_var = "pop_15_44_muni_gendergap_2015",
|
68 |
+
difference = TRUE,
|
69 |
+
treat_range = c(1, 1.2))
|
70 |
+
|
71 |
+
# Dose function
|
72 |
+
bin_1_sum_dose <- marginal_effect(bin_1_sum,
|
73 |
+
newdata = dat_2015_s, family = "logit",
|
74 |
+
main_var = "pop_15_44_muni_gendergap_2015")
|
75 |
+
|
76 |
+
bin_1_p_dose <- marginal_effect(bin_1_p,
|
77 |
+
newdata = dat_s, family = "logit",
|
78 |
+
main_var = "pop_15_44_muni_gendergap_2015")
|
79 |
+
|
80 |
+
|
81 |
+
# Male Diadvantage
|
82 |
+
# Effect Estimation
|
83 |
+
bin_1_sum_gap <- marginal_effect(bin_1_sum,
|
84 |
+
newdata = dat_2015_s, family = "logit",
|
85 |
+
main_var = "unemp_gendergap_2015",
|
86 |
+
difference = TRUE,
|
87 |
+
treat_range = c(1, 1.15))
|
88 |
+
|
89 |
+
bin_1_p_gap <- marginal_effect(bin_1_p,
|
90 |
+
newdata = dat_s, family = "logit",
|
91 |
+
main_var = "unemp_gendergap_2015",
|
92 |
+
difference = TRUE,
|
93 |
+
treat_range = c(1, 1.15))
|
94 |
+
|
95 |
+
# Dose Function
|
96 |
+
bin_1_sum_gap_dose <- marginal_effect(bin_1_sum,
|
97 |
+
newdata = dat_2015_s, family = "logit",
|
98 |
+
main_var = "unemp_gendergap_2015")
|
99 |
+
|
100 |
+
bin_1_p_gap_dose <- marginal_effect(bin_1_p,
|
101 |
+
newdata = dat_s, family = "logit",
|
102 |
+
main_var = "unemp_gendergap_2015")
|
103 |
+
|
104 |
+
# #####################
|
105 |
+
# Plot Effects (Figure 1)
|
106 |
+
# #####################
|
107 |
+
point <- c(bin_1_sum_effect$out_main[2], bin_1_p_effect$out_main[2])
|
108 |
+
high <- c(bin_1_sum_effect$out_main[3], bin_1_p_effect$out_main[3])
|
109 |
+
low <- c(bin_1_sum_effect$out_main[1], bin_1_p_effect$out_main[1])
|
110 |
+
|
111 |
+
## Short Panel
|
112 |
+
marginal_list <- list()
|
113 |
+
marginal_list[[1]] <- bin_1_sum_dose
|
114 |
+
marginal_list[[2]] <- bin_1_p_dose
|
115 |
+
|
116 |
+
title_c <- c("Predicted Probability: Sum", "Predicted Probability: Annual")
|
117 |
+
|
118 |
+
# Plot Dose function
|
119 |
+
|
120 |
+
pdf("figure_1.pdf", height = 4, width = 11)
|
121 |
+
par(mfrow = c(1,3), mar = c(4.5, 2, 4, 1), oma = c(0, 2, 0, 0))
|
122 |
+
for(i in 1:2){
|
123 |
+
plot_coef_all <- do.call("rbind", marginal_list[[i]]$out_main)
|
124 |
+
plot_x <- marginal_list[[i]]$treat_range
|
125 |
+
if(i == 1){
|
126 |
+
ylim_u <- c(0.14, 0.23)
|
127 |
+
ylab_u <- ""
|
128 |
+
}
|
129 |
+
if(i == 2){
|
130 |
+
ylim_u <- c(0.06, 0.11)
|
131 |
+
ylab_u <- ""
|
132 |
+
}
|
133 |
+
|
134 |
+
plot(plot_x, plot_coef_all[ ,2], pch = 19,
|
135 |
+
main = paste("", title_c[i], sep = ""),
|
136 |
+
ylim = ylim_u,
|
137 |
+
xlab = "Excess Males",
|
138 |
+
ylab = ylab_u,
|
139 |
+
col = "black", cex = 2, type = "l", lwd = 3, cex.lab = 1.5, cex.main = 1.5, cex.axis = 1.5)
|
140 |
+
lines(plot_x, plot_coef_all[ ,1], col = "black", lty = 2)
|
141 |
+
lines(plot_x, plot_coef_all[ ,3], col = "black", lty = 2)
|
142 |
+
abline(h = marginal_list[[i]]$sample, lty = 2, col = "red", lwd = 2)
|
143 |
+
polygon(c(plot_x, rev(plot_x)), c(plot_coef_all[ ,1], rev(plot_coef_all[ ,3])),
|
144 |
+
col = adjustcolor("black", 0.2), border = NA)
|
145 |
+
par(new=TRUE)
|
146 |
+
hist(dat_2015_s$pop_15_44_muni_gendergap_2015, freq = FALSE,
|
147 |
+
breaks = seq(from = 0, to = 6, by = 0.01), xlim = c(min(plot_x), max(plot_x)),
|
148 |
+
xaxt = "n", yaxt = "n", xlab = "", ylab = "", ylim = c(0, 40), main ="")
|
149 |
+
}
|
150 |
+
par(mar = c(4.5, 5, 4, 1))
|
151 |
+
plot(seq(1:2), point, ylim = c(-0.005, 0.045),
|
152 |
+
ylab = "Effects on Prob (hate crime)",
|
153 |
+
main = "Effects of Excess Males",
|
154 |
+
xlim = c(0.5, 2.5), xlab = "Outcome Types", xaxt = "n", pch = c(19, 15),
|
155 |
+
cex.lab = 1.5, cex.axis = 1.5, cex.main = 1.5)
|
156 |
+
segments(seq(1:6), low, seq(1:6), high, lwd = 2, c(rep("black",2), rep("black",2), rep("black",2)))
|
157 |
+
Axis(side = 1, at = c(1, 2), labels = c("Sum", "Annual"), cex.axis = 1.5)
|
158 |
+
abline(h = 0, lty = 2)
|
159 |
+
mtext(side = 2, at = 0.5, "Prob (hate crime)", outer = TRUE, line = 0.5)
|
160 |
+
dev.off()
|
161 |
+
|
162 |
+
# ########################
|
163 |
+
# Figure C.8 in Appendix
|
164 |
+
# ########################
|
165 |
+
|
166 |
+
# Plot Effects
|
167 |
+
point_g <- c(bin_1_sum_gap$out_main[2], bin_1_p_gap$out_main[2])
|
168 |
+
high_g <- c(bin_1_sum_gap$out_main[3], bin_1_p_gap$out_main[3])
|
169 |
+
low_g <- c(bin_1_sum_gap$out_main[1], bin_1_p_gap$out_main[1])
|
170 |
+
|
171 |
+
## Short Panel
|
172 |
+
marginal_list_g <- list()
|
173 |
+
marginal_list_g[[1]] <- bin_1_sum_gap_dose
|
174 |
+
marginal_list_g[[2]] <- bin_1_p_gap_dose
|
175 |
+
|
176 |
+
title_c <- c("Predicted Probability: Sum", "Predicted Probability: Annual")
|
177 |
+
|
178 |
+
# Plot Dose function
|
179 |
+
|
180 |
+
pdf("figure_C8.pdf", height = 4, width = 11)
|
181 |
+
par(mfrow = c(1,3), mar = c(4.5, 2, 4, 1), oma = c(0, 2, 0, 0))
|
182 |
+
for(i in 1:2){
|
183 |
+
plot_coef_all <- do.call("rbind", marginal_list_g[[i]]$out_main)
|
184 |
+
plot_x <- marginal_list_g[[i]]$treat_range
|
185 |
+
if(i <=1) ylim_u <- c(0.14, 0.22)
|
186 |
+
if(i > 1) ylim_u <- c(0.06, 0.11)
|
187 |
+
|
188 |
+
plot(plot_x, plot_coef_all[ ,2], pch = 19,
|
189 |
+
main = paste("", title_c[i], sep = ""),
|
190 |
+
ylim = ylim_u,
|
191 |
+
xlab = "Male Disadvantage",
|
192 |
+
ylab = "",
|
193 |
+
col = "black", cex = 2, type = "l", lwd = 3, cex.lab = 1.5, cex.axis = 1.5, cex.main = 1.5)
|
194 |
+
lines(plot_x, plot_coef_all[ ,1], col = "black", lty = 2)
|
195 |
+
lines(plot_x, plot_coef_all[ ,3], col = "black", lty = 2)
|
196 |
+
abline(h = marginal_list_g[[i]]$sample, lty = 2, col = "red", lwd = 2)
|
197 |
+
polygon(c(plot_x, rev(plot_x)), c(plot_coef_all[ ,1], rev(plot_coef_all[ ,3])),
|
198 |
+
col = adjustcolor("black", 0.2), border = NA)
|
199 |
+
par(new=TRUE)
|
200 |
+
hist(dat_2015_s$unemp_gendergap_2015, freq = FALSE,
|
201 |
+
breaks = seq(from = 0, to = 6, by = 0.01), xlim = c(min(plot_x), max(plot_x)),
|
202 |
+
xaxt = "n", yaxt = "n", xlab = "", ylab = "", ylim = c(0, 40), main ="")
|
203 |
+
}
|
204 |
+
par(mar = c(4.5, 5, 4, 1))
|
205 |
+
plot(seq(1:2), point_g, ylim = c(-0.01, 0.035),
|
206 |
+
ylab = "Effects on Prob (hate crime)",
|
207 |
+
main = "Effects of Male Disadvantage",
|
208 |
+
xlim = c(0.5, 2.5), xlab = "Outcome Types", xaxt = "n", pch = c(19, 15),
|
209 |
+
cex.lab = 1.5, cex.axis = 1.5, cex.main = 1.5)
|
210 |
+
segments(seq(1:6), low_g, seq(1:6), high_g, lwd = 2, c(rep("black",2), rep("black",2), rep("black",2)))
|
211 |
+
Axis(side = 1, at = c(1, 2), labels = c("Sum", "Annual"), cex.axis = 1.25)
|
212 |
+
abline(h = 0, lty = 2)
|
213 |
+
mtext(side = 2, at = 0.5, "Prob (hate crime)", outer = TRUE, line = 0.5)
|
214 |
+
dev.off()
|
32/replication_package/Help.R
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Help functions
|
2 |
+
|
3 |
+
marginal_effect <- function(out,
|
4 |
+
newdata=NULL,
|
5 |
+
main_var, family = "logit",
|
6 |
+
treat_range, difference = FALSE,
|
7 |
+
seed=1234){
|
8 |
+
|
9 |
+
fit <- out$fit
|
10 |
+
# Coef and VCOV
|
11 |
+
coef_mar <- coef(out$fit)[is.na(coef(out$fit)) == FALSE]
|
12 |
+
vcov_mar <- out$vcov
|
13 |
+
|
14 |
+
# Sample Mean of Outcomes
|
15 |
+
y_orig <- model.frame(formula(fit), data = newdata)[ ,1]
|
16 |
+
sample_mean_outcome <- mean(y_orig, na.rm = TRUE)
|
17 |
+
|
18 |
+
# Prepare model.frame and treat_range
|
19 |
+
newdata_use_b <- model.frame(formula(fit), data = newdata)
|
20 |
+
if(missing(treat_range)){
|
21 |
+
treat_range <- quantile(newdata_use_b[, main_var],
|
22 |
+
c(0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95),
|
23 |
+
na.rm = TRUE)
|
24 |
+
}
|
25 |
+
|
26 |
+
# Create new_treat and new_control automatically
|
27 |
+
newdata_use_l <- list()
|
28 |
+
for(i in 1:length(treat_range)){
|
29 |
+
newdata_use_l_b <- newdata_use_b
|
30 |
+
newdata_use_l_b[ , main_var] <- treat_range[i]
|
31 |
+
newdata_use_l_exp <- model.matrix(formula(fit), data = newdata_use_l_b)
|
32 |
+
newdata_use_l_exp <- newdata_use_l_exp[, names(coef_mar)]
|
33 |
+
newdata_use_l[[i]] <- newdata_use_l_exp
|
34 |
+
}
|
35 |
+
|
36 |
+
set.seed(seed)
|
37 |
+
sim_coef <- mvrnorm(n = 1000, mu=coef_mar, Sigma=vcov_mar)
|
38 |
+
|
39 |
+
# Linear Part
|
40 |
+
linear_out <- lapply(newdata_use_l,
|
41 |
+
FUN = function(x) as.matrix(sim_coef) %*% as.matrix(t(x)))
|
42 |
+
|
43 |
+
|
44 |
+
if(family %in% c("nb", "poisson")){
|
45 |
+
out <- lapply(linear_out, FUN = function(x) apply(exp(x), 1, mean))
|
46 |
+
}else if(family %in% c("ols")){
|
47 |
+
out <- lapply(linear_out, FUN = function(x) apply(x, 1, mean))
|
48 |
+
}else if(family %in% c("logit")){
|
49 |
+
out <- lapply(linear_out, FUN = function(x) apply((exp(x)/(1 + exp(x))), 1, mean))
|
50 |
+
}else{
|
51 |
+
warning("family should be one of 'nb', 'poisson', 'logit', and 'ols'")
|
52 |
+
}
|
53 |
+
|
54 |
+
if(difference == FALSE){
|
55 |
+
out_main <- lapply(out, FUN = function(x) c(quantile(x, c(0.025)), mean(x), quantile(x, c(0.975))))
|
56 |
+
names(out_main) <- treat_range
|
57 |
+
out_main_percent <- lapply(out,
|
58 |
+
FUN = function(x)
|
59 |
+
c(quantile(x, c(0.025)), mean(x), quantile(x, c(0.975)))/sample_mean_outcome)
|
60 |
+
names(out_main_percent) <- treat_range
|
61 |
+
}else if(difference == TRUE){
|
62 |
+
out_b <- out[[2]] - out[[1]]
|
63 |
+
out_main <- c(quantile(out_b, c(0.025)), mean(out_b), quantile(out_b, c(0.975)),
|
64 |
+
quantile(out_b, c(0.05)), quantile(out_b, c(0.95)))
|
65 |
+
out_main_percent <- out_main/sample_mean_outcome
|
66 |
+
}
|
67 |
+
|
68 |
+
output <- list("out" = out,
|
69 |
+
"out_main" = out_main,
|
70 |
+
"out_main_percent" = out_main_percent,
|
71 |
+
"sample_mean" = sample_mean_outcome,
|
72 |
+
"treat_range" = treat_range)
|
73 |
+
}
|
74 |
+
|
75 |
+
bin.summary <- function(formula, print_var, id, data, digits = 3, type = "logit"){
|
76 |
+
var <- all.vars(formula)
|
77 |
+
data_use <- model.frame( ~ ., data = data[, c(var, id)])
|
78 |
+
|
79 |
+
if(type == "logit") fit <- glm(formula, data = data_use, family = "binomial")
|
80 |
+
if(type == "probit") fit <- glm(formula, data = data_use, family = binomial(link="probit"))
|
81 |
+
tab_p <- coeftest(fit, vcov = vcovCL(fit, cluster = data_use[, id]))
|
82 |
+
|
83 |
+
if(missing(print_var)) print_var <- seq(1:min(20, nrow(tab_p)))
|
84 |
+
|
85 |
+
mat <- tab_p[print_var, ]
|
86 |
+
|
87 |
+
sig <- rep("", length(mat[,4]))
|
88 |
+
sig[mat[ , 4] < 0.001] <- "***"
|
89 |
+
sig[mat[ , 4] >= 0.001 & mat[ , 4] < 0.01] <- "**"
|
90 |
+
sig[mat[ , 4] >= 0.01 & mat[ , 4] < 0.05] <- "*"
|
91 |
+
sig[mat[ , 4] >= 0.05 & mat[ , 4] < 0.1] <- "."
|
92 |
+
mat <- as.data.frame(mat)
|
93 |
+
mat <- round(mat, digits = digits)
|
94 |
+
mat$Sig <- sig
|
95 |
+
|
96 |
+
sample_size <- length(fit$residuals)
|
97 |
+
|
98 |
+
cat("Coefficients:\n")
|
99 |
+
print(mat[, c(1, 2, 4, 5)], row.names=TRUE)
|
100 |
+
cat(paste("(Sample Size:", sample_size, ")\n", sep = ""))
|
101 |
+
|
102 |
+
output <- list("fit" = fit, "vcov" = vcovCL(fit, cluster = data_use[, id]),
|
103 |
+
"sample" = sample_size)
|
104 |
+
|
105 |
+
return(output)
|
106 |
+
}
|
107 |
+
|
108 |
+
lm.summary <- function(formula, print_var, id, data, digits = 3){
|
109 |
+
var <- all.vars(formula)
|
110 |
+
data_use <- model.frame( ~ ., data = data[, c(var, id)])
|
111 |
+
|
112 |
+
fit <- lm(formula, data = data_use)
|
113 |
+
tab_p <- coeftest(fit, vcov = vcovCL(fit, cluster = data_use[, id]))
|
114 |
+
|
115 |
+
if(missing(print_var)) print_var <- seq(1:min(20, nrow(tab_p)))
|
116 |
+
|
117 |
+
mat <- tab_p[print_var, ]
|
118 |
+
|
119 |
+
sig <- rep("", length(mat[,4]))
|
120 |
+
sig[mat[ , 4] < 0.001] <- "***"
|
121 |
+
sig[mat[ , 4] >= 0.001 & mat[ , 4] < 0.01] <- "**"
|
122 |
+
sig[mat[ , 4] >= 0.01 & mat[ , 4] < 0.05] <- "*"
|
123 |
+
sig[mat[ , 4] >= 0.05 & mat[ , 4] < 0.1] <- "."
|
124 |
+
mat <- as.data.frame(mat)
|
125 |
+
mat <- round(mat, digits = digits)
|
126 |
+
mat$Sig <- sig
|
127 |
+
|
128 |
+
sample_size <- length(fit$residuals)
|
129 |
+
|
130 |
+
cat("Coefficients:\n")
|
131 |
+
print(mat[, c(1, 2, 4, 5)], row.names=TRUE)
|
132 |
+
cat(paste("(Sample Size:", sample_size, ")\n", sep = ""))
|
133 |
+
|
134 |
+
output <- list("fit" = fit, "vcov" = vcovCL(fit, cluster = data_use[, id]),
|
135 |
+
"sample" = sample_size)
|
136 |
+
|
137 |
+
return(output)
|
138 |
+
}
|
139 |
+
|
140 |
+
|
141 |
+
glm.boot <- function(formula, data, family, cluster_id, boot = 1000, seed = 1234){
|
142 |
+
|
143 |
+
set.seed(seed)
|
144 |
+
data$cluster_id <- cluster_id
|
145 |
+
|
146 |
+
data_u <- data[is.na(data$cluster_id) == FALSE, ]
|
147 |
+
coef_boot <- c()
|
148 |
+
for(b in 1:boot){
|
149 |
+
boot_id <- sample(unique(data_u$cluster_id), size = length(unique(data_u$cluster_id)), replace=TRUE)
|
150 |
+
# create bootstap sample with sapply
|
151 |
+
boot_which <- sapply(boot_id, function(x) which(data_u$cluster_id == x))
|
152 |
+
data_boot <- data_u[unlist(boot_which),]
|
153 |
+
if(family == "poisson"){
|
154 |
+
glm_boot <- glm(formula, family = "poisson", data = data_boot)
|
155 |
+
coef_boot <- cbind(coef_boot, summary(glm_boot)$coef[,1])
|
156 |
+
}else if(family == "negative-binomial"){
|
157 |
+
glm_nb_boot <- glm.nb(formula, data = data_boot)
|
158 |
+
coef_boot <- cbind(coef_boot, summary(glm_nb_boot)$coef[,1])
|
159 |
+
}
|
160 |
+
if((b%%100) == 0) cat(paste(b, "..."))
|
161 |
+
}
|
162 |
+
if(family == "poisson"){
|
163 |
+
glm_boot_final <- glm(formula, family = "poisson", data = data)
|
164 |
+
}else if(family == "negative-binomial"){
|
165 |
+
glm_boot_final <- glm.nb(formula, data = data)
|
166 |
+
}
|
167 |
+
se <- apply(coef_boot, 1, sd) # bootstrap SE
|
168 |
+
coef <- glm_boot_final$coefficients
|
169 |
+
|
170 |
+
output <- list("fit" = glm_boot_final, "coef" = coef, "se" = se)
|
171 |
+
|
172 |
+
return(output)
|
173 |
+
}
|
174 |
+
|
175 |
+
star_out <- function(out, name){
|
176 |
+
writeLines(capture.output(out), name)
|
177 |
+
}
|
32/replication_package/SurveyAnalysis_Appendix.R
ADDED
@@ -0,0 +1,810 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Replication File for Appendix: Survey Analysis
|
2 |
+
# Appendix D2 Figure D2: Replicate Figure 3 with only among anti-refugees
|
3 |
+
# Appendix D3 Figure D3: Variables Predicting Mate Competition vs. Other Views About Refugees
|
4 |
+
# Appendix D4 Figures D.4.1 and D.4.2: Replicate Figure 4 with wave 1
|
5 |
+
# Appendix D5 Table D.5: Table representation of Figure 5
|
6 |
+
# Appendix D6 Table D.6.1, Figure.6.2, Table.D.6.3, Table.D.6.4
|
7 |
+
# Appendix D8 Table D.8.1: Robustness Check with YouGov Survey Data
|
8 |
+
|
9 |
+
# R version 4.0.2 (2020-06-22)
|
10 |
+
|
11 |
+
# ##################
|
12 |
+
# Data Preparation
|
13 |
+
# ##################
|
14 |
+
rm(list=ls())
|
15 |
+
# install.packages("readstata13") # readstata13_0.9.2
|
16 |
+
# install.packages("MASS") # MASS_7.3-51.6
|
17 |
+
# install.packages("sandwich") # sandwich_2.5-1
|
18 |
+
# install.packages("lmtest") # lmtest_0.9-37
|
19 |
+
# install.packages("stargazer") # stargazer_5.2.2
|
20 |
+
# install.packages("foreign") # foreign_0.8-80
|
21 |
+
# install.packages("list") # list_9.2
|
22 |
+
|
23 |
+
|
24 |
+
require(readstata13) # readstata13_0.9.2
|
25 |
+
require(MASS) # MASS_7.3-51.6
|
26 |
+
require(sandwich) # sandwich_2.5-1
|
27 |
+
require(lmtest) # lmtest_0.9-37
|
28 |
+
require(stargazer) # stargazer_5.2.2
|
29 |
+
require(foreign) # foreign_0.8-80
|
30 |
+
require(list) # list_9.2
|
31 |
+
source("Help.R")
|
32 |
+
|
33 |
+
dat <- read.dta13(file = "survey.dta")
|
34 |
+
|
35 |
+
# Subset to people who pass the check
|
36 |
+
dat_use <- dat[dat$wave == 4, ]
|
37 |
+
|
38 |
+
## ###############################
|
39 |
+
## 1: Appendix D2 Figure D2
|
40 |
+
## ###############################
|
41 |
+
# Replicate only among anti-refugee
|
42 |
+
quantile(dat_use$refugee_ind, probs = 0.75)
|
43 |
+
|
44 |
+
dat_use_r <- dat_use[dat_use$refugee_ind > 0.875, ]
|
45 |
+
dat_use_r$MateComp.cont_bin <- ifelse(dat_use_r$MateComp.cont >= 3, 1, 0)
|
46 |
+
dat_use_r$excess_c <- ifelse(dat_use_r$pop_15_44_muni_gendergap_2015 < 1.04, "1",
|
47 |
+
ifelse(dat_use_r$pop_15_44_muni_gendergap_2015 < 1.12, "2", "3"))
|
48 |
+
dat_male_r <- dat_use_r[dat_use_r$gender == "Male" & dat_use_r$age <= 44 & dat_use_r$age >= 18, ]
|
49 |
+
dat_male_y_r <- dat_use_r[dat_use_r$gender == "Male" & dat_use_r$age <= 40 & dat_use_r$age >= 30, ]
|
50 |
+
|
51 |
+
mean_all_r <- tapply(dat_use_r$MateComp.cont_bin, dat_use_r$excess_c, mean)
|
52 |
+
se_all_r <- tapply(dat_use_r$MateComp.cont_bin, dat_use_r$excess_c, sd)/sqrt(table(dat_use_r$excess_c))
|
53 |
+
|
54 |
+
mean_all_m_r <- tapply(dat_male_r$MateComp.cont_bin, dat_male_r$excess_c, mean)
|
55 |
+
se_all_m_r <- tapply(dat_male_r$MateComp.cont_bin, dat_male_r$excess_c, sd)/sqrt(table(dat_male_r$excess_c))
|
56 |
+
|
57 |
+
mean_all_y_r <- tapply(dat_male_y_r$MateComp.cont_bin, dat_male_y_r$excess_c, mean)
|
58 |
+
se_all_y_r <- tapply(dat_male_y_r$MateComp.cont_bin, dat_male_y_r$excess_c, sd)/sqrt(table(dat_male_y_r$excess_c))
|
59 |
+
|
60 |
+
pdf("figure_D2.pdf", height= 6, width = 17.5)
|
61 |
+
par(mfrow = c(1, 3), mar = c(2,2,3,2), oma = c(4,4,0,0))
|
62 |
+
plot(seq(1:3), mean_all_r, pch = 19, ylim = c(0, 1),
|
63 |
+
xlim = c(0.5, 3.5),
|
64 |
+
main = "All", xaxt = "n", xlab = "", ylab = "", cex.axis = 2.25, cex.main = 2.5,
|
65 |
+
cex = 2.25, cex.lab = 2.5)
|
66 |
+
segments(seq(1:3), mean_all_r - 1.96*se_all_r,
|
67 |
+
seq(1:3), mean_all_r + 1.96*se_all_r, pch = 19, lwd = 3)
|
68 |
+
Axis(side = 1, at = c(1,2,3), labels = c("1st tercile", "2nd tercile", "3rd tercile"), cex.axis = 2.25)
|
69 |
+
|
70 |
+
plot(seq(1:3), mean_all_m_r, pch = 19, ylim = c(0, 1),
|
71 |
+
xlim = c(0.5, 3.5),
|
72 |
+
main = "Male (18-44)", xaxt = "n", xlab = "", ylab = "", cex.axis = 2.25, cex.main = 2.5,
|
73 |
+
cex = 2.25, cex.lab = 2.5)
|
74 |
+
segments(seq(1:3), mean_all_m_r - 1.96*se_all_m_r,
|
75 |
+
seq(1:3), mean_all_m_r + 1.96*se_all_m_r, pch = 19, lwd = 3)
|
76 |
+
Axis(side = 1, at = c(1,2,3), labels = c("1st tercile", "2nd tercile", "3rd tercile"), cex.axis = 2.25)
|
77 |
+
|
78 |
+
plot(seq(1:3), mean_all_y_r, pch = 19, ylim = c(0, 1),
|
79 |
+
xlim = c(0.5, 3.5),
|
80 |
+
main = "Male (30 - 40)", xaxt = "n", xlab = "", ylab = "", cex.axis = 2.25, cex.main = 2.5,
|
81 |
+
cex = 2.25, cex.lab = 2.5)
|
82 |
+
segments(seq(1:3), mean_all_y_r - 1.96*se_all_y_r,
|
83 |
+
seq(1:3), mean_all_y_r + 1.96*se_all_y_r, pch = 19, lwd = 3)
|
84 |
+
Axis(side = 1, at = c(1,2,3), labels = c("1st tercile", "2nd tercile", "3rd tercile"), cex.axis = 2.25)
|
85 |
+
mtext("Proportion Perceiving Mate Competition", side = 2, outer = TRUE, at = 0.5,
|
86 |
+
cex = 1.5, line = 1.75)
|
87 |
+
mtext("Excess Males", side = 1, outer = TRUE, at = 0.175,
|
88 |
+
cex = 1.5, line = 1.75)
|
89 |
+
mtext("Excess Males", side = 1, outer = TRUE, at = 0.5,
|
90 |
+
cex = 1.5, line = 1.75)
|
91 |
+
mtext("Excess Males", side = 1, outer = TRUE, at = 0.825,
|
92 |
+
cex = 1.5, line = 1.75)
|
93 |
+
dev.off()
|
94 |
+
|
95 |
+
|
96 |
+
## ###############################
|
97 |
+
## 2: Appendix D3 Figure D3
|
98 |
+
## ###############################
|
99 |
+
# Coefficients of Male x Single on Refugee Variables
|
100 |
+
|
101 |
+
rm(list=ls())
|
102 |
+
dat <- read.dta13(file = "survey.dta")
|
103 |
+
dat_use <- dat[dat$wave == 4, ]
|
104 |
+
source("Help.R")
|
105 |
+
dat_use$male <- as.numeric(dat_use$gender == "Male")
|
106 |
+
|
107 |
+
# outcomes we want to analyze
|
108 |
+
outcome_ref <- c("MateComp.cont", "JobComp.cont", "ref_integrating",
|
109 |
+
"ref_citizenship","ref_reduce","ref_moredone", "ref_cultgiveup",
|
110 |
+
"ref_economy", "ref_crime", "ref_terror", "ref_loc_services",
|
111 |
+
"ref_loc_economy", "ref_loc_crime", "ref_loc_culture",
|
112 |
+
"ref_loc_islam", "ref_loc_schools", "ref_loc_housing", "ref_loc_wayoflife")
|
113 |
+
|
114 |
+
outcome_ref_name <- c("Mate competition", "Job competition", "Integration",
|
115 |
+
"Citizenship for refugees","Number of refugees","More for refugees",
|
116 |
+
"Culture",
|
117 |
+
"Economy", "Crime", "Terrorism", "Local social services",
|
118 |
+
"Local economy", "Local crime", "Local culture",
|
119 |
+
"Islam", "Local school", "Housing", "Living")
|
120 |
+
|
121 |
+
# Fit Ordered Logit
|
122 |
+
lm_l <- list()
|
123 |
+
lm_out <- list()
|
124 |
+
male_mat <- sing_mat <- int_mat <- matrix(NA, nrow = 18, ncol = 2)
|
125 |
+
for(i in 1:18){
|
126 |
+
control <- paste(outcome_ref[-i], collapse = "+")
|
127 |
+
for_i <- paste("as.factor(", outcome_ref[i],")", "~ male*singdivsep + ", control, sep = "")
|
128 |
+
lm_l[[i]] <- polr(for_i, data = dat_use, Hess = TRUE)
|
129 |
+
lm_out[[i]] <- summary(lm_l[[i]])$coef
|
130 |
+
male_mat[i, 1:2] <- summary(lm_l[[i]])$coef["male", 1:2]
|
131 |
+
sing_mat[i, 1:2] <- summary(lm_l[[i]])$coef["singdivsep", 1:2]
|
132 |
+
int_mat[i, 1:2] <- summary(lm_l[[i]])$coef["male:singdivsep", 1:2]
|
133 |
+
}
|
134 |
+
rownames(int_mat) <- outcome_ref
|
135 |
+
|
136 |
+
# Fit linear regression
|
137 |
+
lm2_l <- list()
|
138 |
+
lm2_out <- list()
|
139 |
+
male_mat2 <- sing_mat2 <- int_mat2 <- matrix(NA, nrow = 18, ncol = 2)
|
140 |
+
for(i in 1:18){
|
141 |
+
control <- paste(outcome_ref[-i], collapse = "+")
|
142 |
+
for_i <- paste(outcome_ref[i], "~ male*singdivsep + ", control, sep = "")
|
143 |
+
lm2_l[[i]] <- lm(for_i, data = dat_use)
|
144 |
+
lm2_out[[i]] <- summary(lm2_l[[i]])$coef
|
145 |
+
male_mat2[i, 1:2] <- summary(lm2_l[[i]])$coef["male", 1:2]
|
146 |
+
sing_mat2[i, 1:2] <- summary(lm2_l[[i]])$coef["singdivsep", 1:2]
|
147 |
+
int_mat2[i, 1:2] <- summary(lm2_l[[i]])$coef["male:singdivsep", 1:2]
|
148 |
+
}
|
149 |
+
rownames(int_mat2) <- outcome_ref
|
150 |
+
|
151 |
+
|
152 |
+
# Show Coefficients for Male x Single Interaction (after controlling for other refugee variables)
|
153 |
+
# Both Ordered Logit and Linear regression
|
154 |
+
col_p <- rev(c("red", rep("black", 17)))
|
155 |
+
|
156 |
+
pdf("figure_D3_1.pdf", height = 6, width = 8)
|
157 |
+
par(mfrow = c(1, 2), mar = c(4, 2, 4, 1), oma = c(1, 10, 2, 2))
|
158 |
+
plot(rev(int_mat[,1]), seq(1:18), pch = 19, xlim = c(-0.6, 1.0), ylim = c(1, 18),
|
159 |
+
xlab = "Coefficients", ylab = "", yaxt = "n",
|
160 |
+
main = "Ordered logit", col = col_p)
|
161 |
+
segments(rev(int_mat[,1]) - 1.96*rev(int_mat[,2]), seq(1:18),
|
162 |
+
rev(int_mat[,1]) + 1.96*rev(int_mat[,2]), seq(1:18), col = col_p)
|
163 |
+
abline(v = 0, lty = 2)
|
164 |
+
|
165 |
+
plot(rev(int_mat2[,1]), seq(1:18), pch = 19, xlim = c(-0.3, 0.3), ylim = c(1, 18),
|
166 |
+
xlab = "Coefficients", ylab = "", yaxt = "n",
|
167 |
+
main = "Linear regression", col = col_p)
|
168 |
+
segments(rev(int_mat2[,1]) - 1.96*rev(int_mat2[,2]), seq(1:18),
|
169 |
+
rev(int_mat2[,1]) + 1.96*rev(int_mat2[,2]), seq(1:18), col = col_p)
|
170 |
+
abline(v = 0, lty = 2)
|
171 |
+
|
172 |
+
Axis(side = 2, at = seq(1:18), labels = rev(outcome_ref_name), las = 1, tick = 0,
|
173 |
+
outer = TRUE, hadj = 0, line = 7.5)
|
174 |
+
mtext(side = 3, at = 0.5, text = "Coefficients of Male x Single", cex = 1.5, font = 2, outer = TRUE)
|
175 |
+
dev.off()
|
176 |
+
|
177 |
+
# ######################################
|
178 |
+
# Coefficients of Women's Role on Mate Competition
|
179 |
+
# ######################################
|
180 |
+
# Ordered Logit
|
181 |
+
lm_l <- list()
|
182 |
+
lm_out <- list()
|
183 |
+
role_mat <- matrix(NA, nrow = 18, ncol = 2)
|
184 |
+
for(i in 1:18){
|
185 |
+
control <- paste(outcome_ref[-i], collapse = "+")
|
186 |
+
for_i <- paste("as.factor(", outcome_ref[i], ")", "~ women_role + ", control, sep = "")
|
187 |
+
lm_l[[i]] <- polr(for_i, data = dat_use, Hess = TRUE)
|
188 |
+
lm_out[[i]] <- summary(lm_l[[i]])$coef
|
189 |
+
role_mat[i, 1:2] <- summary(lm_l[[i]])$coef["women_role", 1:2]
|
190 |
+
}
|
191 |
+
rownames(role_mat) <- outcome_ref
|
192 |
+
|
193 |
+
# OLS
|
194 |
+
lm_l2 <- list()
|
195 |
+
lm_out2 <- list()
|
196 |
+
role_mat2 <- matrix(NA, nrow = 18, ncol = 2)
|
197 |
+
for(i in 1:18){
|
198 |
+
control <- paste(outcome_ref[-i], collapse = "+")
|
199 |
+
for_i <- paste(outcome_ref[i], "~ women_role + ", control, sep = "")
|
200 |
+
lm_l2[[i]] <- lm(for_i, data = dat_use)
|
201 |
+
lm_out2[[i]] <- summary(lm_l2[[i]])$coef
|
202 |
+
role_mat2[i, 1:2] <- summary(lm_l2[[i]])$coef["women_role", 1:2]
|
203 |
+
}
|
204 |
+
rownames(role_mat2) <- outcome_ref
|
205 |
+
|
206 |
+
pdf("figure_D3_2.pdf", height = 6, width = 8)
|
207 |
+
par(mfrow = c(1, 2), mar = c(4, 2, 4, 1), oma = c(1, 10, 2, 2))
|
208 |
+
|
209 |
+
plot(rev(role_mat[,1]), seq(1:18), pch = 19, xlim = c(-0.3, 0.6), ylim = c(1, 18),
|
210 |
+
xlab = "Coefficients", ylab = "", yaxt = "n",
|
211 |
+
main = "Ordered logit", col = col_p)
|
212 |
+
segments(rev(role_mat[,1]) - 1.96*rev(role_mat[,2]), seq(1:18),
|
213 |
+
rev(role_mat[,1]) + 1.96*rev(role_mat[,2]), seq(1:18), col = col_p)
|
214 |
+
abline(v = 0, lty = 2)
|
215 |
+
|
216 |
+
plot(rev(role_mat2[,1]), seq(1:18), pch = 19, xlim = c(-0.1, 0.15), ylim = c(1, 18),
|
217 |
+
xlab = "Coefficients", ylab = "", yaxt = "n",
|
218 |
+
main = "Linear regression", col = col_p)
|
219 |
+
segments(rev(role_mat2[,1]) - 1.96*rev(role_mat2[,2]), seq(1:18),
|
220 |
+
rev(role_mat2[,1]) + 1.96*rev(role_mat2[,2]), seq(1:18), col = col_p)
|
221 |
+
abline(v = 0, lty = 2)
|
222 |
+
|
223 |
+
Axis(side = 2, at = seq(1:18), labels = rev(outcome_ref_name), las = 1, tick = 0,
|
224 |
+
outer = TRUE, hadj = 0, line = 7.5)
|
225 |
+
|
226 |
+
mtext(side = 3, at = 0.5, text = "Coefficients of Women's Role",
|
227 |
+
cex = 1.5, font = 2, outer = TRUE)
|
228 |
+
dev.off()
|
229 |
+
|
230 |
+
|
231 |
+
## ###################################
|
232 |
+
## Appendix D4: Figure D.4.1 & D.4.2
|
233 |
+
## ###################################
|
234 |
+
# Replicate Figure 3 with Wave 1
|
235 |
+
data.u1 <- dat[dat$wave == 1, ]
|
236 |
+
|
237 |
+
data.u1$List.treat <- ifelse(data.u1$treatment_list == "Scenario 2", 1, 0)
|
238 |
+
|
239 |
+
# Difference-in-Means (0.12618)
|
240 |
+
# Message (hate_pol_message):
|
241 |
+
# Attacks against refugee homes are sometimes necessary to make it clear to politicians that we have a refugee problem
|
242 |
+
diff.in.means.results <- ictreg(outcome_list ~ 1, data = data.u1,
|
243 |
+
treat = "List.treat", J = 3, method = "lm")
|
244 |
+
summary(diff.in.means.results)
|
245 |
+
|
246 |
+
data.u1$means_bin <- ifelse(data.u1$hate_violence_means >= 3, 1, 0)
|
247 |
+
data.u1$condemn_bin <- ifelse(data.u1$hate_polcondemn >= 3, 1, 0)
|
248 |
+
data.u1$justified_bin <- ifelse(data.u1$hate_justified >= 3, 1, 0)
|
249 |
+
|
250 |
+
only.mean <- mean(data.u1$means_bin)
|
251 |
+
condemn.mean <- mean(data.u1$condemn_bin)
|
252 |
+
justified.mean <- mean(data.u1$justified_bin)
|
253 |
+
|
254 |
+
only.se <- sd(data.u1$means_bin)/sqrt(length(data.u1$means_bin))
|
255 |
+
condemn.se <- sd(data.u1$condemn_bin)/sqrt(length(data.u1$condemn_bin))
|
256 |
+
justified.se <- sd(data.u1$justified_bin)/sqrt(length(data.u1$justified_bin))
|
257 |
+
|
258 |
+
# plot different questions within the same wave
|
259 |
+
point <- c(summary(diff.in.means.results)$par.treat, only.mean, condemn.mean, justified.mean)
|
260 |
+
se_p <- c(summary(diff.in.means.results)$se.treat, only.se, condemn.se, justified.se)
|
261 |
+
base <- barplot(point, ylim = c(0, 0.20))
|
262 |
+
bar_name_u <- c("Message (List)", "Only Means", "Condemn", "Justified")
|
263 |
+
bar_name <- rep("",4)
|
264 |
+
|
265 |
+
# Figure D.4.1
|
266 |
+
pdf("figure_D4_1.pdf", height = 4.5, width = 8)
|
267 |
+
par(mar = c(4, 5, 2, 1))
|
268 |
+
barplot(point, ylim = c(0, 0.3), names.arg = bar_name,
|
269 |
+
col = c(adjustcolor("red", 0.4), "gray", "gray", "gray"), cex.axis = 1.3)
|
270 |
+
arrows(base[,1], point - 1.96*se_p, base[,1], point + 1.96*se_p,
|
271 |
+
lwd = 3, angle = 90, length = 0.05, code = 3,
|
272 |
+
col = c("red", "black", "black", "black"))
|
273 |
+
mtext(bar_name_u[1], outer = FALSE, side = 1, at = base[1], cex = 1.2, line = 2.4)
|
274 |
+
mtext(bar_name_u[2], outer = FALSE, side = 1, at = base[2], cex = 1.2, line = 2.4)
|
275 |
+
mtext(bar_name_u[3], outer = FALSE, side = 1, at = base[3], cex = 1.2, line = 2.4)
|
276 |
+
mtext(bar_name_u[4], outer = FALSE, side = 1, at = base[4], cex = 1.2, line = 2.4)
|
277 |
+
text(x = base[1], y = 0.28, "Estimate from \nList Experiment", col = "red", font = 2)
|
278 |
+
text(x = base[3], y = 0.28, "Direct Questions", font = 2)
|
279 |
+
dev.off()
|
280 |
+
|
281 |
+
## "Message" across Waves
|
282 |
+
data.u1 <- dat[dat$wave == 1, ]
|
283 |
+
data.u2 <- dat[dat$wave == 2, ]
|
284 |
+
data.u3 <- dat[dat$wave == 3, ]
|
285 |
+
data.u4 <- dat[dat$wave == 4, ]
|
286 |
+
dat_all <- rbind(data.u1, data.u2, data.u3, data.u4)
|
287 |
+
|
288 |
+
dat_all$hate_pol_message_bin <- ifelse(dat_all$hate_pol_message >=3, 1, 0)
|
289 |
+
message_direct <- tapply(dat_all$hate_pol_message_bin, dat_all$wave, mean, na.rm = TRUE)[c(2,3,4)]
|
290 |
+
message_direct_num <- tapply(dat_all$hate_pol_message_bin, dat_all$wave, function(x) sum(is.na(x)==FALSE))[c(2,3,4)]
|
291 |
+
message_direct_se <- tapply(dat_all$hate_pol_message_bin, dat_all$wave, sd, na.rm = TRUE)[c(2,3,4)]/sqrt(message_direct_num)
|
292 |
+
|
293 |
+
# plot The same question over time
|
294 |
+
point <- c(summary(diff.in.means.results)$par.treat, message_direct)
|
295 |
+
se_p <- c(summary(diff.in.means.results)$se.treat, message_direct_se)
|
296 |
+
base <- barplot(point, ylim = c(0, 0.20))
|
297 |
+
bar_name_u <- c("Message \n(List)", "Message \n(Direct, Wave 2)",
|
298 |
+
"Message \n(Direct, Wave 3)", "Message \n(Direct, Wave 4)")
|
299 |
+
bar_name <- rep("",4)
|
300 |
+
|
301 |
+
# Figure D.4.2
|
302 |
+
pdf("figure_D4_2.pdf", height = 4.5, width = 8)
|
303 |
+
par(mar = c(4, 5, 2, 1))
|
304 |
+
barplot(point, ylim = c(0, 0.25), names.arg = bar_name,
|
305 |
+
col = c(adjustcolor("red", 0.4), "gray", "gray", "gray"), cex.axis = 1.3,
|
306 |
+
ylab = "Proportion of respondents", cex.lab = 1.45)
|
307 |
+
arrows(base[,1], point - 1.96*se_p, base[,1], point + 1.96*se_p,
|
308 |
+
lwd = 3, angle = 90, length = 0.05, code = 3,
|
309 |
+
col = c("red", "black", "black", "black"))
|
310 |
+
mtext(bar_name_u[1], outer = FALSE, side = 1, at = base[1], cex = 1.2, line = 2.4)
|
311 |
+
mtext(bar_name_u[2], outer = FALSE, side = 1, at = base[2], cex = 1.2, line = 2.4)
|
312 |
+
mtext(bar_name_u[3], outer = FALSE, side = 1, at = base[3], cex = 1.2, line = 2.4)
|
313 |
+
mtext(bar_name_u[4], outer = FALSE, side = 1, at = base[4], cex = 1.2, line = 2.4)
|
314 |
+
text(x = base[1], y = 0.225, "Estimate from \nList Experiment", col = "red", font = 2)
|
315 |
+
text(x = base[3], y = 0.225, "Direct Questions", font = 2)
|
316 |
+
dev.off()
|
317 |
+
|
318 |
+
|
319 |
+
# #############################
|
320 |
+
# Appendix D5 Table D5
|
321 |
+
# #############################
|
322 |
+
formula.5 <-
|
323 |
+
as.character("hate_violence_means ~ MateComp.cont + JobComp.cont +
|
324 |
+
LifeSatis.cont + factor(age_group) + factor(gender) +
|
325 |
+
factor(state) + factor(citizenship) + factor(marital) +
|
326 |
+
factor(religion) + eduyrs + factor(occupation) +
|
327 |
+
factor(income) + factor(household_size) + factor(self_econ) +
|
328 |
+
factor(ref_integrating) + factor(ref_citizenship) + factor(ref_reduce) +
|
329 |
+
factor(ref_moredone) + factor(ref_cultgiveup) +
|
330 |
+
factor(ref_economy) + factor(ref_crime) + factor(ref_terror) +
|
331 |
+
factor(ref_loc_services) + factor(ref_loc_economy) + factor(ref_loc_crime) +
|
332 |
+
factor(ref_loc_culture) + factor(ref_loc_islam) +
|
333 |
+
factor(ref_loc_schools) + factor(ref_loc_housing) + factor(ref_loc_wayoflife)")
|
334 |
+
|
335 |
+
formula.6 <- paste(formula.5, "factor(distance_ref) + factor(settle_ref)",
|
336 |
+
"lrscale + afd + muslim_ind + afd_ind + contact_ind",
|
337 |
+
sep="+", collapse="+")
|
338 |
+
|
339 |
+
# with Difference Outcomes
|
340 |
+
# hate_pol_message : "82. Support for Hate Crime_Attacks against refugee homes are somet"
|
341 |
+
# hate_prevent_settlement : "82. Support for Hate Crime_Racist violence is defensible if it lea"
|
342 |
+
# hate_polcondemn : "82. Support for Hate Crime_Politicians should condemn attacks agai"
|
343 |
+
# hate_justified: "82. Support for Hate Crime_Hostility against foreigners is sometimes justified"
|
344 |
+
|
345 |
+
formula.7.means <- paste("hate_violence_means ~ ", as.character(as.formula(formula.6))[3], sep = "")
|
346 |
+
formula.7.message <- paste("hate_pol_message ~", as.character(as.formula(formula.6))[3], sep = "")
|
347 |
+
formula.7.prevent <- paste("hate_prevent_settlement ~", as.character(as.formula(formula.6))[3], sep = "")
|
348 |
+
formula.7.condemn <- paste("hate_polcondemn ~ ", as.character(as.formula(formula.6))[3], sep = "")
|
349 |
+
formula.7.justified <- paste("hate_justified ~ ", as.character(as.formula(formula.6))[3], sep = "")
|
350 |
+
|
351 |
+
# output
|
352 |
+
lm7.means <- lm(as.formula(formula.7.means), data=dat_use)
|
353 |
+
lm7.justified <- lm(as.formula(formula.7.justified), data=dat_use)
|
354 |
+
lm7.message <- lm(as.formula(formula.7.message), data=dat_use)
|
355 |
+
lm7.prevent <- lm(as.formula(formula.7.prevent), data=dat_use)
|
356 |
+
lm7.condemn <- lm(as.formula(formula.7.condemn), data=dat_use)
|
357 |
+
|
358 |
+
## Table D.5 (in Appendix D.5)
|
359 |
+
lm.list_d <- list(lm7.means, lm7.justified, lm7.message, lm7.prevent, lm7.condemn)
|
360 |
+
star_out(stargazer(lm.list_d,
|
361 |
+
covariate.labels = c("Mate Competition","Job Competition","Life Satisfaction"),
|
362 |
+
keep=c("MateComp.cont","JobComp.cont","LifeSatis.cont")),
|
363 |
+
name = "table_D5_1.tex")
|
364 |
+
|
365 |
+
## ##################################
|
366 |
+
## Table D.5.2 (appendix) with East/West
|
367 |
+
## ##################################
|
368 |
+
rm(list=ls())
|
369 |
+
# Set the directly appropriately
|
370 |
+
|
371 |
+
dat <- read.dta13(file = "survey.dta")
|
372 |
+
source("Help.R")
|
373 |
+
|
374 |
+
# Subset to wave 4
|
375 |
+
dat_use <- dat[dat$wave == 4, ]
|
376 |
+
{
|
377 |
+
dat_use$west <- 1 - dat_use$east
|
378 |
+
|
379 |
+
# remove state
|
380 |
+
formula.5_int <-
|
381 |
+
as.character("hate_violence_means ~ MateComp.cont*west + JobComp.cont +
|
382 |
+
LifeSatis.cont + factor(age_group) + factor(gender) +
|
383 |
+
factor(citizenship) + factor(marital) +
|
384 |
+
factor(religion) + eduyrs + factor(occupation) +
|
385 |
+
factor(income) + factor(household_size) + factor(self_econ) +
|
386 |
+
factor(ref_integrating) + factor(ref_citizenship) + factor(ref_reduce) +
|
387 |
+
factor(ref_moredone) + factor(ref_cultgiveup) +
|
388 |
+
factor(ref_economy) + factor(ref_crime) + factor(ref_terror) +
|
389 |
+
factor(ref_loc_services) + factor(ref_loc_economy) + factor(ref_loc_crime) +
|
390 |
+
factor(ref_loc_culture) + factor(ref_loc_islam) +
|
391 |
+
factor(ref_loc_schools) + factor(ref_loc_housing) + factor(ref_loc_wayoflife)")
|
392 |
+
|
393 |
+
formula.6_int <- paste(formula.5_int, "factor(distance_ref) + factor(settle_ref)",
|
394 |
+
"lrscale + afd + muslim_ind + afd_ind + contact_ind",
|
395 |
+
sep="+", collapse="+")
|
396 |
+
|
397 |
+
## Interaction with East/West
|
398 |
+
# with Difference Outcomes
|
399 |
+
# hate_pol_message: "82. Support for Hate Crime_Attacks against refugee homes are somet"
|
400 |
+
# hate_prevent_settlement: "82. Support for Hate Crime_Racist violence is defensible if it lea"
|
401 |
+
# hate_polcondemn: "82. Support for Hate Crime_Politicians should condemn attacks agai"
|
402 |
+
# hate_justified: "82. Support for Hate Crime_Hostility against foreigners is sometimes justified"
|
403 |
+
|
404 |
+
formula.7_int.means <- paste("hate_violence_means ~ ",
|
405 |
+
as.character(as.formula(formula.6_int))[3], sep = "")
|
406 |
+
formula.7_int.message <- paste("hate_pol_message ~",
|
407 |
+
as.character(as.formula(formula.6_int))[3], sep = "")
|
408 |
+
formula.7_int.prevent <- paste("hate_prevent_settlement ~",
|
409 |
+
as.character(as.formula(formula.6_int))[3], sep = "")
|
410 |
+
formula.7_int.condemn <- paste("hate_polcondemn ~ ",
|
411 |
+
as.character(as.formula(formula.6_int))[3], sep = "")
|
412 |
+
formula.7_int.justified <- paste("hate_justified ~ ",
|
413 |
+
as.character(as.formula(formula.6_int))[3], sep = "")
|
414 |
+
|
415 |
+
# output
|
416 |
+
lm7_int.means <- lm(as.formula(formula.7_int.means), data = dat_use)
|
417 |
+
lm7_int.justified <- lm(as.formula(formula.7_int.justified), data=dat_use)
|
418 |
+
lm7_int.message <- lm(as.formula(formula.7_int.message), data=dat_use)
|
419 |
+
lm7_int.prevent <- lm(as.formula(formula.7_int.prevent), data=dat_use)
|
420 |
+
lm7_int.condemn <- lm(as.formula(formula.7_int.condemn), data=dat_use)
|
421 |
+
|
422 |
+
## Table D.5.2 (in Appendix D.5)
|
423 |
+
lm.list_int <- list(lm7_int.means, lm7_int.justified, lm7_int.message, lm7_int.prevent, lm7_int.condemn)
|
424 |
+
star_out(stargazer(lm.list_int,
|
425 |
+
covariate.labels = c("Mate Competition",
|
426 |
+
"West",
|
427 |
+
"Job Competition","Life Satisfaction",
|
428 |
+
"Mate Competition x West"),
|
429 |
+
keep=c("MateComp.cont", "west",
|
430 |
+
"JobComp.cont","LifeSatis.cont",
|
431 |
+
"MateComp.cont:west")),
|
432 |
+
name = "table_D5_2.tex")
|
433 |
+
}
|
434 |
+
|
435 |
+
# ##########################################
|
436 |
+
# Appendix D6: Replcate Results with Men
|
437 |
+
# ##########################################
|
438 |
+
rm(list=ls())
|
439 |
+
# Set the directly appropriately
|
440 |
+
|
441 |
+
dat <- read.dta13(file = "survey.dta")
|
442 |
+
source("Help.R")
|
443 |
+
|
444 |
+
# Subset to wave 4
|
445 |
+
dat_use <- dat[dat$wave == 4, ]
|
446 |
+
dat_male <- dat_use[dat_use$gender == "Male",]
|
447 |
+
dat_female <- dat_use[dat_use$gender == "Female",]
|
448 |
+
|
449 |
+
# ##########################################
|
450 |
+
# Table D.6.1: Replicate Main Models
|
451 |
+
# ##########################################
|
452 |
+
{
|
453 |
+
|
454 |
+
lm1 <- lm(hate_violence_means ~ MateComp.cont, data=dat_male)
|
455 |
+
|
456 |
+
lm2 <- lm(hate_violence_means ~ MateComp.cont + JobComp.cont + LifeSatis.cont, data=dat_male)
|
457 |
+
|
458 |
+
lm3 <- lm(hate_violence_means ~ MateComp.cont + JobComp.cont + LifeSatis.cont +
|
459 |
+
factor(age_group) + # age group
|
460 |
+
factor(state) + # state
|
461 |
+
factor(citizenship) + # german citizen
|
462 |
+
factor(marital) + # marital status
|
463 |
+
factor(religion) + # religious affiliation
|
464 |
+
eduyrs + # education
|
465 |
+
factor(occupation) + # main activity
|
466 |
+
factor(income) + # income
|
467 |
+
factor(household_size) + # household size
|
468 |
+
factor(self_econ), # subjective social status
|
469 |
+
data=dat_male)
|
470 |
+
|
471 |
+
lm4 <- lm(hate_violence_means ~ MateComp.cont + JobComp.cont + LifeSatis.cont +
|
472 |
+
factor(age_group) + # age group
|
473 |
+
factor(state) + # state
|
474 |
+
factor(citizenship) + # german citizen
|
475 |
+
factor(marital) + # marital status
|
476 |
+
factor(religion) + # religious affiliation
|
477 |
+
eduyrs + # education
|
478 |
+
factor(occupation) + # main activity
|
479 |
+
factor(income) + # income
|
480 |
+
factor(household_size) + # household size
|
481 |
+
factor(self_econ) + # subjective social status
|
482 |
+
factor(ref_integrating) + # Refugee Index (National-level; Q73) 8 in total
|
483 |
+
factor(ref_citizenship) + factor(ref_reduce) + factor(ref_moredone) + factor(ref_cultgiveup) +
|
484 |
+
factor(ref_economy) + factor(ref_crime) + factor(ref_terror),
|
485 |
+
data=dat_male)
|
486 |
+
|
487 |
+
lm5 <- lm(hate_violence_means ~ MateComp.cont + JobComp.cont + LifeSatis.cont +
|
488 |
+
factor(age_group) + # age group
|
489 |
+
factor(state) + # state
|
490 |
+
factor(citizenship) + # german citizen
|
491 |
+
factor(marital) + # marital status
|
492 |
+
factor(religion) + # religious affiliation
|
493 |
+
eduyrs + # education
|
494 |
+
factor(occupation) + # main activity
|
495 |
+
factor(income) + # income
|
496 |
+
factor(household_size) + # household size
|
497 |
+
factor(self_econ) + # subjective social status
|
498 |
+
factor(ref_integrating) + # Refugee Index (National-level; Q73) 8 in total
|
499 |
+
factor(ref_citizenship) + factor(ref_reduce) + factor(ref_moredone) + factor(ref_cultgiveup) +
|
500 |
+
factor(ref_economy) + factor(ref_crime) + factor(ref_terror) +
|
501 |
+
factor(ref_loc_services) + # Refugee Index (Local, Q75)
|
502 |
+
factor(ref_loc_economy) + factor(ref_loc_crime) + factor(ref_loc_culture) + factor(ref_loc_islam) +
|
503 |
+
factor(ref_loc_schools) + factor(ref_loc_housing) + factor(ref_loc_wayoflife), ## end
|
504 |
+
data=dat_male)
|
505 |
+
|
506 |
+
|
507 |
+
# Add More Variables
|
508 |
+
# lrscale Q21 Left-Right Scale
|
509 |
+
# afd, Q23 Closeness to AfD
|
510 |
+
# muslim_ind, afd_ind, contact_ind
|
511 |
+
# distance_ref Q71. Distance to refugee reception centers
|
512 |
+
# settle_ref Q72. Settlement of refugees living in area
|
513 |
+
|
514 |
+
formula.5 <-
|
515 |
+
as.character("hate_violence_means ~ MateComp.cont + JobComp.cont +
|
516 |
+
LifeSatis.cont + factor(age_group) +
|
517 |
+
factor(state) + factor(citizenship) + factor(marital) +
|
518 |
+
factor(religion) + eduyrs + factor(occupation) +
|
519 |
+
factor(income) + factor(household_size) + factor(self_econ) +
|
520 |
+
factor(ref_integrating) + factor(ref_citizenship) + factor(ref_reduce) +
|
521 |
+
factor(ref_moredone) + factor(ref_cultgiveup) +
|
522 |
+
factor(ref_economy) + factor(ref_crime) + factor(ref_terror) +
|
523 |
+
factor(ref_loc_services) + factor(ref_loc_economy) + factor(ref_loc_crime) +
|
524 |
+
factor(ref_loc_culture) + factor(ref_loc_islam) +
|
525 |
+
factor(ref_loc_schools) + factor(ref_loc_housing) + factor(ref_loc_wayoflife)")
|
526 |
+
|
527 |
+
formula.6 <- paste(formula.5, "factor(distance_ref) + factor(settle_ref)",
|
528 |
+
"lrscale + afd + muslim_ind + afd_ind + contact_ind",
|
529 |
+
sep="+", collapse="+")
|
530 |
+
|
531 |
+
lm6 <- lm(as.formula(formula.6), data=dat_male)
|
532 |
+
}
|
533 |
+
lm.list.table1 <- list(lm1, lm2, lm3, lm4, lm5, lm6)
|
534 |
+
|
535 |
+
# Table D.6.1
|
536 |
+
star_out(stargazer(lm.list.table1,
|
537 |
+
covariate.labels = c("Mate Competition","Job Competition","Life Satisfaction"),
|
538 |
+
keep=c("MateComp.cont","JobComp.cont","LifeSatis.cont")),
|
539 |
+
name = "table_D6_1.tex")
|
540 |
+
|
541 |
+
## ###############################################
|
542 |
+
## Figure D.6.2: Replicating Figure 4 (with Male)
|
543 |
+
## ###############################################
|
544 |
+
# with Difference Outcomes
|
545 |
+
# hate_pol_message: "82. Support for Hate Crime_Attacks against refugee homes are somet"
|
546 |
+
# hate_prevent_settlement: "82. Support for Hate Crime_Racist violence is defensible if it lea"
|
547 |
+
# hate_polcondemn: "82. Support for Hate Crime_Politicians should condemn attacks agai"
|
548 |
+
# hate_justified: "82. Support for Hate Crime_Hostility against foreigners is sometimes justified"
|
549 |
+
|
550 |
+
# without gender
|
551 |
+
formula.5 <-
|
552 |
+
as.character("hate_violence_means ~ MateComp.cont + JobComp.cont +
|
553 |
+
LifeSatis.cont + factor(age_group) +
|
554 |
+
factor(state) + factor(citizenship) + factor(marital) +
|
555 |
+
factor(religion) + eduyrs + factor(occupation) +
|
556 |
+
factor(income) + factor(household_size) + factor(self_econ) +
|
557 |
+
factor(ref_integrating) + factor(ref_citizenship) + factor(ref_reduce) +
|
558 |
+
factor(ref_moredone) + factor(ref_cultgiveup) +
|
559 |
+
factor(ref_economy) + factor(ref_crime) + factor(ref_terror) +
|
560 |
+
factor(ref_loc_services) + factor(ref_loc_economy) + factor(ref_loc_crime) +
|
561 |
+
factor(ref_loc_culture) + factor(ref_loc_islam) +
|
562 |
+
factor(ref_loc_schools) + factor(ref_loc_housing) + factor(ref_loc_wayoflife)")
|
563 |
+
|
564 |
+
formula.6 <- paste(formula.5, "factor(distance_ref) + factor(settle_ref)",
|
565 |
+
"lrscale + afd + muslim_ind + afd_ind + contact_ind",
|
566 |
+
sep="+", collapse="+")
|
567 |
+
|
568 |
+
formula.7.means <- paste("hate_violence_means ~ ", as.character(as.formula(formula.6))[3], sep = "")
|
569 |
+
formula.7.message <- paste("hate_pol_message ~", as.character(as.formula(formula.6))[3], sep = "")
|
570 |
+
formula.7.prevent <- paste("hate_prevent_settlement ~", as.character(as.formula(formula.6))[3], sep = "")
|
571 |
+
formula.7.condemn <- paste("hate_polcondemn ~ ", as.character(as.formula(formula.6))[3], sep = "")
|
572 |
+
formula.7.justified <- paste("hate_justified ~ ", as.character(as.formula(formula.6))[3], sep = "")
|
573 |
+
|
574 |
+
# output
|
575 |
+
lm7.means <- lm(as.formula(formula.7.means), data=dat_male)
|
576 |
+
lm7.justified <- lm(as.formula(formula.7.justified), data=dat_male)
|
577 |
+
lm7.message <- lm(as.formula(formula.7.message), data=dat_male)
|
578 |
+
lm7.prevent <- lm(as.formula(formula.7.prevent), data=dat_male)
|
579 |
+
lm7.condemn <- lm(as.formula(formula.7.condemn), data=dat_male)
|
580 |
+
|
581 |
+
point <- c(coef(lm7.means)["MateComp.cont"],
|
582 |
+
coef(lm7.justified)["MateComp.cont"], coef(lm7.message)["MateComp.cont"],
|
583 |
+
coef(lm7.prevent)["MateComp.cont"], coef(lm7.condemn)["MateComp.cont"])
|
584 |
+
|
585 |
+
se <- c(summary(lm7.means)$coef["MateComp.cont", 2],
|
586 |
+
summary(lm7.justified)$coef["MateComp.cont", 2], summary(lm7.message)$coef["MateComp.cont", 2],
|
587 |
+
summary(lm7.prevent)$coef["MateComp.cont", 2], summary(lm7.condemn)$coef["MateComp.cont", 2])
|
588 |
+
|
589 |
+
|
590 |
+
pdf("figure_D6_2.pdf", height = 4, width = 8)
|
591 |
+
par(mar = c(2,4,4,1))
|
592 |
+
plot(seq(1:5), point, pch = 19, ylim = c(-0.05, 0.25), xlim = c(0.5, 5.5),
|
593 |
+
xlab = "", xaxt = "n", ylab = "Estimated Effects",
|
594 |
+
main = "Estimated Effects of Mate Competition (among male)", cex.lab = 1.25, cex.axis = 1.25, cex.main = 1.5)
|
595 |
+
segments(seq(1:5), point - 1.96*se,
|
596 |
+
seq(1:5), point + 1.96*se, lwd = 2)
|
597 |
+
Axis(side=1, at = seq(1:5), labels = c("Only Means", "Justified", "Message",
|
598 |
+
"Prevent", "Condemn"), cex.axis = 1.25)
|
599 |
+
abline(h =0, lty = 2)
|
600 |
+
dev.off()
|
601 |
+
|
602 |
+
## Table D.6.3
|
603 |
+
lm.list_d_m <- list(lm7.means, lm7.justified, lm7.message, lm7.prevent, lm7.condemn)
|
604 |
+
star_out(stargazer(lm.list_d_m,
|
605 |
+
covariate.labels = c("Mate Competition","Job Competition","Life Satisfaction"),
|
606 |
+
keep=c("MateComp.cont","JobComp.cont","LifeSatis.cont")),
|
607 |
+
name = "table_D6_3.tex")
|
608 |
+
|
609 |
+
# ##########################################
|
610 |
+
# Appendix D8, Table D8: YouGov analysis
|
611 |
+
# ##########################################
|
612 |
+
rm(list=ls())
|
613 |
+
you_data <- read.dta13(file = "YouGov.dta")
|
614 |
+
source("Help.R")
|
615 |
+
|
616 |
+
## (1) Main Regression
|
617 |
+
lm1 <- lm(hate_cont ~ mate_compete +
|
618 |
+
age + # age
|
619 |
+
gender + # gender
|
620 |
+
factor(sta) + #state
|
621 |
+
factor(mstat) + # Marital Status
|
622 |
+
reli + # religion
|
623 |
+
educ_aggr_rec + # education
|
624 |
+
hinc + # income
|
625 |
+
housz + # household size
|
626 |
+
pol_leftright, # leftright scale
|
627 |
+
data = you_data)
|
628 |
+
summary(lm1)
|
629 |
+
|
630 |
+
## (2) + Aggression Score
|
631 |
+
lm2 <- lm(hate_cont ~
|
632 |
+
mate_compete +
|
633 |
+
age + # age
|
634 |
+
gender + # gender
|
635 |
+
factor(sta) + #state
|
636 |
+
factor(mstat) + # Marital Status
|
637 |
+
reli + # religion
|
638 |
+
educ_aggr_rec + # education
|
639 |
+
hinc + # income
|
640 |
+
housz + # household size
|
641 |
+
pol_leftright + # leftright scale
|
642 |
+
angry_mean, # aggression score
|
643 |
+
data = you_data)
|
644 |
+
summary(lm2)
|
645 |
+
|
646 |
+
## (3) + Refugee Index
|
647 |
+
lm3 <- lm(hate_cont ~
|
648 |
+
mate_compete +
|
649 |
+
age + # age
|
650 |
+
gender + # gender
|
651 |
+
factor(sta) + #state
|
652 |
+
factor(mstat) + # Marital Status
|
653 |
+
reli + # religion
|
654 |
+
educ_aggr_rec + # education
|
655 |
+
hinc + # income
|
656 |
+
housz + # household size
|
657 |
+
pol_leftright + # leftright scale
|
658 |
+
angry_mean + # aggression score
|
659 |
+
ref_loc_services + ref_loc_economy + ref_loc_crime + ## Refugee Questions (9 Questions)
|
660 |
+
ref_loc_culture + ref_loc_islam + ref_local_job +
|
661 |
+
ref_loc_schools + ref_loc_housing + ref_loc_wayoflife,
|
662 |
+
data = you_data)
|
663 |
+
summary(lm3)
|
664 |
+
|
665 |
+
## (4) + Refugee Contact
|
666 |
+
lm4 <- lm(hate_cont ~
|
667 |
+
mate_compete +
|
668 |
+
age + # age
|
669 |
+
gender + # gender
|
670 |
+
factor(sta) + #state
|
671 |
+
factor(mstat) + # Marital Status
|
672 |
+
reli + # religion
|
673 |
+
educ_aggr_rec + # education
|
674 |
+
hinc + # income
|
675 |
+
housz + # household size
|
676 |
+
pol_leftright + # leftright scale
|
677 |
+
angry_mean + # aggression score
|
678 |
+
ref_loc_services + ref_loc_economy + ref_loc_crime + ## Refugee Questions (9 Questions)
|
679 |
+
ref_loc_culture + ref_loc_islam + ref_local_job +
|
680 |
+
ref_loc_schools + ref_loc_housing + ref_loc_wayoflife +
|
681 |
+
see_ref_road + see_ref_store + see_ref_center + ## Refugee Contact (5 Questions)
|
682 |
+
see_ref_school + see_ref_work,
|
683 |
+
data = you_data)
|
684 |
+
summary(lm4)
|
685 |
+
|
686 |
+
## (5) + AfD Score
|
687 |
+
lm5 <- lm(hate_cont ~
|
688 |
+
mate_compete +
|
689 |
+
age + # age
|
690 |
+
gender + # gender
|
691 |
+
factor(sta) + #state
|
692 |
+
factor(mstat) + # Marital Status
|
693 |
+
reli + # religion
|
694 |
+
educ_aggr_rec + # education
|
695 |
+
hinc + # income
|
696 |
+
housz + # household size
|
697 |
+
pol_leftright + # leftright scale
|
698 |
+
angry_mean + # aggression score
|
699 |
+
ref_loc_services + ref_loc_economy + ref_loc_crime + ## Refugee Questions (9 Questions)
|
700 |
+
ref_loc_culture + ref_loc_islam + ref_local_job +
|
701 |
+
ref_loc_schools + ref_loc_housing + ref_loc_wayoflife +
|
702 |
+
see_ref_road + see_ref_store + see_ref_center + ## Refugee Contact (5 Questions)
|
703 |
+
see_ref_school + see_ref_work +
|
704 |
+
afd.score, # Closeness to AfD
|
705 |
+
data = you_data)
|
706 |
+
summary(lm5)
|
707 |
+
|
708 |
+
star_out(stargazer(list(lm1, lm2, lm3, lm4, lm5),
|
709 |
+
covariate.labels = c("Mate Competition", "Aggressiveness"), keep=c("mate_compete", "angry_mean")),
|
710 |
+
name = "table_D8_1.tex")
|
711 |
+
|
712 |
+
|
713 |
+
rm(list=ls())
|
714 |
+
you_data <- read.dta13(file = "YouGov.dta")
|
715 |
+
you_male <- you_data[you_data$gender == levels(you_data$gender)[1], ]
|
716 |
+
source("Help.R")
|
717 |
+
|
718 |
+
{
|
719 |
+
## (1) Main Regression
|
720 |
+
lm1 <- lm(hate_cont ~ mate_compete +
|
721 |
+
age + # age
|
722 |
+
factor(sta) + #state
|
723 |
+
factor(mstat) + # Marital Status
|
724 |
+
reli + # religion
|
725 |
+
educ_aggr_rec + # education
|
726 |
+
hinc + # income
|
727 |
+
housz + # household size
|
728 |
+
pol_leftright, # leftright scale
|
729 |
+
data = you_male)
|
730 |
+
|
731 |
+
## (2) + Aggression Score
|
732 |
+
lm2 <- lm(hate_cont ~
|
733 |
+
mate_compete +
|
734 |
+
age + # age
|
735 |
+
factor(sta) + #state
|
736 |
+
factor(mstat) + # Marital Status
|
737 |
+
reli + # religion
|
738 |
+
educ_aggr_rec + # education
|
739 |
+
hinc + # income
|
740 |
+
housz + # household size
|
741 |
+
pol_leftright + # leftright scale
|
742 |
+
angry_mean, # aggression score
|
743 |
+
data = you_male)
|
744 |
+
|
745 |
+
## (3) + Refugee Index
|
746 |
+
lm3 <- lm(hate_cont ~
|
747 |
+
mate_compete +
|
748 |
+
age + # age
|
749 |
+
factor(sta) + #state
|
750 |
+
factor(mstat) + # Marital Status
|
751 |
+
reli + # religion
|
752 |
+
educ_aggr_rec + # education
|
753 |
+
hinc + # income
|
754 |
+
housz + # household size
|
755 |
+
pol_leftright + # leftright scale
|
756 |
+
angry_mean + # aggression score
|
757 |
+
ref_loc_services + ref_loc_economy + ref_loc_crime + ## Refugee Questions (9 Questions)
|
758 |
+
ref_loc_culture + ref_loc_islam + ref_local_job +
|
759 |
+
ref_loc_schools + ref_loc_housing + ref_loc_wayoflife,
|
760 |
+
data = you_male)
|
761 |
+
summary(lm3)
|
762 |
+
|
763 |
+
## (4) + Refugee Contact
|
764 |
+
lm4 <- lm(hate_cont ~
|
765 |
+
mate_compete +
|
766 |
+
age + # age
|
767 |
+
# gender + # gender
|
768 |
+
factor(sta) + #state
|
769 |
+
factor(mstat) + # Marital Status
|
770 |
+
reli + # religion
|
771 |
+
educ_aggr_rec + # education
|
772 |
+
hinc + # income
|
773 |
+
housz + # household size
|
774 |
+
pol_leftright + # leftright scale
|
775 |
+
angry_mean + # aggression score
|
776 |
+
ref_loc_services + ref_loc_economy + ref_loc_crime + ## Refugee Questions (9 Questions)
|
777 |
+
ref_loc_culture + ref_loc_islam + ref_local_job +
|
778 |
+
ref_loc_schools + ref_loc_housing + ref_loc_wayoflife +
|
779 |
+
see_ref_road + see_ref_store + see_ref_center + ## Refugee Contact (5 Questions)
|
780 |
+
see_ref_school + see_ref_work,
|
781 |
+
data = you_male)
|
782 |
+
summary(lm4)
|
783 |
+
|
784 |
+
## (5) + AfD Score
|
785 |
+
lm5 <- lm(hate_cont ~
|
786 |
+
mate_compete +
|
787 |
+
age + # age
|
788 |
+
# gender + # gender
|
789 |
+
factor(sta) + #state
|
790 |
+
factor(mstat) + # Marital Status
|
791 |
+
reli + # religion
|
792 |
+
educ_aggr_rec + # education
|
793 |
+
hinc + # income
|
794 |
+
housz + # household size
|
795 |
+
pol_leftright + # leftright scale
|
796 |
+
angry_mean + # aggression score
|
797 |
+
ref_loc_services + ref_loc_economy + ref_loc_crime + ## Refugee Questions (9 Questions)
|
798 |
+
ref_loc_culture + ref_loc_islam + ref_local_job +
|
799 |
+
ref_loc_schools + ref_loc_housing + ref_loc_wayoflife +
|
800 |
+
see_ref_road + see_ref_store + see_ref_center + ## Refugee Contact (5 Questions)
|
801 |
+
see_ref_school + see_ref_work +
|
802 |
+
afd.score, # Closeness to AfD
|
803 |
+
data = you_male)
|
804 |
+
summary(lm5)
|
805 |
+
}
|
806 |
+
|
807 |
+
star_out(stargazer(list(lm1, lm2, lm3, lm4, lm5),
|
808 |
+
covariate.labels = c("Mate Competition", "Aggressiveness"),
|
809 |
+
keep=c("mate_compete", "angry_mean")),
|
810 |
+
name = "table_D8_2.tex")
|
32/replication_package/SurveyAnalysis_Main.R
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Replication File for Survey Analysis
|
2 |
+
# Figure 2: Individuals Living in Municipalities with a Higher Degree ofExcess MalesPerceiveMore Mate Competition
|
3 |
+
# Figure 3: List Experiment
|
4 |
+
# Table 1: Mate Competition Predicts Support for Hate Crime
|
5 |
+
# Figure 4: Estimated Effects of Mate Competition on Support for Hate Crimes
|
6 |
+
|
7 |
+
# R version 4.0.2 (2020-06-22)
|
8 |
+
|
9 |
+
# ##################
|
10 |
+
# Data Preparation
|
11 |
+
# ##################
|
12 |
+
rm(list=ls())
|
13 |
+
# Set the directly appropriately
|
14 |
+
|
15 |
+
# install.packages("readstata13") # readstata13_0.9.2
|
16 |
+
# install.packages("MASS") # MASS_7.3-51.6
|
17 |
+
# install.packages("sandwich") # sandwich_2.5-1
|
18 |
+
# install.packages("lmtest") # lmtest_0.9-37
|
19 |
+
# install.packages("pBrackets") # pBrackets_1.0
|
20 |
+
# install.packages("stargazer") # stargazer_5.2.2
|
21 |
+
|
22 |
+
|
23 |
+
require(readstata13) # readstata13_0.9.2
|
24 |
+
require(MASS) # MASS_7.3-51.6
|
25 |
+
require(sandwich) # sandwich_2.5-1
|
26 |
+
require(lmtest) # lmtest_0.9-37
|
27 |
+
require(pBrackets) # pBrackets_1.0
|
28 |
+
require(stargazer) # stargazer_5.2.2
|
29 |
+
source("Help.R")
|
30 |
+
|
31 |
+
dat <- read.dta13(file = "survey.dta")
|
32 |
+
|
33 |
+
# Subset to people in the wave 4
|
34 |
+
dat_use <- dat[dat$wave == 4, ]
|
35 |
+
|
36 |
+
# #######################
|
37 |
+
# Figure 2
|
38 |
+
# #######################
|
39 |
+
# Prepare Two data sets
|
40 |
+
dat_male <- dat_use[dat_use$gender == "Male" & dat_use$age <= 44 & dat_use$age >= 18, ]
|
41 |
+
dat_male_y <- dat_use[dat_use$gender == "Male" & dat_use$age <= 40 & dat_use$age >= 30, ]
|
42 |
+
|
43 |
+
# Overall Samples
|
44 |
+
dat_use$MateComp.cont_bin <- ifelse(dat_use$MateComp.cont >= 3, 1, 0)
|
45 |
+
dat_use$excess_c <- ifelse(dat_use$pop_15_44_muni_gendergap_2015 < 1.04, "1",
|
46 |
+
ifelse(dat_use$pop_15_44_muni_gendergap_2015 < 1.12, "2", "3"))
|
47 |
+
mean_all <- tapply(dat_use$MateComp.cont_bin, dat_use$excess_c, mean)
|
48 |
+
se_all <- tapply(dat_use$MateComp.cont_bin, dat_use$excess_c, sd)/sqrt(table(dat_use$excess_c))
|
49 |
+
|
50 |
+
# Male (18 - 44)
|
51 |
+
dat_male$MateComp.cont_bin <- ifelse(dat_male$MateComp.cont >= 3, 1, 0)
|
52 |
+
dat_male$excess_c <- ifelse(dat_male$pop_15_44_muni_gendergap_2015 < 1.04, "1",
|
53 |
+
ifelse(dat_male$pop_15_44_muni_gendergap_2015 < 1.12, "2", "3"))
|
54 |
+
mean_all_m <- tapply(dat_male$MateComp.cont_bin, dat_male$excess_c, mean)
|
55 |
+
se_all_m <- tapply(dat_male$MateComp.cont_bin, dat_male$excess_c, sd)/sqrt(table(dat_male$excess_c))
|
56 |
+
|
57 |
+
# Male (30 - 40)
|
58 |
+
dat_male_y$MateComp.cont_bin <- ifelse(dat_male_y$MateComp.cont >= 3, 1, 0)
|
59 |
+
dat_male_y$excess_c <- ifelse(dat_male_y$pop_15_44_muni_gendergap_2015 < 1.04, "1",
|
60 |
+
ifelse(dat_male_y$pop_15_44_muni_gendergap_2015 < 1.12, "2", "3"))
|
61 |
+
mean_all_y <- tapply(dat_male_y$MateComp.cont_bin, dat_male_y$excess_c, mean)
|
62 |
+
se_all_y <- tapply(dat_male_y$MateComp.cont_bin, dat_male_y$excess_c, sd)/sqrt(table(dat_male_y$excess_c))
|
63 |
+
|
64 |
+
|
65 |
+
mean_all ## 0.1835004 0.1970803 0.2244489
|
66 |
+
mean_all_m ## 0.2282609 0.2745902 0.3750000
|
67 |
+
mean_all_y ## 0.1743119 0.2818182 0.4705882
|
68 |
+
|
69 |
+
{
|
70 |
+
diff <- c(mean_all[2] - mean_all[1],
|
71 |
+
mean_all[3] - mean_all[2],
|
72 |
+
mean_all[3] - mean_all[1])
|
73 |
+
sd_d <- c(sqrt(se_all[2]^2 + se_all[1]^2),
|
74 |
+
sqrt(se_all[3]^2 + se_all[2]^2),
|
75 |
+
sqrt(se_all[3]^2 + se_all[1]^2))
|
76 |
+
diff_m <- c(mean_all_m[2] - mean_all_m[1],
|
77 |
+
mean_all_m[3] - mean_all_m[2],
|
78 |
+
mean_all_m[3] - mean_all_m[1])
|
79 |
+
sd_d_m <- c(sqrt(se_all_m[2]^2 + se_all_m[1]^2),
|
80 |
+
sqrt(se_all_m[3]^2 + se_all_m[2]^2),
|
81 |
+
sqrt(se_all_m[3]^2 + se_all_m[1]^2))
|
82 |
+
diff_y <- c(mean_all_y[2] - mean_all_y[1],
|
83 |
+
mean_all_y[3] - mean_all_y[2],
|
84 |
+
mean_all_y[3] - mean_all_y[1])
|
85 |
+
sd_d_y <- c(sqrt(se_all_y[2]^2 + se_all_y[1]^2),
|
86 |
+
sqrt(se_all_y[3]^2 + se_all_y[2]^2),
|
87 |
+
sqrt(se_all_y[3]^2 + se_all_y[1]^2))
|
88 |
+
|
89 |
+
|
90 |
+
diff_l <- c(diff, diff_m, diff_y)
|
91 |
+
se_l <- c(sd_d, sd_d_m, sd_d_y)
|
92 |
+
p_value <- 2*(1 - pnorm(abs(diff_l/se_l)))
|
93 |
+
diff_table <- cbind(diff_l, se_l, p_value)
|
94 |
+
}
|
95 |
+
|
96 |
+
pdf("figure_2.pdf", height= 15.5, width = 6.5)
|
97 |
+
par(mfrow = c(3, 1), mar = c(6,5,5,2), oma = c(0,4,0,0))
|
98 |
+
plot(seq(1:3), mean_all, pch = 19, ylim = c(0.1,0.4),
|
99 |
+
xlim = c(0.5, 3.5),
|
100 |
+
main = "All", xaxt = "n", xlab = "", ylab = "",
|
101 |
+
cex.axis = 2.25, cex.main = 2.5, yaxt = "n",
|
102 |
+
cex = 2.25, cex.lab = 2.5)
|
103 |
+
segments(seq(1:3), mean_all - 1.96*se_all,
|
104 |
+
seq(1:3), mean_all + 1.96*se_all, pch = 19, lwd = 3)
|
105 |
+
Axis(side = 1, at = c(1,2,3), labels = c("1st tercile", "2nd tercile", "3rd tercile"), cex.axis = 2.25)
|
106 |
+
Axis(side = 2, at = c(0.1,0.2,0.3, 0.4), labels = c("0.1", "0.2", "0.3", "0.4"), cex.axis = 2.25)
|
107 |
+
brackets(x1 = 1.1, y1 = 0.3, x2 = 1.9, y2 = 0.3, h = 0.01, type = 4)
|
108 |
+
brackets(x1 = 2.1, y1 = 0.3, x2 = 2.9, y2 = 0.3, h = 0.01, type = 4)
|
109 |
+
brackets(x1 = 1, y1 = 0.37, x2 = 3, y2 = 0.37, h = 0.01, type = 4)
|
110 |
+
# text(x = 1.5, y = 0.33, paste0("pv = ", round(p_value[1],digits=3)), cex = 1.95)
|
111 |
+
text(x = 1.5, y = 0.33, paste0("pv = 0.40"), cex = 1.95)
|
112 |
+
text(x = 2.5, y = 0.33, paste0("pv = ", round(p_value[2],2)), cex = 1.95)
|
113 |
+
text(x = 2, y = 0.40, paste0("pv = ", round(p_value[3],2)), cex = 1.95)
|
114 |
+
mtext("Excess Males", side = 1, cex = 1.75, line = 3.75)
|
115 |
+
mtext("Proportion Perceiving\nMate Competition", side = 2, cex = 1.75, line = 3.75)
|
116 |
+
|
117 |
+
plot(seq(1:3), mean_all_m, pch = 19, ylim = c(0.1,0.6),
|
118 |
+
xlim = c(0.5, 3.5),
|
119 |
+
main = "Male (18-44)", xaxt = "n", xlab = "", ylab = "", cex.axis = 2.25, cex.main = 2.5,
|
120 |
+
cex = 2.25, cex.lab = 2.5)
|
121 |
+
segments(seq(1:3), mean_all_m - 1.96*se_all_m,
|
122 |
+
seq(1:3), mean_all_m + 1.96*se_all_m, pch = 19, lwd = 3)
|
123 |
+
Axis(side = 1, at = c(1,2,3), labels = c("1st tercile", "2nd tercile", "3rd tercile"), cex.axis = 2.25)
|
124 |
+
brackets(x1 = 1.1, y1 = 0.48, x2 = 1.9, y2 = 0.48, h = 0.01, type = 4)
|
125 |
+
brackets(x1 = 2.1, y1 = 0.48, x2 = 2.9, y2 = 0.48, h = 0.01, type = 4)
|
126 |
+
brackets(x1 = 1, y1 = 0.53, x2 = 3, y2 = 0.53, h = 0.03, type = 4)
|
127 |
+
text(x = 1.5, y = 0.51, paste0("pv = ", round(p_value[4],2)), cex = 1.95)
|
128 |
+
text(x = 2.5, y = 0.51, paste0("pv = ", round(p_value[5],2)), cex = 1.95)
|
129 |
+
# text(x = 2, y = 0.58, paste0("pv = ", round(p_value[6],2)), cex = 1.95)
|
130 |
+
text(x = 2, y = 0.58, paste0("pv = 0.00"), cex = 1.95)
|
131 |
+
mtext("Excess Males", side = 1, cex = 1.75, line = 3.75)
|
132 |
+
mtext("Proportion Perceiving\nMate Competition", side = 2, cex = 1.75, line = 3.75)
|
133 |
+
|
134 |
+
|
135 |
+
plot(seq(1:3), mean_all_y, pch = 19, ylim = c(0.1,0.75),
|
136 |
+
xlim = c(0.5, 3.5),
|
137 |
+
main = "Male (30 - 40)", xaxt = "n", xlab = "", ylab = "", cex.axis = 2.25, cex.main = 2.5,
|
138 |
+
cex = 2.25, cex.lab = 2.5)
|
139 |
+
segments(seq(1:3), mean_all_y - 1.96*se_all_y,
|
140 |
+
seq(1:3), mean_all_y + 1.96*se_all_y, pch = 19, lwd = 3)
|
141 |
+
Axis(side = 1, at = c(1,2,3), labels = c("1st tercile", "2nd tercile", "3rd tercile"), cex.axis = 2.25)
|
142 |
+
brackets(x1 = 1.1, y1 = 0.62, x2 = 1.9, y2 = 0.62, h = 0.03, type = 4)
|
143 |
+
brackets(x1 = 2.1, y1 = 0.62, x2 = 2.9, y2 = 0.62, h = 0.03, type = 4)
|
144 |
+
brackets(x1 = 1, y1 = 0.7, x2 = 3, y2 = 0.7, h = 0.03, type = 4)
|
145 |
+
text(x = 1.5, y = 0.67, paste0("pv = ", round(p_value[7],2)),cex = 1.95)
|
146 |
+
text(x = 2.5, y = 0.67, paste0("pv = ", round(p_value[8],2)), cex = 1.95)
|
147 |
+
text(x = 2, y = 0.75, paste0("pv = 0.00"), cex = 1.95)
|
148 |
+
# text(x = 2, y = 0.75, paste0("pv = ", round(p_value[9],3)))
|
149 |
+
mtext("Excess Males", side = 1, cex = 1.75, line = 3.75)
|
150 |
+
mtext("Proportion Perceiving\nMate Competition", side = 2, cex = 1.75, line = 3.75)
|
151 |
+
|
152 |
+
dev.off()
|
153 |
+
|
154 |
+
# ############################
|
155 |
+
# Main Models (Table 1)
|
156 |
+
# ############################
|
157 |
+
lm1 <- lm(hate_violence_means ~ MateComp.cont, data=dat_use)
|
158 |
+
summary(lm1)
|
159 |
+
|
160 |
+
lm2 <- lm(hate_violence_means ~ MateComp.cont + JobComp.cont + LifeSatis.cont, data=dat_use)
|
161 |
+
summary(lm2)
|
162 |
+
|
163 |
+
lm3 <- lm(hate_violence_means ~ MateComp.cont + JobComp.cont + LifeSatis.cont +
|
164 |
+
factor(age_group) + # age group
|
165 |
+
factor(gender) + # gender
|
166 |
+
factor(state) + # state
|
167 |
+
factor(citizenship) + # german citizen
|
168 |
+
factor(marital) + # marital status
|
169 |
+
factor(religion) + # religious affiliation
|
170 |
+
eduyrs + # education
|
171 |
+
factor(occupation) + # main activity
|
172 |
+
factor(income) + # income
|
173 |
+
factor(household_size) + # household size
|
174 |
+
factor(self_econ), # subjective social status
|
175 |
+
data=dat_use)
|
176 |
+
summary(lm3)
|
177 |
+
|
178 |
+
lm4 <- lm(hate_violence_means ~ MateComp.cont + JobComp.cont + LifeSatis.cont +
|
179 |
+
factor(age_group) + # age group
|
180 |
+
factor(gender) + # gender
|
181 |
+
factor(state) + # state
|
182 |
+
factor(citizenship) + # german citizen
|
183 |
+
factor(marital) + # marital status
|
184 |
+
factor(religion) + # religious affiliation
|
185 |
+
eduyrs + # education
|
186 |
+
factor(occupation) + # main activity
|
187 |
+
factor(income) + # income
|
188 |
+
factor(household_size) + # household size
|
189 |
+
factor(self_econ) + # subjective social status
|
190 |
+
factor(ref_integrating) + # Refugee Index (National-level; Q73) 8 in total
|
191 |
+
factor(ref_citizenship) + factor(ref_reduce) + factor(ref_moredone) + factor(ref_cultgiveup) +
|
192 |
+
factor(ref_economy) + factor(ref_crime) + factor(ref_terror),
|
193 |
+
data=dat_use)
|
194 |
+
summary(lm4)
|
195 |
+
|
196 |
+
lm5 <- lm(hate_violence_means ~ MateComp.cont + JobComp.cont + LifeSatis.cont +
|
197 |
+
factor(age_group) + # age group
|
198 |
+
factor(gender) + # gender
|
199 |
+
factor(state) + # state
|
200 |
+
factor(citizenship) + # german citizen
|
201 |
+
factor(marital) + # marital status
|
202 |
+
factor(religion) + # religious affiliation
|
203 |
+
eduyrs + # education
|
204 |
+
factor(occupation) + # main activity
|
205 |
+
factor(income) + # income
|
206 |
+
factor(household_size) + # household size
|
207 |
+
factor(self_econ) + # subjective social status
|
208 |
+
factor(ref_integrating) + # Refugee Index (National-level; Q73) 8 in total
|
209 |
+
factor(ref_citizenship) + factor(ref_reduce) + factor(ref_moredone) + factor(ref_cultgiveup) +
|
210 |
+
factor(ref_economy) + factor(ref_crime) + factor(ref_terror) +
|
211 |
+
factor(ref_loc_services) + # Refugee Index (Local, Q75)
|
212 |
+
factor(ref_loc_economy) + factor(ref_loc_crime) + factor(ref_loc_culture) + factor(ref_loc_islam) +
|
213 |
+
factor(ref_loc_schools) + factor(ref_loc_housing) + factor(ref_loc_wayoflife), ## end
|
214 |
+
data=dat_use)
|
215 |
+
summary(lm5)
|
216 |
+
|
217 |
+
|
218 |
+
# Add More Variables
|
219 |
+
# lrscale Q21 Left-Right Scale
|
220 |
+
# afd, Q23 Closeness to AfD
|
221 |
+
# muslim_ind, afd_ind, contact_ind
|
222 |
+
# distance_ref Q71. Distance to refugee reception centers
|
223 |
+
# settle_ref Q72. Settlement of refugees living in area
|
224 |
+
|
225 |
+
formula.5 <-
|
226 |
+
as.character("hate_violence_means ~ MateComp.cont + JobComp.cont +
|
227 |
+
LifeSatis.cont + factor(age_group) + factor(gender) +
|
228 |
+
factor(state) + factor(citizenship) + factor(marital) +
|
229 |
+
factor(religion) + eduyrs + factor(occupation) +
|
230 |
+
factor(income) + factor(household_size) + factor(self_econ) +
|
231 |
+
factor(ref_integrating) + factor(ref_citizenship) + factor(ref_reduce) +
|
232 |
+
factor(ref_moredone) + factor(ref_cultgiveup) +
|
233 |
+
factor(ref_economy) + factor(ref_crime) + factor(ref_terror) +
|
234 |
+
factor(ref_loc_services) + factor(ref_loc_economy) + factor(ref_loc_crime) +
|
235 |
+
factor(ref_loc_culture) + factor(ref_loc_islam) +
|
236 |
+
factor(ref_loc_schools) + factor(ref_loc_housing) + factor(ref_loc_wayoflife)")
|
237 |
+
|
238 |
+
formula.6 <- paste(formula.5, "factor(distance_ref) + factor(settle_ref)",
|
239 |
+
"lrscale + afd + muslim_ind + afd_ind + contact_ind",
|
240 |
+
sep="+", collapse="+")
|
241 |
+
|
242 |
+
lm6 <- lm(as.formula(formula.6), data=dat_use)
|
243 |
+
summary(lm6)
|
244 |
+
|
245 |
+
lm.list.table1 <- list(lm1, lm2, lm3, lm4, lm5, lm6)
|
246 |
+
|
247 |
+
# Table 1
|
248 |
+
star_out(stargazer(lm.list.table1,
|
249 |
+
covariate.labels = c("Mate Competition","Job Competition","Life Satisfaction"),
|
250 |
+
keep=c("MateComp.cont","JobComp.cont","LifeSatis.cont"),
|
251 |
+
star.char = c("\\dagger", "*", "**"),
|
252 |
+
notes = c("$^{\\dagger}$ p$<$0.1; $^{*}$ p$<$0.05; $^{**}$ p$<$0.01"), notes.append = FALSE),
|
253 |
+
name = "table1.tex")
|
254 |
+
|
255 |
+
## #################
|
256 |
+
## Figure 4
|
257 |
+
## #################
|
258 |
+
# with Difference Outcomes
|
259 |
+
# hate_pol_message (v_320): "82. Support for Hate Crime_Attacks against refugee homes are somet"
|
260 |
+
# hate_prevent_settlement (v_319): "82. Support for Hate Crime_Racist violence is defensible if it lea"
|
261 |
+
# hate_polcondemn (v_316): "82. Support for Hate Crime_Politicians should condemn attacks agai"
|
262 |
+
# hate_justified (v_315): "82. Support for Hate Crime_Hostility against foreigners is sometimes justified"
|
263 |
+
|
264 |
+
formula.7.means <- paste("hate_violence_means ~ ", as.character(as.formula(formula.6))[3], sep = "")
|
265 |
+
formula.7.message <- paste("hate_pol_message ~", as.character(as.formula(formula.6))[3], sep = "")
|
266 |
+
formula.7.prevent <- paste("hate_prevent_settlement ~", as.character(as.formula(formula.6))[3], sep = "")
|
267 |
+
formula.7.condemn <- paste("hate_polcondemn ~ ", as.character(as.formula(formula.6))[3], sep = "")
|
268 |
+
formula.7.justified <- paste("hate_justified ~ ", as.character(as.formula(formula.6))[3], sep = "")
|
269 |
+
|
270 |
+
# output
|
271 |
+
lm7.means <- lm(as.formula(formula.7.means), data=dat_use)
|
272 |
+
lm7.justified <- lm(as.formula(formula.7.justified), data=dat_use)
|
273 |
+
lm7.message <- lm(as.formula(formula.7.message), data=dat_use)
|
274 |
+
lm7.prevent <- lm(as.formula(formula.7.prevent), data=dat_use)
|
275 |
+
lm7.condemn <- lm(as.formula(formula.7.condemn), data=dat_use)
|
276 |
+
|
277 |
+
# Figure 5
|
278 |
+
point <- c(coef(lm7.means)["MateComp.cont"],
|
279 |
+
coef(lm7.justified)["MateComp.cont"], coef(lm7.message)["MateComp.cont"],
|
280 |
+
coef(lm7.prevent)["MateComp.cont"], coef(lm7.condemn)["MateComp.cont"])
|
281 |
+
|
282 |
+
se <- c(summary(lm7.means)$coef["MateComp.cont", 2],
|
283 |
+
summary(lm7.justified)$coef["MateComp.cont", 2], summary(lm7.message)$coef["MateComp.cont", 2],
|
284 |
+
summary(lm7.prevent)$coef["MateComp.cont", 2], summary(lm7.condemn)$coef["MateComp.cont", 2])
|
285 |
+
|
286 |
+
|
287 |
+
pdf("figure_4.pdf", height = 4, width = 8)
|
288 |
+
par(mar = c(2,4,4,1))
|
289 |
+
plot(seq(1:5), point, pch = 19, ylim = c(-0.05, 0.25), xlim = c(0.5, 5.5),
|
290 |
+
xlab = "", xaxt = "n", ylab = "Estimated Effects",
|
291 |
+
main = "Estimated Effects of Mate Competition", cex.lab = 1.25, cex.axis = 1.25, cex.main = 1.5)
|
292 |
+
segments(seq(1:5), point - 1.96*se,
|
293 |
+
seq(1:5), point + 1.96*se, lwd = 2)
|
294 |
+
Axis(side=1, at = seq(1:5), labels = c("Only Means", "Justified", "Message",
|
295 |
+
"Prevent", "Condemn"), cex.axis = 1.25)
|
296 |
+
abline(h =0, lty = 2)
|
297 |
+
dev.off()
|
298 |
+
|
299 |
+
## Table C.5 (in Appendix C.5)
|
300 |
+
# lm.list_d <- list(lm7.means, lm7.justified, lm7.message, lm7.prevent, lm7.condemn)
|
301 |
+
# stargazer(lm.list_d,
|
302 |
+
# covariate.labels = c("Mate Competition","Job Competition","Life Satisfaction"),
|
303 |
+
# keep=c("MateComp.cont","JobComp.cont","LifeSatis.cont"))
|
304 |
+
|
305 |
+
|
306 |
+
## #############################
|
307 |
+
## Figure 3: List Experiment
|
308 |
+
## #############################
|
309 |
+
rm(list=ls())
|
310 |
+
# install.packages("readstata13") # readstata13_0.9.2
|
311 |
+
# install.packages("MASS") # MASS_7.3-51.6
|
312 |
+
# install.packages("sandwich") # sandwich_2.5-1
|
313 |
+
# install.packages("lmtest") # lmtest_0.9-37
|
314 |
+
# install.packages("list") # list_9.2
|
315 |
+
|
316 |
+
require(readstata13) # readstata13_0.9.2
|
317 |
+
require(MASS) # MASS_7.3-51.6
|
318 |
+
require(sandwich) # sandwich_2.5-1
|
319 |
+
require(lmtest) # lmtest_0.9-37
|
320 |
+
require(list) # list_9.2
|
321 |
+
|
322 |
+
dat <- read.dta13(file = "survey.dta")
|
323 |
+
data.u2 <- dat[dat$wave == 2, ]
|
324 |
+
|
325 |
+
# Means: When it comes to the refugee problem, violence is sometimes the only means that citizens have to get the attention of German politicians
|
326 |
+
data.list.u2 <- data.u2[data.u2$list == "1",]
|
327 |
+
data.direct.u2 <- data.u2[data.u2$list == "2",]
|
328 |
+
data.list.u2 <- data.list.u2[is.na(data.list.u2$treatment_list)==FALSE,]
|
329 |
+
data.list.u2$List.treat <- ifelse(data.list.u2$treatment_list == "Scenario 2", 1, 0)
|
330 |
+
|
331 |
+
## Difference-in-Means
|
332 |
+
## with Mean = 0.15401 sd = 0.03358
|
333 |
+
diff.in.means.results2 <- ictreg(outcome_list ~ 1, data = data.list.u2,
|
334 |
+
treat = "List.treat", J=3, method = "lm")
|
335 |
+
summary(diff.in.means.results2)
|
336 |
+
|
337 |
+
## Compare to All People who answered Direct Question (n = 2170)
|
338 |
+
data.u2.all.direct <- data.u2[is.na(data.u2$hate_violence_means) == FALSE, ]
|
339 |
+
data.u2.all.direct$hate.direct.bin <- ifelse(data.u2.all.direct$hate_violence_means >=3, 1, 0)
|
340 |
+
point_dir2 <- mean(data.u2.all.direct$hate.direct.bin) ## 0.181
|
341 |
+
se_dir2 <- sd(data.u2.all.direct$hate.direct.bin)/sqrt(length(data.u2.all.direct$hate.direct.bin)) # 0.0083
|
342 |
+
|
343 |
+
# Compare Questions within Wave 2
|
344 |
+
# Direct Questions
|
345 |
+
data.u2$message.bin <- ifelse(data.u2$hate_pol_message >= 3, 1, 0)
|
346 |
+
data.u2$condemn.bin <- ifelse(data.u2$hate_polcondemn >= 3, 1, 0)
|
347 |
+
data.u2$justified.bin <- ifelse(data.u2$hate_justified >= 3, 1, 0)
|
348 |
+
|
349 |
+
message.mean2 <- mean(data.u2$message.bin)
|
350 |
+
condemn.mean2 <- mean(data.u2$condemn.bin)
|
351 |
+
justified.mean2 <- mean(data.u2$justified.bin)
|
352 |
+
message.se2 <- sd(data.u2$message.bin)/sqrt(length(data.u2$message.bin)) # 0.0070
|
353 |
+
condemn.se2 <- sd(data.u2$condemn.bin)/sqrt(length(data.u2$condemn.bin)) # 0.0079
|
354 |
+
justified.se2 <- sd(data.u2$justified.bin)/sqrt(length(data.u2$justified.bin)) # 0.0074
|
355 |
+
|
356 |
+
# plot
|
357 |
+
point <- c(summary(diff.in.means.results2)$par.treat, point_dir2, justified.mean2, message.mean2, condemn.mean2)
|
358 |
+
se_p <- c(summary(diff.in.means.results2)$se.treat, se_dir2, justified.se2, message.se2, condemn.se2)
|
359 |
+
base <- barplot(point, ylim = c(0, 0.20))
|
360 |
+
bar_name_u <- c("Only Means\n(List)","Only Means\n(Direct)", "Justified", "Message", "Condemn")
|
361 |
+
bar_name <- rep("",5)
|
362 |
+
|
363 |
+
pdf("figure_3.pdf", height = 4.5, width = 8)
|
364 |
+
par(mar = c(4, 5, 2, 1))
|
365 |
+
barplot(point, ylim = c(0, 0.3), names.arg = bar_name,
|
366 |
+
col = c(adjustcolor("red", 0.4), "gray", "gray", "gray", "gray"), cex.axis = 1.3,
|
367 |
+
ylab = "Proportion of respondents", cex.lab = 1.45)
|
368 |
+
arrows(base[,1], point - 1.96*se_p, base[,1], point + 1.96*se_p,
|
369 |
+
lwd = 3, angle = 90, length = 0.05, code = 3,
|
370 |
+
col = c("red", "black", "black", "black", "black"))
|
371 |
+
mtext(bar_name_u[1], outer = FALSE, side = 1, at = base[1], cex = 1.2, line = 2.4)
|
372 |
+
mtext(bar_name_u[2], outer = FALSE, side = 1, at = base[2], cex = 1.2, line = 2.4)
|
373 |
+
mtext(bar_name_u[3], outer = FALSE, side = 1, at = base[3], cex = 1.2, line = 2.4)
|
374 |
+
mtext(bar_name_u[4], outer = FALSE, side = 1, at = base[4], cex = 1.2, line = 2.4)
|
375 |
+
mtext(bar_name_u[5], outer = FALSE, side = 1, at = base[5], cex = 1.2, line = 2.4)
|
376 |
+
text(x = base[1], y = 0.275, "Estimate from \nList Experiment", col = "red", font = 2)
|
377 |
+
text(x = (base[3] + base[4])/2, y = 0.275, "Direct Questions", font = 2)
|
378 |
+
dev.off()
|
32/replication_package/YouGov.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68bc13dffdedff3ad30211644a050d0e85e24693ecaf6b2e8c95f6e37cfa9f5d
|
3 |
+
size 212090
|
32/replication_package/codebook_YouGov.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97b900343580543bff2743c8a158d93e1d6a9aedc0c8215911fe84c02c27c2d1
|
3 |
+
size 139433
|
32/replication_package/codebook_context.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ca51e10c3186ba504bf83bcea63385813cfb51ce1e354d47832e9cbb916d60a
|
3 |
+
size 140823
|
32/replication_package/codebook_context_placebo.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e04f05c86b1ad29b2e004537221a1ec4d610285d84a539227473f84dd938e7d9
|
3 |
+
size 164836
|
32/replication_package/codebook_survey.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99bb13e7d6936c4f57eaba442ae1d453db5368b1984dd8ec4e47023d732ae542
|
3 |
+
size 146756
|
32/replication_package/context.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe201f5a75c7d014e63a155ddbf44a8a144e0b93c366d1d58c7898bf411c6009
|
3 |
+
size 7408421
|
32/replication_package/context_placebo.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c300be8df5d3bf094c2cfe4fa5e7c70d55dd9902cd3369d789b434704a7abfc0
|
3 |
+
size 4064170
|
32/replication_package/master.R
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Main Analysis in the paper
|
2 |
+
source("ContextAnalysis_Main.R")
|
3 |
+
source("SurveyAnalysis_Main.R")
|
4 |
+
|
5 |
+
# Numbers we report in the paper
|
6 |
+
source("number_in_texts.R")
|
7 |
+
|
8 |
+
# Results in Appendix
|
9 |
+
source("ContextAnalysis_Appendix.R")
|
10 |
+
source("SurveyAnalysis_Appendix.R")
|
32/replication_package/merge_context.R
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Internal File for Merging datasets for producing "context.dta"
|
2 |
+
# R version 4.0.2 (2020-06-22)
|
3 |
+
|
4 |
+
rm(list=ls())
|
5 |
+
# install.packages("readstata13") # readstata13_0.9.2
|
6 |
+
|
7 |
+
require(readstata13) # readstata13_0.9.2
|
8 |
+
|
9 |
+
setwd("source_data")
|
10 |
+
|
11 |
+
# 0. Base data that contains AGS identifies and Year
|
12 |
+
base <- read.dta13("base.dta")
|
13 |
+
|
14 |
+
# Note:
|
15 |
+
# Every data source we use below is fully described in "source_context.pdf"
|
16 |
+
|
17 |
+
# 1. Hate Crime Data
|
18 |
+
hate <- read.dta13("hate.dta")
|
19 |
+
hate$Housing_all_muni <- hate$Arson_muni + hate$Other_muni
|
20 |
+
hate$Hate_all_muni <- hate$Housing_all_muni + hate$Physical_muni
|
21 |
+
|
22 |
+
context0 <- merge(base, hate[, c("ags_muni", "year",
|
23 |
+
"Hate_all_muni",
|
24 |
+
"Physical_muni")], by = c("ags_muni", "year"), all.x = TRUE)
|
25 |
+
|
26 |
+
# 2. Population Data
|
27 |
+
pop_dat <- read.dta13("pop_gemeinde_2008_2018.dta")
|
28 |
+
colnames(pop_dat)[colnames(pop_dat) == "ags"] <- "ags_muni"
|
29 |
+
|
30 |
+
pop_dat$pop_m_25_44 <- pop_dat$pop_m_25_29 + pop_dat$pop_m_30_34 + pop_dat$pop_m_35_39 + pop_dat$pop_m_40_44
|
31 |
+
pop_dat$pop_f_25_44 <- pop_dat$pop_f_25_29 + pop_dat$pop_f_30_34 + pop_dat$pop_f_35_39 + pop_dat$pop_f_40_44
|
32 |
+
|
33 |
+
pop_dat$pop_m_15_44 <- pop_dat$pop_m_15_17 + pop_dat$pop_m_18_19 + pop_dat$pop_m_20_24 + pop_dat$pop_m_25_44
|
34 |
+
pop_dat$pop_f_15_44 <- pop_dat$pop_f_15_17 + pop_dat$pop_f_18_19 + pop_dat$pop_f_20_24 + pop_dat$pop_f_25_44
|
35 |
+
|
36 |
+
pop_dat$population_muni <- pop_dat$pop_mf_total
|
37 |
+
|
38 |
+
pop_dat$pop_25_44_muni_gendergap <- pop_dat$pop_m_25_44/pop_dat$pop_f_25_44
|
39 |
+
pop_dat$pop_15_44_muni_gendergap <- pop_dat$pop_m_15_44/pop_dat$pop_f_15_44
|
40 |
+
pop_dat$pop_25_44_muni_gendergap[is.infinite(pop_dat$pop_25_44_muni_gendergap)] <- NA
|
41 |
+
pop_dat$pop_15_44_muni_gendergap[is.infinite(pop_dat$pop_15_44_muni_gendergap)] <- NA
|
42 |
+
|
43 |
+
pop_dat_2015 <- subset(pop_dat, year == 2015)
|
44 |
+
pop_dat_2015$pop_25_44_muni_gendergap_2015 <- pop_dat_2015$pop_m_25_44/pop_dat_2015$pop_f_25_44
|
45 |
+
pop_dat_2015$pop_15_44_muni_gendergap_2015 <- pop_dat_2015$pop_m_15_44/pop_dat_2015$pop_f_15_44
|
46 |
+
pop_dat_2015$pop_25_44_muni_gendergap_2015[is.infinite(pop_dat_2015$pop_25_44_muni_gendergap_2015)] <- NA
|
47 |
+
pop_dat_2015$pop_15_44_muni_gendergap_2015[is.infinite(pop_dat_2015$pop_15_44_muni_gendergap_2015)] <- NA
|
48 |
+
|
49 |
+
pop_dat_2015$population_muni_2015 <- pop_dat_2015$pop_mf_total
|
50 |
+
|
51 |
+
|
52 |
+
# 3. area
|
53 |
+
area <- read.dta13("area_mun.dta")
|
54 |
+
area_use <- area[area$ags %in% context0$ags_muni, ]
|
55 |
+
colnames(area_use)[colnames(area_use) == "ags"] <- "ags_muni"
|
56 |
+
|
57 |
+
pop_dat_2015 <- merge(pop_dat_2015, area_use[,c("ags_muni", "area_sqk")], all.x = TRUE)
|
58 |
+
pop_dat_2015$popdens_muni_2015 <- pop_dat_2015$population_muni_2015/pop_dat_2015$area_sqk
|
59 |
+
|
60 |
+
pop_dat <- merge(pop_dat, area_use[,c("ags_muni", "area_sqk")], all.x = TRUE)
|
61 |
+
pop_dat$popdens_muni <- pop_dat$population_muni/pop_dat$area_sqk
|
62 |
+
|
63 |
+
context0 <- merge(context0, pop_dat_2015[, c("ags_muni",
|
64 |
+
"pop_25_44_muni_gendergap_2015",
|
65 |
+
"pop_15_44_muni_gendergap_2015",
|
66 |
+
"population_muni_2015",
|
67 |
+
"popdens_muni_2015")], by = c("ags_muni"), all.x = TRUE)
|
68 |
+
|
69 |
+
# 4. Unemployment
|
70 |
+
pop_dat <- read.dta13("pop_gemeinde_2008_2018.dta")
|
71 |
+
colnames(pop_dat)[colnames(pop_dat) == "ags"] <- "ags_muni"
|
72 |
+
pop_dat$pop_m_25_44 <- pop_dat$pop_m_25_29 + pop_dat$pop_m_30_34 + pop_dat$pop_m_35_39 + pop_dat$pop_m_40_44
|
73 |
+
pop_dat$pop_f_25_44 <- pop_dat$pop_f_25_29 + pop_dat$pop_f_30_34 + pop_dat$pop_f_35_39 + pop_dat$pop_f_40_44
|
74 |
+
pop_dat$pop_m_15_44 <- pop_dat$pop_m_15_17 + pop_dat$pop_m_18_19 + pop_dat$pop_m_20_24 + pop_dat$pop_m_25_44
|
75 |
+
pop_dat$pop_f_15_44 <- pop_dat$pop_f_15_17 + pop_dat$pop_f_18_19 + pop_dat$pop_f_20_24 + pop_dat$pop_f_25_44
|
76 |
+
unemp_dat <- read.dta13("unempl_gemeinde_2008_2017.dta")
|
77 |
+
colnames(unemp_dat)[colnames(unemp_dat) == "ags"] <- "ags_muni"
|
78 |
+
colnames(unemp_dat)[colnames(unemp_dat) == "ags_dist"] <- "ags_county"
|
79 |
+
|
80 |
+
## unemployed as share of working age population (age 15-64)
|
81 |
+
pop_dat$pop_mf_15_64 <- pop_dat$pop_mf_15_17 + pop_dat$pop_mf_18_19 + pop_dat$pop_mf_20_24 +
|
82 |
+
pop_dat$pop_mf_25_29 + pop_dat$pop_mf_30_34 + pop_dat$pop_mf_35_39 + pop_dat$pop_mf_40_44 +
|
83 |
+
pop_dat$pop_mf_45_49 + pop_dat$pop_mf_50_54 + pop_dat$pop_mf_55_59 + pop_dat$pop_mf_60_64
|
84 |
+
|
85 |
+
pop_dat$pop_m_15_64 <- pop_dat$pop_m_15_44 + pop_dat$pop_m_45_49 + pop_dat$pop_m_50_54 +
|
86 |
+
pop_dat$pop_m_55_59 + pop_dat$pop_m_60_64
|
87 |
+
|
88 |
+
pop_dat$pop_f_15_64 <- pop_dat$pop_f_15_44 + pop_dat$pop_f_45_49 + pop_dat$pop_f_50_54 +
|
89 |
+
pop_dat$pop_f_55_59 + pop_dat$pop_f_60_64
|
90 |
+
|
91 |
+
unemp_dat_use <- unemp_dat[, c("ags_muni", "ags_county",
|
92 |
+
"year",
|
93 |
+
"unempl_all_total",
|
94 |
+
"unempl_all_male_total",
|
95 |
+
"unempl_all_fem_total")]
|
96 |
+
pop_dat_m <- pop_dat[pop_dat$year >= 2011, c("ags_muni", "year", "pop_mf_15_64", "pop_m_15_64", "pop_f_15_64")]
|
97 |
+
unemp_merge <- merge(pop_dat_m, unemp_dat_use, by = c("ags_muni", "year"), all.x = TRUE, all.y = FALSE)
|
98 |
+
unemp_merge$unemp_all_muni <- (unemp_merge$unempl_all_total/unemp_merge$pop_mf_15_64)*100
|
99 |
+
|
100 |
+
unemp_2015 <- unemp_merge[unemp_merge$year == 2015, ]
|
101 |
+
unemp_2015$unemp_all_muni_2015 <- unemp_2015$unemp_all_muni
|
102 |
+
unemp_2015$log_unemp_all_muni_2015 <- log(unemp_2015$unemp_all_muni_2015 + 1)
|
103 |
+
|
104 |
+
context0 <- merge(context0, unemp_2015[, c("ags_muni",
|
105 |
+
"log_unemp_all_muni_2015")], by = c("ags_muni"),
|
106 |
+
all.x = TRUE, all.y = FALSE)
|
107 |
+
|
108 |
+
# 5. Unemployment Gender Gap
|
109 |
+
d2 <- read.dta13("merged_context_2.dta") # we created this data set in "produce_context_data.do"
|
110 |
+
d2_15 <- d2[d2$year == 2015, ]
|
111 |
+
d2_15$unemp_gendergap_2015 <- round(d2_15$unemp_gendergap, 6)
|
112 |
+
|
113 |
+
context0 <- merge(context0, d2_15[, c("ags_county", "unemp_gendergap_2015")],
|
114 |
+
all.x = TRUE, all.y = FALSE, by = "ags_county")
|
115 |
+
|
116 |
+
# 6. Population Change
|
117 |
+
pop_dat <- read.dta13("pop_gemeinde_2008_2018.dta")
|
118 |
+
colnames(pop_dat)[colnames(pop_dat) == "ags"] <- "ags_muni"
|
119 |
+
pop_dat$population_muni <- pop_dat$pop_mf_total
|
120 |
+
pop_dat_2015 <- subset(pop_dat, year == 2015)
|
121 |
+
pop_dat_2011 <- subset(pop_dat, year == 2011)
|
122 |
+
pop_dat_2015$d_pop1511_muni <-
|
123 |
+
(pop_dat_2015$population_muni - pop_dat_2011$population_muni)/pop_dat_2011$population_muni
|
124 |
+
|
125 |
+
context0 <- merge(context0, pop_dat_2015[, c("ags_muni",
|
126 |
+
"d_pop1511_muni")], by = c("ags_muni"), all.x = TRUE)
|
127 |
+
|
128 |
+
# 7. Voting
|
129 |
+
voting <- read.dta13("voting.dta")
|
130 |
+
|
131 |
+
context0 <- merge(context0, voting[, c("ags_muni",
|
132 |
+
"vote_afd_2013_muni")], by = c("ags_muni"), all.x = TRUE)
|
133 |
+
|
134 |
+
# 8. Refugee Data
|
135 |
+
ref_dat <- read.dta13("refugees_2008_2017.dta")
|
136 |
+
ref_2014 <- subset(ref_dat, year == 2014)
|
137 |
+
ref_2015 <- subset(ref_dat, year == 2015)
|
138 |
+
table(ref_2014$ags_county == ref_2015$ags_county)
|
139 |
+
|
140 |
+
ref_2014$ref_inflow_1514 <- ref_2015$pop_ref - ref_2014$pop_ref
|
141 |
+
ref_2014$log_ref_inflow_1514 <- log(1500 + ref_2014$ref_inflow_1514)
|
142 |
+
|
143 |
+
ref_2014$pop_ref_2014 <- ref_2014$pop_ref
|
144 |
+
ref_2014$pop_ref_2015 <- ref_2015$pop_ref
|
145 |
+
|
146 |
+
# Proportion of male refugees
|
147 |
+
ref_prop <- read.dta13("merged_context_2.dta") # we created this data set in "produce_context_data.do"
|
148 |
+
|
149 |
+
context0 <- merge(context0, ref_2014[, c("ags_county",
|
150 |
+
"log_ref_inflow_1514",
|
151 |
+
"pop_ref_2014")], by = c("ags_county"), all.x = TRUE)
|
152 |
+
context0 <- merge(context0, ref_prop[, c("year", "ags_county",
|
153 |
+
"pc_ref_male")], by = c("year", "ags_county"), all.x = TRUE)
|
154 |
+
|
155 |
+
# 9. Violence
|
156 |
+
crime <- read.dta13("crime.dta")
|
157 |
+
crime <- crime[crime$year == 2015, ]
|
158 |
+
|
159 |
+
pop_county <- read.dta13("pop_kreise_2015_2017.dta")
|
160 |
+
pop_county1 <- subset(pop_county, year == 2015)
|
161 |
+
|
162 |
+
crime2 <- merge(crime[, c("ags_county", "violence_num_cases")],
|
163 |
+
pop_county1[, c("ags_county", "population")],
|
164 |
+
by = "ags_county", all.x = TRUE, all.y = FALSE)
|
165 |
+
crime2$violence_percap_2015 <- crime2$violence_num_cases/crime2$population
|
166 |
+
|
167 |
+
context0 <- merge(context0, crime2[, c("ags_county",
|
168 |
+
"violence_percap_2015")], by = c("ags_county"), all.x = TRUE)
|
169 |
+
|
170 |
+
# 10. Education
|
171 |
+
edu <- read.dta13("merged_context_2.dta") # we created this data set in "produce_context_data.do"
|
172 |
+
edu <- edu[edu$year == 2011, ]
|
173 |
+
edu <- edu[, c("ags_county", "pc_hidegree_all2011")]
|
174 |
+
|
175 |
+
context0 <- merge(context0, edu[, c("ags_county",
|
176 |
+
"pc_hidegree_all2011")], by = c("ags_county"), all.x = TRUE)
|
177 |
+
|
178 |
+
|
179 |
+
# 10. Industry
|
180 |
+
manu0 <- read.dta13("merged_context_2.dta") # we created this data set in "produce_context_data.do"
|
181 |
+
manu0 <- manu0[, c("year", "ags_county", "pc_manufacturing")]
|
182 |
+
manu <- manu0[manu0$year >= 2011 & manu0$year <= 2015, ]
|
183 |
+
rownames(manu) <- NULL
|
184 |
+
manu_orig <- manu
|
185 |
+
|
186 |
+
manu <- manu_orig[manu_orig$year == 2015, ]
|
187 |
+
manu <- manu[, c("ags_county", "pc_manufacturing")]
|
188 |
+
manu <- manu[is.element(manu$ags_county, unique(context0$ags_county)),]
|
189 |
+
manu$pc_manufacturing_2015 <- manu$pc_manufacturing
|
190 |
+
|
191 |
+
manu2011 <- manu_orig[manu_orig$year == 2011, ]
|
192 |
+
manu2011 <- manu2011[, c("ags_county", "pc_manufacturing")]
|
193 |
+
manu2011 <- manu2011[is.element(manu2011$ags_county, unique(context0$ags_county)),]
|
194 |
+
manu2011$pc_manufacturing_2011 <- manu2011$pc_manufacturing
|
195 |
+
|
196 |
+
# d_manuf1115
|
197 |
+
manu$d_manuf1115 <- manu$pc_manufacturing_2015 - manu2011$pc_manufacturing_2011
|
198 |
+
|
199 |
+
context0 <- merge(context0, manu[, c("ags_county",
|
200 |
+
"pc_manufacturing_2015",
|
201 |
+
"d_manuf1115")], by = c("ags_county"), all.x = TRUE)
|
202 |
+
|
203 |
+
# 11. East
|
204 |
+
context0$east <- 0
|
205 |
+
context0$east[context0$ags_state %in% c("11","12","13","14","15","16")] <- 1
|
206 |
+
|
207 |
+
# 12. Create additional variables
|
208 |
+
context0$Hate_all_muni_bin <- as.numeric(context0$Hate_all_muni > 0)
|
209 |
+
context0$Physical_muni_bin <- as.numeric(context0$Physical_muni > 0)
|
210 |
+
|
211 |
+
context0$log_population_muni_2015 <- log(context0$population_muni_2015)
|
212 |
+
context0$log_popdens_muni_2015 <- log(context0$popdens_muni_2015)
|
213 |
+
context0$log_pop_ref_2014 <- log(context0$pop_ref_2014)
|
214 |
+
context0$log_violence_percap_2015 <- log(context0$violence_percap_2015)
|
215 |
+
|
216 |
+
context0 <- context0[order(context0$year, context0$ags_muni), ]
|
217 |
+
save.dta13(context0, file = "context.dta")
|
32/replication_package/merge_context_placebo.R
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
rm(list = ls())
|
2 |
+
# install.packages("readstata13") # readstata13_0.9.2
|
3 |
+
# install.packages("plm") # plm_2.2-3
|
4 |
+
|
5 |
+
library(readstata13) # readstata13_0.9.2
|
6 |
+
library(plm) # plm_2.2-3
|
7 |
+
|
8 |
+
setwd("source_data")
|
9 |
+
|
10 |
+
# 0. Base data that contains AGS identifies and Year
|
11 |
+
base_pl <- read.dta13("base_pl.dta")
|
12 |
+
|
13 |
+
# Note:
|
14 |
+
# Every data source we use below is fully described in "source_context.pdf"
|
15 |
+
|
16 |
+
# 1. Hate Crime Data
|
17 |
+
hate <- read.dta13("hate.dta")
|
18 |
+
hate$Housing_all_muni <- hate$Arson_muni + hate$Other_muni
|
19 |
+
hate$Hate_all_muni <- hate$Housing_all_muni + hate$Physical_muni
|
20 |
+
|
21 |
+
|
22 |
+
context0 <- merge(base_pl, hate[, c("ags_muni", "year",
|
23 |
+
"Hate_all_muni")], by = c("ags_muni", "year"), all.x = TRUE)
|
24 |
+
|
25 |
+
# 2. Population Data
|
26 |
+
pop_dat <- read.dta13("pop_gemeinde_2008_2018.dta")
|
27 |
+
pop_dat <- pop_dat[pop_dat$year >= 2011, ]
|
28 |
+
|
29 |
+
pop_dat$pop_m_25_44 <- pop_dat$pop_m_25_29 + pop_dat$pop_m_30_34 + pop_dat$pop_m_35_39 + pop_dat$pop_m_40_44
|
30 |
+
pop_dat$pop_f_25_44 <- pop_dat$pop_f_25_29 + pop_dat$pop_f_30_34 + pop_dat$pop_f_35_39 + pop_dat$pop_f_40_44
|
31 |
+
|
32 |
+
pop_dat$pop_m_15_44 <- pop_dat$pop_m_15_17 + pop_dat$pop_m_18_19 + pop_dat$pop_m_20_24 + pop_dat$pop_m_25_44
|
33 |
+
pop_dat$pop_f_15_44 <- pop_dat$pop_f_15_17 + pop_dat$pop_f_18_19 + pop_dat$pop_f_20_24 + pop_dat$pop_f_25_44
|
34 |
+
|
35 |
+
pop_dat$population_muni_anu <- pop_dat$pop_mf_total
|
36 |
+
|
37 |
+
pop_dat$pop_25_44_muni_gendergap_anu <- pop_dat$pop_m_25_44/pop_dat$pop_f_25_44
|
38 |
+
pop_dat$pop_15_44_muni_gendergap_anu <- pop_dat$pop_m_15_44/pop_dat$pop_f_15_44
|
39 |
+
pop_dat$pop_25_44_muni_gendergap_anu[is.infinite(pop_dat$pop_25_44_muni_gendergap_anu)] <- NA
|
40 |
+
pop_dat$pop_15_44_muni_gendergap_anu[is.infinite(pop_dat$pop_15_44_muni_gendergap_anu)] <- NA
|
41 |
+
|
42 |
+
pop_dat_pl <- pop_dat[, c("year", "ags_muni","ags_county", "ags_state",
|
43 |
+
"population_muni_anu", "pop_15_44_muni_gendergap_anu")]
|
44 |
+
|
45 |
+
# creating pop_15_44_muni_gendergap_future
|
46 |
+
pop_dat_pl_p <- pdata.frame(pop_dat_pl, index = c("ags_muni", "year"))
|
47 |
+
pop_dat_pl_p$pop_15_44_muni_gendergap_future <- as.numeric(lead(pop_dat_pl_p$pop_15_44_muni_gendergap_anu, k = 1))
|
48 |
+
class(pop_dat_pl_p) <- "data.frame"
|
49 |
+
pop_dat_pl <- pop_dat_pl_p
|
50 |
+
rownames(pop_dat_pl) <- NULL
|
51 |
+
|
52 |
+
# 3. area
|
53 |
+
area <- read.dta13("area_mun.dta")
|
54 |
+
area_use <- area[area$ags %in% base_pl$ags_muni, ]
|
55 |
+
colnames(area_use)[colnames(area_use) == "ags"] <- "ags_muni"
|
56 |
+
|
57 |
+
pop_dat_pl <- merge(pop_dat_pl, area_use[,c("ags_muni", "area_sqk")], all.x = TRUE, all.y = FALSE)
|
58 |
+
pop_dat_pl$popdens_muni_anu <- pop_dat_pl$population_muni_anu/pop_dat_pl$area_sqk
|
59 |
+
|
60 |
+
pop_dat_2015 <- subset(pop_dat_pl, year == 2015)
|
61 |
+
pop_dat_2011 <- subset(pop_dat_pl, year == 2011)
|
62 |
+
pop_dat_2011 <- pop_dat_2011[match(pop_dat_2015$ags_muni, pop_dat_2011$ags_muni),]
|
63 |
+
pop_dat_2015$d_pop_muni_anu <-
|
64 |
+
(pop_dat_2015$population_muni - pop_dat_2011$population_muni)/pop_dat_2011$population_muni
|
65 |
+
|
66 |
+
pop_dat_2016 <- subset(pop_dat_pl, year == 2016)
|
67 |
+
pop_dat_2012 <- subset(pop_dat_pl, year == 2012)
|
68 |
+
pop_dat_2012 <- pop_dat_2012[match(pop_dat_2016$ags_muni, pop_dat_2012$ags_muni),]
|
69 |
+
pop_dat_2016$d_pop_muni_anu <-
|
70 |
+
(pop_dat_2016$population_muni - pop_dat_2012$population_muni)/pop_dat_2012$population_muni
|
71 |
+
|
72 |
+
pop_dat_2017 <- subset(pop_dat_pl, year == 2017)
|
73 |
+
pop_dat_2013 <- subset(pop_dat_pl, year == 2013)
|
74 |
+
pop_dat_2013 <- pop_dat_2013[match(pop_dat_2017$ags_muni, pop_dat_2013$ags_muni),]
|
75 |
+
pop_dat_2017$d_pop_muni_anu <-
|
76 |
+
(pop_dat_2017$population_muni - pop_dat_2013$population_muni)/pop_dat_2013$population_muni
|
77 |
+
|
78 |
+
pop_dat_d <- rbind(pop_dat_2015, pop_dat_2016, pop_dat_2017)
|
79 |
+
|
80 |
+
context0 <- merge(context0, pop_dat_d[, c("year", "ags_muni",
|
81 |
+
"pop_15_44_muni_gendergap_anu",
|
82 |
+
"pop_15_44_muni_gendergap_future",
|
83 |
+
"population_muni_anu",
|
84 |
+
"popdens_muni_anu",
|
85 |
+
"d_pop_muni_anu")], by = c("year", "ags_muni"),
|
86 |
+
all.x = TRUE, all.y = FALSE)
|
87 |
+
|
88 |
+
# 4. Unemployment
|
89 |
+
pop_dat <- read.dta13("pop_gemeinde_2008_2018.dta")
|
90 |
+
colnames(pop_dat)[colnames(pop_dat) == "ags"] <- "ags_muni"
|
91 |
+
pop_dat$pop_m_25_44 <- pop_dat$pop_m_25_29 + pop_dat$pop_m_30_34 + pop_dat$pop_m_35_39 + pop_dat$pop_m_40_44
|
92 |
+
pop_dat$pop_f_25_44 <- pop_dat$pop_f_25_29 + pop_dat$pop_f_30_34 + pop_dat$pop_f_35_39 + pop_dat$pop_f_40_44
|
93 |
+
pop_dat$pop_m_15_44 <- pop_dat$pop_m_15_17 + pop_dat$pop_m_18_19 + pop_dat$pop_m_20_24 + pop_dat$pop_m_25_44
|
94 |
+
pop_dat$pop_f_15_44 <- pop_dat$pop_f_15_17 + pop_dat$pop_f_18_19 + pop_dat$pop_f_20_24 + pop_dat$pop_f_25_44
|
95 |
+
unemp_dat <- read.dta13("unempl_gemeinde_2008_2017.dta")
|
96 |
+
colnames(unemp_dat)[colnames(unemp_dat) == "ags"] <- "ags_muni"
|
97 |
+
colnames(unemp_dat)[colnames(unemp_dat) == "ags_dist"] <- "ags_county"
|
98 |
+
|
99 |
+
## unemployed as share of working age population (age 15-64)
|
100 |
+
pop_dat$pop_mf_15_64 <- pop_dat$pop_mf_15_17 + pop_dat$pop_mf_18_19 + pop_dat$pop_mf_20_24 +
|
101 |
+
pop_dat$pop_mf_25_29 + pop_dat$pop_mf_30_34 + pop_dat$pop_mf_35_39 + pop_dat$pop_mf_40_44 +
|
102 |
+
pop_dat$pop_mf_45_49 + pop_dat$pop_mf_50_54 + pop_dat$pop_mf_55_59 + pop_dat$pop_mf_60_64
|
103 |
+
|
104 |
+
pop_dat$pop_m_15_64 <- pop_dat$pop_m_15_44 + pop_dat$pop_m_45_49 + pop_dat$pop_m_50_54 +
|
105 |
+
pop_dat$pop_m_55_59 + pop_dat$pop_m_60_64
|
106 |
+
|
107 |
+
pop_dat$pop_f_15_64 <- pop_dat$pop_f_15_44 + pop_dat$pop_f_45_49 + pop_dat$pop_f_50_54 +
|
108 |
+
pop_dat$pop_f_55_59 + pop_dat$pop_f_60_64
|
109 |
+
|
110 |
+
unemp_dat_use <- unemp_dat[, c("ags_muni", "ags_county",
|
111 |
+
"year",
|
112 |
+
"unempl_all_total",
|
113 |
+
"unempl_all_male_total", "unempl_all_fem_total")]
|
114 |
+
pop_dat_m <- pop_dat[pop_dat$year >= 2011, c("ags_muni", "year", "pop_mf_15_64", "pop_m_15_64", "pop_f_15_64")]
|
115 |
+
unemp_merge <- merge(pop_dat_m, unemp_dat_use, by = c("ags_muni", "year"), all.x = TRUE, all.y = FALSE)
|
116 |
+
|
117 |
+
unemp_merge$unemp_all_muni <- (unemp_merge$unempl_all_total/unemp_merge$pop_mf_15_64)*100
|
118 |
+
|
119 |
+
dat_2015 <- unemp_merge[unemp_merge$year == 2015, ]
|
120 |
+
dat_2016 <- unemp_merge[unemp_merge$year == 2016, ]
|
121 |
+
dat_2017 <- unemp_merge[unemp_merge$year == 2017, ]
|
122 |
+
|
123 |
+
dat_2015$log_unemp_all_muni_anu <- log(dat_2015$unemp_all_muni + 1) # constants are chosen to make sure all values are positive
|
124 |
+
dat_2016$log_unemp_all_muni_anu <- log(dat_2016$unemp_all_muni + 0.3)
|
125 |
+
dat_2017$log_unemp_all_muni_anu <- log(dat_2017$unemp_all_muni + 0.3)
|
126 |
+
unemp_u <- rbind(dat_2015, dat_2016, dat_2017)
|
127 |
+
|
128 |
+
context0 <- merge(context0, unemp_u[, c("ags_muni", "year",
|
129 |
+
"log_unemp_all_muni_anu")],
|
130 |
+
by = c("ags_muni", "year"), all.x = TRUE, all.y = FALSE)
|
131 |
+
|
132 |
+
# 5 Unemployment Rate Gap
|
133 |
+
d20 <- read.dta13("merged_context_2.dta")
|
134 |
+
d2 <- unique(d20[, c("year", "ags_county", "unemp_gendergap")])
|
135 |
+
d2$unemp_gendergap_anu <- d2$unemp_gendergap
|
136 |
+
|
137 |
+
context0 <- merge(context0, d2[, c("year", "ags_county", "unemp_gendergap_anu")],
|
138 |
+
all.x = TRUE, all.y = FALSE, by = c("year", "ags_county"))
|
139 |
+
|
140 |
+
# 6. Voting
|
141 |
+
voting <- read.dta13("voting.dta")
|
142 |
+
|
143 |
+
context0 <- merge(context0, voting[, c("ags_muni",
|
144 |
+
"vote_afd_2013_muni")], by = c("ags_muni"),
|
145 |
+
all.x = TRUE, all.y = FALSE)
|
146 |
+
|
147 |
+
# 7. Refugee Data
|
148 |
+
ref_dat <- read.dta13("refugees_2008_2017.dta")
|
149 |
+
ref_dat <- ref_dat[ref_dat$year >= 2011, ]
|
150 |
+
|
151 |
+
# Creating pop_ref_anu
|
152 |
+
ref_dat_p <- pdata.frame(ref_dat, index = c("ags_county", "year"))
|
153 |
+
ref_dat_p$pop_ref_anu <- as.numeric(lag(ref_dat_p$pop_ref, k = 1))
|
154 |
+
class(ref_dat_p) <- "data.frame"
|
155 |
+
ref_dat <- ref_dat_p
|
156 |
+
|
157 |
+
ref_dat <- ref_dat[ref_dat$ags_county %in% unique(ref_dat$ags_county[ref_dat$year == 2014]),]
|
158 |
+
ref_2014 <- ref_dat[ref_dat$year == 2014, ]
|
159 |
+
ref_2015 <- ref_dat[ref_dat$year == 2015, ]
|
160 |
+
ref_2016 <- ref_dat[ref_dat$year == 2016, ]
|
161 |
+
ref_2017 <- ref_dat[ref_dat$year == 2017, ]
|
162 |
+
|
163 |
+
ref_2015$ref_inflow_1514 <- ref_2015$pop_ref - ref_2014$pop_ref
|
164 |
+
ref_2016$ref_inflow_1615 <- ref_2016$pop_ref - ref_2015$pop_ref
|
165 |
+
ref_2017$ref_inflow_1716 <- ref_2017$pop_ref - ref_2016$pop_ref
|
166 |
+
|
167 |
+
ref_2015$log_ref_inflow_anu <- log(1500 + ref_2015$ref_inflow_1514) # constants are chosen such that all values are positive
|
168 |
+
suppressWarnings(ref_2016$log_ref_inflow_anu <- log(ref_2016$ref_inflow_1615 + 649))
|
169 |
+
suppressWarnings(ref_2017$log_ref_inflow_anu <- log(ref_2017$ref_inflow_1716 + 1261))
|
170 |
+
|
171 |
+
ref_2015 <- ref_2015[, c("year", "ags_county", "pop_ref_anu", "log_ref_inflow_anu")]
|
172 |
+
ref_2016 <- ref_2016[, c("year", "ags_county", "pop_ref_anu", "log_ref_inflow_anu")]
|
173 |
+
ref_2017 <- ref_2017[, c("year", "ags_county", "pop_ref_anu", "log_ref_inflow_anu")]
|
174 |
+
ref_data_c <- rbind(ref_2015, ref_2016, ref_2017)
|
175 |
+
|
176 |
+
context0 <- merge(context0, ref_data_c[, c("year", "ags_county",
|
177 |
+
"pop_ref_anu",
|
178 |
+
"log_ref_inflow_anu")],
|
179 |
+
by = c("year", "ags_county"), all.x = TRUE, all.y = FALSE)
|
180 |
+
|
181 |
+
# 8. Violence
|
182 |
+
crime <- read.dta13("crime.dta")
|
183 |
+
pop <- read.dta13("pop_kreise_2015_2017.dta")
|
184 |
+
|
185 |
+
crime2 <- merge(crime[, c("year", "ags_county", "violence_num_cases")],
|
186 |
+
pop[, c("year", "ags_county", "population")],
|
187 |
+
by = c("year", "ags_county"), all.x = TRUE, all.y = FALSE)
|
188 |
+
crime2$violence_percap_anu <- crime2$violence_num_cases/crime2$population
|
189 |
+
|
190 |
+
context0 <- merge(context0, crime2[, c("year", "ags_county",
|
191 |
+
"violence_percap_anu")], by = c("year", "ags_county"),
|
192 |
+
all.x = TRUE, all.y = FALSE)
|
193 |
+
|
194 |
+
# 9. Education
|
195 |
+
edu <- read.dta13("merged_context_2.dta")
|
196 |
+
edu <- edu[edu$year == 2011, ]
|
197 |
+
edu <- edu[, c("ags_county", "pc_hidegree_all2011")]
|
198 |
+
|
199 |
+
|
200 |
+
context0 <- merge(context0, edu[, c("ags_county", "pc_hidegree_all2011")], by = c("ags_county"), all.x = TRUE)
|
201 |
+
|
202 |
+
# 10. Industry
|
203 |
+
manu0 <- read.dta13("merged_context_2.dta")
|
204 |
+
manu0 <- manu0[, c("year", "ags_county", "pc_manufacturing")]
|
205 |
+
manu <- manu0[manu0$year >= 2011 & manu0$year <= 2015, ]
|
206 |
+
rownames(manu) <- NULL
|
207 |
+
manu_orig <- manu
|
208 |
+
|
209 |
+
manu <- manu_orig[manu_orig$year == 2015, ]
|
210 |
+
manu <- manu[, c("ags_county", "pc_manufacturing")]
|
211 |
+
manu <- manu[is.element(manu$ags_county, unique(base_pl$ags_county)),]
|
212 |
+
manu$pc_manufacturing_2015 <- manu$pc_manufacturing
|
213 |
+
|
214 |
+
manu2011 <- manu_orig[manu_orig$year == 2011, ]
|
215 |
+
manu2011 <- manu2011[, c("ags_county", "pc_manufacturing")]
|
216 |
+
manu2011 <- manu2011[is.element(manu2011$ags_county, unique(base_pl$ags_county)),]
|
217 |
+
manu2011$pc_manufacturing_2011 <- manu2011$pc_manufacturing
|
218 |
+
|
219 |
+
# d_manuf1115
|
220 |
+
manu$d_manuf1115 <- manu$pc_manufacturing_2015 - manu2011$pc_manufacturing_2011
|
221 |
+
|
222 |
+
context0 <- merge(context0, manu[, c("ags_county",
|
223 |
+
"pc_manufacturing_2015",
|
224 |
+
"d_manuf1115")], by = c("ags_county"), all.x = TRUE)
|
225 |
+
|
226 |
+
|
227 |
+
# 11. Create additional variables
|
228 |
+
context0$Hate_all_muni_bin <- as.numeric(context0$Hate_all_muni > 0)
|
229 |
+
|
230 |
+
context0 <- context0[order(context0$year, context0$ags_muni), ]
|
231 |
+
save.dta13(context0, file = "context_placebo.dta")
|
32/replication_package/number_in_texts.R
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Replication File for numbers we mention in the main text of the paper.
|
2 |
+
# Please see "ContextAnalysis_Main.R", "SurveyAnalysis_Main.R", "ContextAnalysis_Appendix.R", and "SurveyAnalysis_Appendix.R"
|
3 |
+
# to reproduce Tables and Figures in the paper and in the appendix.
|
4 |
+
|
5 |
+
# R version 4.0.2 (2020-06-22)
|
6 |
+
|
7 |
+
rm(list=ls())
|
8 |
+
# install.packages("readstata13") # readstata13_0.9.2
|
9 |
+
# install.packages("MASS") # MASS_7.3-51.6
|
10 |
+
# install.packages("sandwich") # sandwich_2.5-1
|
11 |
+
# install.packages("lmtest") # lmtest_0.9-37
|
12 |
+
|
13 |
+
require(readstata13) # readstata13_0.9.2
|
14 |
+
require(MASS) # MASS_7.3-51.6
|
15 |
+
require(sandwich) # sandwich_2.5-1
|
16 |
+
require(lmtest) # lmtest_0.9-37
|
17 |
+
source("Help.R")
|
18 |
+
|
19 |
+
# ###############
|
20 |
+
# Section: Existing Explanations and Mate Competition
|
21 |
+
# ###############
|
22 |
+
you_data <- read.dta13(file = "YouGov.dta")
|
23 |
+
|
24 |
+
# The number of people who think marriages between a German woman and a non-German man is common and very common
|
25 |
+
prop.table(table(you_data$int_marriage))[3:4]
|
26 |
+
|
27 |
+
# ###############
|
28 |
+
# Section: Refugees and Mate Competition: A Topic of Debate
|
29 |
+
# ###############
|
30 |
+
# The number of hate crimes in 2015 and 2016
|
31 |
+
dat <- read.dta13("context.dta")
|
32 |
+
tapply(dat$Hate_all_muni, dat$year, sum)[1:2]
|
33 |
+
|
34 |
+
|
35 |
+
# ###############
|
36 |
+
# Section: Empirical Analyses
|
37 |
+
# ###############
|
38 |
+
# ###############
|
39 |
+
# Sub Section: Mate Competition and the Incidence of Anti-Refugee Hate Crime
|
40 |
+
# ###############
|
41 |
+
# The proportion of municipalities that witnessed at least one hate crime in each year
|
42 |
+
round(tapply(dat$Hate_all_muni_bin, dat$year, mean)*100, 1)
|
43 |
+
|
44 |
+
# The proportion of municipalities that witnessed at least one hate crime in three years
|
45 |
+
dat_2015 <- dat[dat$year == 2015, ]
|
46 |
+
dat_2016 <- dat[dat$year == 2016, ]
|
47 |
+
dat_2017 <- dat[dat$year == 2017, ]
|
48 |
+
dat_2015$Hate_all_muni_1517 <- dat_2015$Hate_all_muni + dat_2016$Hate_all_muni + dat_2017$Hate_all_muni
|
49 |
+
dat_2015$Hate_all_muni_1517_bin <- ifelse(dat_2015$Hate_all_muni_1517 > 0, 1, 0)
|
50 |
+
round(mean(dat_2015$Hate_all_muni_1517_bin)*100)
|
51 |
+
|
52 |
+
# Point Estimates that we mention when discussing Figure 1
|
53 |
+
# Remove Extreme Value of Excess Males
|
54 |
+
range_x <- quantile(dat_2015$pop_15_44_muni_gendergap_2015, c(0.025, 0.975), na.rm = TRUE)
|
55 |
+
dat_2015_s <- dat_2015[dat_2015$pop_15_44_muni_gendergap_2015 >= range_x[1] &
|
56 |
+
dat_2015$pop_15_44_muni_gendergap_2015 <= range_x[2], ]
|
57 |
+
dat_s <- dat[dat$pop_15_44_muni_gendergap_2015 >= range_x[1] &
|
58 |
+
dat$pop_15_44_muni_gendergap_2015 <= range_x[2], ]
|
59 |
+
|
60 |
+
# The size of population for exxluded municipalities
|
61 |
+
dat_exc <- dat[dat$pop_15_44_muni_gendergap_2015 < range_x[1] |
|
62 |
+
dat$pop_15_44_muni_gendergap_2015 > range_x[2], ]
|
63 |
+
|
64 |
+
ceiling(median(dat_exc$population_muni_2015, na.rm = TRUE)) # 247
|
65 |
+
|
66 |
+
# sum
|
67 |
+
bin_1_sum <- bin.summary(Hate_all_muni_1517_bin ~
|
68 |
+
pop_15_44_muni_gendergap_2015 +
|
69 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
70 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
71 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
72 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
73 |
+
unemp_gendergap_2015 + as.factor(ags_state),
|
74 |
+
id = "ags_county", data = dat_2015_s)
|
75 |
+
|
76 |
+
# annual
|
77 |
+
bin_1_p <- bin.summary(Hate_all_muni_bin ~
|
78 |
+
pop_15_44_muni_gendergap_2015 +
|
79 |
+
log_population_muni_2015 + log_popdens_muni_2015 +
|
80 |
+
log_unemp_all_muni_2015 + d_pop1511_muni + vote_afd_2013_muni +
|
81 |
+
log_ref_inflow_1514 + log_pop_ref_2014 + log_violence_percap_2015 + ## county level
|
82 |
+
pc_hidegree_all2011 + d_manuf1115 + pc_manufacturing_2015 + ## county level
|
83 |
+
unemp_gendergap_2015 + as.factor(ags_state) + as.factor(year),
|
84 |
+
id = "ags_county", data = dat_s)
|
85 |
+
|
86 |
+
# Excess Males
|
87 |
+
# Effect Estimation
|
88 |
+
bin_1_sum_effect <- marginal_effect(bin_1_sum,
|
89 |
+
newdata = dat_2015_s, family = "logit",
|
90 |
+
main_var = "pop_15_44_muni_gendergap_2015",
|
91 |
+
difference = TRUE,
|
92 |
+
treat_range = c(1, 1.2))
|
93 |
+
|
94 |
+
bin_1_p_effect <- marginal_effect(bin_1_p,
|
95 |
+
newdata = dat_s, family = "logit",
|
96 |
+
main_var = "pop_15_44_muni_gendergap_2015",
|
97 |
+
difference = TRUE,
|
98 |
+
treat_range = c(1, 1.2))
|
99 |
+
|
100 |
+
# Point estimate
|
101 |
+
round(bin_1_sum_effect$out_main[1:3]*100, 2)
|
102 |
+
# 2.5% 97.5%
|
103 |
+
# 0.88 2.60 4.19
|
104 |
+
round(bin_1_p_effect$out_main[1:3]*100, 2)
|
105 |
+
# 2.5% 97.5%
|
106 |
+
# 0.76 1.71 2.55
|
107 |
+
|
108 |
+
|
109 |
+
## Comparing to round(bin_1_sum_effect$out_main[1:3]*100, 2)
|
110 |
+
## The Effect of Unemployment
|
111 |
+
effect_unemp <- marginal_effect(bin_1_sum,
|
112 |
+
newdata = dat_2015_s, family = "logit",
|
113 |
+
main_var = "log_unemp_all_muni_2015",
|
114 |
+
difference = TRUE,
|
115 |
+
treat_range = quantile(dat_2015_s$log_unemp_all_muni_2015, prob = c(0.2, 0.8),
|
116 |
+
na.rm = TRUE))
|
117 |
+
round(effect_unemp$out_main[1:3]*100, 2) # 2.60 is more than half of 4.24
|
118 |
+
|
119 |
+
## The Effect of Education
|
120 |
+
effect_educ <- marginal_effect(bin_1_sum,
|
121 |
+
newdata = dat_2015_s, family = "logit",
|
122 |
+
main_var = "pc_hidegree_all2011",
|
123 |
+
difference = TRUE,
|
124 |
+
treat_range = quantile(dat_2015_s$pc_hidegree_all2011, prob = c(0.8, 0.2),
|
125 |
+
na.rm = TRUE))
|
126 |
+
round(effect_educ$out_main[1:3]*100, 2)
|
127 |
+
# 2.60 is more than twice of 1.20
|
128 |
+
|
129 |
+
|
130 |
+
# Correlation between Excess Males and Male Disadvantage
|
131 |
+
round(cor(dat_2015_s$pop_15_44_muni_gendergap_2015, dat_2015_s$unemp_gendergap_2015, use = "complete.obs"), 3)
|
132 |
+
|
133 |
+
|
134 |
+
# ###############
|
135 |
+
# Sub Section: Mate Competition and Support for Anti-Refugee Hate Crime
|
136 |
+
# ###############
|
137 |
+
rm(list=ls())
|
138 |
+
# install.packages("readstata13") # readstata13_0.9.2
|
139 |
+
# install.packages("MASS") # MASS_7.3-51.6
|
140 |
+
# install.packages("sandwich") # sandwich_2.5-1
|
141 |
+
# install.packages("lmtest") # lmtest_0.9-37
|
142 |
+
# install.packages("pBrackets") # pBrackets_1.0
|
143 |
+
# install.packages("stargazer") # stargazer_5.2.2
|
144 |
+
|
145 |
+
require(readstata13) # readstata13_0.9.2
|
146 |
+
require(MASS) # MASS_7.3-51.6
|
147 |
+
require(sandwich) # sandwich_2.5-1
|
148 |
+
require(lmtest) # lmtest_0.9-37
|
149 |
+
require(pBrackets) # pBrackets_1.0
|
150 |
+
require(stargazer) # stargazer_5.2.2
|
151 |
+
source("Help.R")
|
152 |
+
|
153 |
+
dat <- read.dta13(file = "survey.dta")
|
154 |
+
|
155 |
+
# Subset to people in the wave 4
|
156 |
+
dat_use <- dat[dat$wave == 4, ]
|
157 |
+
|
158 |
+
# Prepare Two data sets
|
159 |
+
dat_male <- dat_use[dat_use$gender == "Male" & dat_use$age <= 44 & dat_use$age >= 18, ]
|
160 |
+
dat_male_y <- dat_use[dat_use$gender == "Male" & dat_use$age <= 40 & dat_use$age >= 30, ]
|
161 |
+
|
162 |
+
# Overall Samples
|
163 |
+
dat_use$MateComp.cont_bin <- ifelse(dat_use$MateComp.cont >= 3, 1, 0)
|
164 |
+
dat_use$excess_c <- ifelse(dat_use$pop_15_44_muni_gendergap_2015 < 1.04, "1",
|
165 |
+
ifelse(dat_use$pop_15_44_muni_gendergap_2015 < 1.12, "2", "3"))
|
166 |
+
mean_all <- tapply(dat_use$MateComp.cont_bin, dat_use$excess_c, mean)
|
167 |
+
se_all <- tapply(dat_use$MateComp.cont_bin, dat_use$excess_c, sd)/sqrt(table(dat_use$excess_c))
|
168 |
+
|
169 |
+
# Male (18 - 44)
|
170 |
+
dat_male$MateComp.cont_bin <- ifelse(dat_male$MateComp.cont >= 3, 1, 0)
|
171 |
+
dat_male$excess_c <- ifelse(dat_male$pop_15_44_muni_gendergap_2015 < 1.04, "1",
|
172 |
+
ifelse(dat_male$pop_15_44_muni_gendergap_2015 < 1.12, "2", "3"))
|
173 |
+
mean_all_m <- tapply(dat_male$MateComp.cont_bin, dat_male$excess_c, mean)
|
174 |
+
se_all_m <- tapply(dat_male$MateComp.cont_bin, dat_male$excess_c, sd)/sqrt(table(dat_male$excess_c))
|
175 |
+
|
176 |
+
# Male (30 - 40)
|
177 |
+
dat_male_y$MateComp.cont_bin <- ifelse(dat_male_y$MateComp.cont >= 3, 1, 0)
|
178 |
+
dat_male_y$excess_c <- ifelse(dat_male_y$pop_15_44_muni_gendergap_2015 < 1.04, "1",
|
179 |
+
ifelse(dat_male_y$pop_15_44_muni_gendergap_2015 < 1.12, "2", "3"))
|
180 |
+
mean_all_y <- tapply(dat_male_y$MateComp.cont_bin, dat_male_y$excess_c, mean)
|
181 |
+
se_all_y <- tapply(dat_male_y$MateComp.cont_bin, dat_male_y$excess_c, sd)/sqrt(table(dat_male_y$excess_c))
|
182 |
+
|
183 |
+
|
184 |
+
round(mean_all,2)[c(1,3)] ## 0.18 0.22
|
185 |
+
round(mean_all_m,2)[c(1,3)] ## 0.23 0.38
|
186 |
+
round(mean_all_y,2)[c(1,3)] ## 0.17 0.47
|
187 |
+
|
188 |
+
# ################
|
189 |
+
# List Experiment
|
190 |
+
# ###############
|
191 |
+
rm(list=ls())
|
192 |
+
# install.packages("readstata13") # readstata13_0.9.2
|
193 |
+
# install.packages("MASS") # MASS_7.3-51.6
|
194 |
+
# install.packages("sandwich") # sandwich_2.5-1
|
195 |
+
# install.packages("lmtest") # lmtest_0.9-37
|
196 |
+
# install.packages("list") # list_9.2
|
197 |
+
|
198 |
+
require(readstata13) # readstata13_0.9.2
|
199 |
+
require(MASS) # MASS_7.3-51.6
|
200 |
+
require(sandwich) # sandwich_2.5-1
|
201 |
+
require(lmtest) # lmtest_0.9-37
|
202 |
+
require(list) # list_9.2
|
203 |
+
|
204 |
+
dat <- read.dta13(file = "survey.dta")
|
205 |
+
data.u2 <- dat[dat$wave == 2, ]
|
206 |
+
|
207 |
+
# Means: When it comes to the refugee problem, violence is sometimes the only means that citizens have to get the attention of German politicians
|
208 |
+
data.list.u2 <- data.u2[data.u2$list == "1",]
|
209 |
+
data.direct.u2 <- data.u2[data.u2$list == "2",]
|
210 |
+
data.list.u2 <- data.list.u2[is.na(data.list.u2$treatment_list)==FALSE,]
|
211 |
+
data.list.u2$List.treat <- ifelse(data.list.u2$treatment_list == "Scenario 2", 1, 0)
|
212 |
+
|
213 |
+
# The mean for Control Group
|
214 |
+
round(mean(data.list.u2$outcome_list[data.list.u2$List.treat == 0]), 2)
|
215 |
+
# The mean for Treatment Group
|
216 |
+
round(mean(data.list.u2$outcome_list[data.list.u2$List.treat == 1]), 2)
|
217 |
+
# Please see "SurveyAnalysis_Main.R" for complete analysis, which was used to create Figure 3.
|
218 |
+
# Here, we only reproduce the code for numbers we mention in the paper.
|
219 |
+
|
220 |
+
## Compare to All People who answered Direct Question (n = 2170)
|
221 |
+
data.u2.all.direct <- data.u2[is.na(data.u2$hate_violence_means) == FALSE, ]
|
222 |
+
data.u2.all.direct$hate.direct.bin <- ifelse(data.u2.all.direct$hate_violence_means >=3, 1, 0)
|
223 |
+
round(mean(data.u2.all.direct$hate.direct.bin)*100) ## 18
|
32/replication_package/out_count_table.rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ccd234462ece80c73745d90e9e27c76c646e09715a4f23e4f875725a6006dd5
|
3 |
+
size 10955242
|
32/replication_package/produce_context_data.do
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*************************************************************
|
2 |
+
*Purpose: Merge context data and generate additional vars
|
3 |
+
*Stata Version: 16
|
4 |
+
*************************************************************
|
5 |
+
|
6 |
+
*-------------------------------
|
7 |
+
*generate merged_context_1.dta
|
8 |
+
*-------------------------------
|
9 |
+
use "source_data/unemployment.dta", clear
|
10 |
+
|
11 |
+
*unemployment gendergap
|
12 |
+
*----------------------
|
13 |
+
gen unemp_gendergap = unemp_men/unemp_female
|
14 |
+
label var unemp_gendergap "male unemployment rate / female unemployment rate"
|
15 |
+
|
16 |
+
rename ags_dist ags_county // "county" and "district" used as synonyms
|
17 |
+
label var ags_c " Identifier for County"
|
18 |
+
save "source_data/merged_context_1.dta",replace
|
19 |
+
|
20 |
+
*-----------------------------
|
21 |
+
*generate merged_context_2.dta
|
22 |
+
*-----------------------------
|
23 |
+
|
24 |
+
*unemployment data
|
25 |
+
*-------------------
|
26 |
+
use "source_data/unemployment.dta", clear
|
27 |
+
|
28 |
+
gen unemp_gendergap = unemp_men/unemp_female
|
29 |
+
label var unemp_gendergap "male unemployment rate / female unemployment rate"
|
30 |
+
|
31 |
+
save "source_data/temp1.dta", replace
|
32 |
+
|
33 |
+
*refugees by gender
|
34 |
+
*-------------------
|
35 |
+
use "source_data/refugee_gender.dta", clear
|
36 |
+
|
37 |
+
egen ref_male = rowtotal(all_male0_3 all_male3_6 all_male6_15 all_male15_18 all_male18_25 all_male25_30 all_male30_40 all_male40_50 all_male50_65 all_male65_75 all_male75_up)
|
38 |
+
gen pc_ref_male = ref_male*100/all_totref
|
39 |
+
label var pc_ref_male "% male refugees, of all refugees"
|
40 |
+
label var ref_male "total number of male refugees (all ages)"
|
41 |
+
|
42 |
+
save "source_data/temp2.dta", replace
|
43 |
+
|
44 |
+
*education
|
45 |
+
*----------
|
46 |
+
use "source_data/education.dta", clear
|
47 |
+
|
48 |
+
*high degree
|
49 |
+
gen pc_hidegree_all2011 = pop15_high_degree*100/pop15_total
|
50 |
+
label var pc_hidegree_all2011 "% population with university entrance exam, incl. still in school" // (census 2011)
|
51 |
+
|
52 |
+
save "source_data/temp3.dta", replace
|
53 |
+
|
54 |
+
|
55 |
+
* sector
|
56 |
+
*--------
|
57 |
+
use "source_data/sectors.dta", clear
|
58 |
+
|
59 |
+
gen pc_manufacturing = no_manufacturing/no_employed
|
60 |
+
label var pc_manufacturing "pc_manufacturing"
|
61 |
+
|
62 |
+
save "source_data/temp4.dta", replace
|
63 |
+
|
64 |
+
*merge data
|
65 |
+
*----------
|
66 |
+
/*
|
67 |
+
this is a more comprehensive dataset - start by using a master data file
|
68 |
+
that includes the ags year combinations we need
|
69 |
+
*/
|
70 |
+
|
71 |
+
use "source_data/population.dta"
|
72 |
+
|
73 |
+
merge 1:1 ags year using "source_data/temp1.dta" // unemployment
|
74 |
+
drop _m
|
75 |
+
merge 1:1 ags year using "source_data/temp2.dta" // refugees
|
76 |
+
drop _m
|
77 |
+
merge m:1 ags using "source_data/temp3.dta" // education in 2011 this m:1 merge
|
78 |
+
drop _m
|
79 |
+
merge 1:1 ags year using "source_data/temp4.dta" //sectors
|
80 |
+
drop _m
|
81 |
+
|
82 |
+
rename ags_dist ags_county // "county" and "district" used as synonyms
|
83 |
+
label var ags_c " Identifier for County"
|
84 |
+
|
85 |
+
save "source_data/merged_context_2.dta",replace
|
86 |
+
erase "source_data/temp1.dta"
|
87 |
+
erase "source_data/temp2.dta"
|
88 |
+
erase "source_data/temp3.dta"
|
89 |
+
erase "source_data/temp4.dta"
|
32/replication_package/source_context.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f795cd86bfb2e74eef85962eca903471790639cd848c998934406a6208d6eed3
|
3 |
+
size 157393
|
32/replication_package/source_context_placebo.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a93779e37456c5055ae0b1386564fbba9616c1c8669176130110fd177dedc88
|
3 |
+
size 180992
|
32/replication_package/source_data/area_mun.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbbc3f1c2ef170246e40c6b32ce440b9d60aaae466c89f51a8d81ba278988b2e
|
3 |
+
size 765299
|
32/replication_package/source_data/base.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5af5c1de4f9362caa1eb1fe0233241b34f721512416bf8daa79a69fd79ec66a
|
3 |
+
size 844133
|
32/replication_package/source_data/base_pl.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da54848f03aae66e23beef62ef0edd781f03869355c09408b72c31d002b65fba
|
3 |
+
size 694698
|
32/replication_package/source_data/crime.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d93d6b20b821852be117c8715e33636ac432aeaf2314d20eedca14107b66573
|
3 |
+
size 21664
|
32/replication_package/source_data/education.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fee3371a6aa2fbdb92bf1bfd861f0d460f2eb55daa9d9f5f08e1dc47cac50865
|
3 |
+
size 39650
|
32/replication_package/source_data/hate.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17d13a62e1abead6692c79bb476766e41e6fd64701be85c14549f77afeb6130d
|
3 |
+
size 2143165
|
32/replication_package/source_data/merged_context_1.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2df0c90bf9b8e38d80bab08f85de2b3f87df05861233b2deb276c3ed9162e7b9
|
3 |
+
size 241539
|
32/replication_package/source_data/merged_context_2.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf108efd04187720950b11bb72d30c929a26ae6ffa4ba009bafc37694f2d3cad
|
3 |
+
size 1323816
|
32/replication_package/source_data/pop_gemeinde_2008_2018.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d80379610f6d011650aee5a4e8d5e289a626460ae568dd7feae5f6257bbb27d5
|
3 |
+
size 77180609
|
32/replication_package/source_data/pop_kreise_2015_2017.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea3561218aa950bd9c682d3d242ab979e9d5bc23177e7ea6d268468a0ce7c958
|
3 |
+
size 26488
|
32/replication_package/source_data/population.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7fe4cba1be98e195be54a00e5a827d5b1e2fda56093054bcafa22f2ec909a93
|
3 |
+
size 46987
|
32/replication_package/source_data/refugee_gender.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b2126acb78af60c555ccaebbe1c024401569df114540b0a9ab47d61da06f264
|
3 |
+
size 127827
|
32/replication_package/source_data/refugees_2008_2017.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fc45783e4a4f51ba663d22f766b5fe56639a075ae9c5f9b9e635602632f4118
|
3 |
+
size 1380624
|
32/replication_package/source_data/sectors.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bca2f44da65dee4c54c9ff2804b69b6a911715ae96a59198a0f6a367a93f456
|
3 |
+
size 488307
|
32/replication_package/source_data/unempl_gemeinde_2008_2017.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4c2ba9d7c5964f1671530e94d565bc029b2355dbd0e1dc78ef4a82ab0b948be
|
3 |
+
size 8082440
|
32/replication_package/source_data/unemployment.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:714cc77c4840d0fa99a155e2dd7498b2b0c6a63a4effe64381adf44b82a59513
|
3 |
+
size 231439
|
32/replication_package/source_data/voting.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7be35304a013490ee92c5fbb6dedc75032dc731f70eaab99833448f8b0186fb9
|
3 |
+
size 1705216
|
32/replication_package/survey.dta
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40d6fa1133cfe63c006fc7d37c89a0980f1cf2559fa83537d0ac4339b314fc6e
|
3 |
+
size 4702645
|
32/replication_package/table1.tex
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
|
3 |
+
% Date and time: Wed, Sep 09, 2020 - 23:30:28
|
4 |
+
\begin{table}[!htbp] \centering
|
5 |
+
\caption{}
|
6 |
+
\label{}
|
7 |
+
\begin{tabular}{@{\extracolsep{5pt}}lcccccc}
|
8 |
+
\\[-1.8ex]\hline
|
9 |
+
\hline \\[-1.8ex]
|
10 |
+
& \multicolumn{6}{c}{\textit{Dependent variable:}} \\
|
11 |
+
\cline{2-7}
|
12 |
+
\\[-1.8ex] & \multicolumn{5}{c}{hate\_violence\_means} & formula.6 \\
|
13 |
+
\\[-1.8ex] & (1) & (2) & (3) & (4) & (5) & (6)\\
|
14 |
+
\hline \\[-1.8ex]
|
15 |
+
Mate Competition & 0.437$^{***}$ & 0.263$^{***}$ & 0.236$^{***}$ & 0.206$^{***}$ & 0.185$^{***}$ & 0.155$^{***}$ \\
|
16 |
+
& (0.016) & (0.020) & (0.021) & (0.019) & (0.019) & (0.019) \\
|
17 |
+
& & & & & & \\
|
18 |
+
Job Competition & & 0.250$^{***}$ & 0.236$^{***}$ & 0.077$^{***}$ & 0.065$^{***}$ & 0.056$^{***}$ \\
|
19 |
+
& & (0.019) & (0.019) & (0.020) & (0.020) & (0.019) \\
|
20 |
+
& & & & & & \\
|
21 |
+
Life Satisfaction & & $-$0.015$^{**}$ & $-$0.014$^{*}$ & $-$0.003 & $-$0.002 & $-$0.0001 \\
|
22 |
+
& & (0.006) & (0.007) & (0.006) & (0.006) & (0.006) \\
|
23 |
+
& & & & & & \\
|
24 |
+
\hline \\[-1.8ex]
|
25 |
+
Observations & 3,019 & 3,019 & 3,008 & 3,008 & 3,008 & 3,008 \\
|
26 |
+
R$^{2}$ & 0.191 & 0.240 & 0.288 & 0.394 & 0.410 & 0.459 \\
|
27 |
+
Adjusted R$^{2}$ & 0.191 & 0.240 & 0.267 & 0.371 & 0.382 & 0.431 \\
|
28 |
+
Residual Std. Error & 0.799 (df = 3017) & 0.775 (df = 3015) & 0.760 (df = 2921) & 0.704 (df = 2897) & 0.698 (df = 2873) & 0.670 (df = 2857) \\
|
29 |
+
F Statistic & 714.588$^{***}$ (df = 1; 3017) & 317.891$^{***}$ (df = 3; 3015) & 13.756$^{***}$ (df = 86; 2921) & 17.141$^{***}$ (df = 110; 2897) & 14.878$^{***}$ (df = 134; 2873) & 16.170$^{***}$ (df = 150; 2857) \\
|
30 |
+
\hline
|
31 |
+
\hline \\[-1.8ex]
|
32 |
+
\textit{Note:} & \multicolumn{6}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
|
33 |
+
\end{tabular}
|
34 |
+
\end{table}
|
32/replication_package/table_C1.tex
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
|
3 |
+
% Date and time: Wed, Sep 09, 2020 - 23:32:51
|
4 |
+
\begin{table}[!htbp] \centering
|
5 |
+
\caption{}
|
6 |
+
\label{}
|
7 |
+
\begin{tabular}{@{\extracolsep{5pt}}lcccccc}
|
8 |
+
\\[-1.8ex]\hline
|
9 |
+
\hline \\[-1.8ex]
|
10 |
+
& \multicolumn{6}{c}{\textit{Dependent variable:}} \\
|
11 |
+
\cline{2-7}
|
12 |
+
\\[-1.8ex] & Hate\_all\_muni\_1517\_bin & Hate\_all\_muni\_bin & Hate\_all\_muni\_1517\_bin & Hate\_all\_muni\_bin & Hate\_all\_muni\_1517\_bin & Hate\_all\_muni\_bin \\
|
13 |
+
\\[-1.8ex] & (1) & (2) & (3) & (4) & (5) & (6)\\
|
14 |
+
\hline \\[-1.8ex]
|
15 |
+
Excess Males (Age 15 - 44) & 2.127$^{***}$ & 2.132$^{***}$ & 1.598$^{***}$ & 1.549$^{***}$ & 1.406$^{***}$ & 1.537$^{***}$ \\
|
16 |
+
& (0.491) & (0.432) & (0.491) & (0.411) & (0.463) & (0.412) \\
|
17 |
+
& & & & & & \\
|
18 |
+
Log (Population) & 1.730$^{***}$ & 1.519$^{***}$ & 1.619$^{***}$ & 1.392$^{***}$ & 1.522$^{***}$ & 1.372$^{***}$ \\
|
19 |
+
& (0.056) & (0.041) & (0.060) & (0.044) & (0.055) & (0.042) \\
|
20 |
+
& & & & & & \\
|
21 |
+
Log (Population Density) & 0.098 & 0.087$^{*}$ & 0.052 & 0.039 & 0.017 & $-$0.002 \\
|
22 |
+
& (0.070) & (0.052) & (0.070) & (0.051) & (0.066) & (0.049) \\
|
23 |
+
& & & & & & \\
|
24 |
+
Log (Unemployment Rate) & & & 1.087$^{***}$ & 1.028$^{***}$ & 0.634$^{***}$ & 0.715$^{***}$ \\
|
25 |
+
& & & (0.180) & (0.142) & (0.156) & (0.130) \\
|
26 |
+
& & & & & & \\
|
27 |
+
% of population change (2011 vs 2015) & & & $-$0.617 & $-$0.235 & $-$0.299 & 0.020 \\
|
28 |
+
& & & (0.975) & (0.608) & (0.851) & (0.541) \\
|
29 |
+
& & & & & & \\
|
30 |
+
Vote share for AfD (2013) & & & 5.618$^{*}$ & 4.822$^{**}$ & 5.358 & 3.178 \\
|
31 |
+
& & & (3.116) & (2.406) & (3.384) & (2.718) \\
|
32 |
+
& & & & & & \\
|
33 |
+
Log (Refugee Inflow) (2014 vs 2015) & & & & & 0.857$^{***}$ & 0.734$^{***}$ \\
|
34 |
+
& & & & & (0.324) & (0.261) \\
|
35 |
+
& & & & & & \\
|
36 |
+
Log (Refugee Size) (2014) & & & & & $-$0.210$^{**}$ & $-$0.192$^{**}$ \\
|
37 |
+
& & & & & (0.104) & (0.084) \\
|
38 |
+
& & & & & & \\
|
39 |
+
Log (General Violence per capita) & & & & & 0.136 & 0.022 \\
|
40 |
+
& & & & & (0.189) & (0.151) \\
|
41 |
+
& & & & & & \\
|
42 |
+
% of High Education & & & & & $-$0.022$^{*}$ & $-$0.018$^{*}$ \\
|
43 |
+
& & & & & (0.013) & (0.011) \\
|
44 |
+
& & & & & & \\
|
45 |
+
Change in Manufacturing Share (2011 vs 2015) & & & & & 8.177$^{**}$ & 9.588$^{***}$ \\
|
46 |
+
& & & & & (4.062) & (3.167) \\
|
47 |
+
& & & & & & \\
|
48 |
+
Share of Manufacturing & & & & & 0.057 & $-$0.306 \\
|
49 |
+
& & & & & (0.750) & (0.606) \\
|
50 |
+
& & & & & & \\
|
51 |
+
Male Disadvantage & & & & & 0.920$^{**}$ & 0.846$^{***}$ \\
|
52 |
+
& & & & & (0.371) & (0.319) \\
|
53 |
+
& & & & & & \\
|
54 |
+
\hline \\[-1.8ex]
|
55 |
+
Observations & 10,307 & 30,921 & 10,029 & 30,087 & 9,282 & 27,846 \\
|
56 |
+
Log Likelihood & $-$2,813.561 & $-$5,645.573 & $-$2,771.915 & $-$5,487.582 & $-$2,776.250 & $-$5,290.740 \\
|
57 |
+
Akaike Inf. Crit. & 6,433.122 & 12,101.150 & 6,141.830 & 11,577.160 & 5,600.500 & 10,633.480 \\
|
58 |
+
\hline
|
59 |
+
\hline \\[-1.8ex]
|
60 |
+
\textit{Note:} & \multicolumn{6}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
|
61 |
+
\end{tabular}
|
62 |
+
\end{table}
|
32/replication_package/table_C2.tex
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
|
3 |
+
% Date and time: Wed, Sep 09, 2020 - 23:35:11
|
4 |
+
\begin{table}[!htbp] \centering
|
5 |
+
\caption{}
|
6 |
+
\label{}
|
7 |
+
\begin{tabular}{@{\extracolsep{5pt}}lcccccc}
|
8 |
+
\\[-1.8ex]\hline
|
9 |
+
\hline \\[-1.8ex]
|
10 |
+
& \multicolumn{6}{c}{\textit{Dependent variable:}} \\
|
11 |
+
\cline{2-7}
|
12 |
+
\\[-1.8ex] & Hate\_all\_muni\_1517\_bin & Hate\_all\_muni\_bin & Hate\_all\_muni\_1517\_bin & Hate\_all\_muni\_bin & Hate\_all\_muni\_1517\_bin & Hate\_all\_muni\_bin \\
|
13 |
+
\\[-1.8ex] & (1) & (2) & (3) & (4) & (5) & (6)\\
|
14 |
+
\hline \\[-1.8ex]
|
15 |
+
Excess Males (Age 25 - 44) & 1.595$^{***}$ & 1.794$^{***}$ & 0.958$^{**}$ & 1.066$^{***}$ & 0.932$^{**}$ & 1.192$^{***}$ \\
|
16 |
+
& (0.454) & (0.400) & (0.456) & (0.373) & (0.430) & (0.364) \\
|
17 |
+
& & & & & & \\
|
18 |
+
Log (Population) & 1.726$^{***}$ & 1.511$^{***}$ & 1.614$^{***}$ & 1.387$^{***}$ & 1.518$^{***}$ & 1.365$^{***}$ \\
|
19 |
+
& (0.056) & (0.041) & (0.059) & (0.043) & (0.054) & (0.042) \\
|
20 |
+
& & & & & & \\
|
21 |
+
Log (Population Density) & 0.082 & 0.073 & 0.030 & 0.019 & 0.001 & $-$0.014 \\
|
22 |
+
& (0.070) & (0.052) & (0.070) & (0.051) & (0.066) & (0.049) \\
|
23 |
+
& & & & & & \\
|
24 |
+
Log (Unemployment Rate) & & & 1.120$^{***}$ & 1.039$^{***}$ & 0.642$^{***}$ & 0.704$^{***}$ \\
|
25 |
+
& & & (0.184) & (0.145) & (0.157) & (0.131) \\
|
26 |
+
& & & & & & \\
|
27 |
+
% of population change (2011 vs 2015) & & & $-$0.463 & $-$0.023 & $-$0.207 & 0.156 \\
|
28 |
+
& & & (0.905) & (0.554) & (0.816) & (0.511) \\
|
29 |
+
& & & & & & \\
|
30 |
+
Vote share for AfD (2013) & & & 5.974$^{*}$ & 5.282$^{**}$ & 5.776$^{*}$ & 3.771 \\
|
31 |
+
& & & (3.088) & (2.400) & (3.366) & (2.699) \\
|
32 |
+
& & & & & & \\
|
33 |
+
Log (Refugee Inflow) (2014 vs 2015) & & & & & 0.859$^{***}$ & 0.705$^{***}$ \\
|
34 |
+
& & & & & (0.324) & (0.263) \\
|
35 |
+
& & & & & & \\
|
36 |
+
Log (Refugee Size) (2014) & & & & & $-$0.211$^{**}$ & $-$0.191$^{**}$ \\
|
37 |
+
& & & & & (0.103) & (0.084) \\
|
38 |
+
& & & & & & \\
|
39 |
+
Log (General Violence per capita) & & & & & 0.130 & 0.019 \\
|
40 |
+
& & & & & (0.187) & (0.149) \\
|
41 |
+
& & & & & & \\
|
42 |
+
% of High Education & & & & & $-$0.022$^{*}$ & $-$0.018$^{*}$ \\
|
43 |
+
& & & & & (0.013) & (0.010) \\
|
44 |
+
& & & & & & \\
|
45 |
+
Change in Manufacturing Share (2011 vs 2015) & & & & & 8.213$^{**}$ & 9.464$^{***}$ \\
|
46 |
+
& & & & & (4.029) & (3.139) \\
|
47 |
+
& & & & & & \\
|
48 |
+
Share of Manufacturing & & & & & 0.076 & $-$0.318 \\
|
49 |
+
& & & & & (0.748) & (0.603) \\
|
50 |
+
& & & & & & \\
|
51 |
+
Male Disadvantage & & & & & 0.910$^{**}$ & 0.856$^{***}$ \\
|
52 |
+
& & & & & (0.369) & (0.316) \\
|
53 |
+
& & & & & & \\
|
54 |
+
\hline \\[-1.8ex]
|
55 |
+
Observations & 10,378 & 31,134 & 10,097 & 30,291 & 9,288 & 27,864 \\
|
56 |
+
Log Likelihood & $-$2,823.656 & $-$5,669.987 & $-$2,781.008 & $-$5,512.023 & $-$2,782.381 & $-$5,312.211 \\
|
57 |
+
Akaike Inf. Crit. & 6,453.312 & 12,149.970 & 6,160.016 & 11,626.050 & 5,612.761 & 10,676.420 \\
|
58 |
+
\hline
|
59 |
+
\hline \\[-1.8ex]
|
60 |
+
\textit{Note:} & \multicolumn{6}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
|
61 |
+
\end{tabular}
|
62 |
+
\end{table}
|
32/replication_package/table_C3.tex
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
|
3 |
+
% Date and time: Wed, Sep 09, 2020 - 23:35:27
|
4 |
+
\begin{table}[!htbp] \centering
|
5 |
+
\caption{}
|
6 |
+
\label{}
|
7 |
+
\begin{tabular}{@{\extracolsep{5pt}}lcccccc}
|
8 |
+
\\[-1.8ex]\hline
|
9 |
+
\hline \\[-1.8ex]
|
10 |
+
& \multicolumn{6}{c}{\textit{Dependent variable:}} \\
|
11 |
+
\cline{2-7}
|
12 |
+
\\[-1.8ex] & Hate\_all\_muni\_1517\_bin & Hate\_all\_muni\_bin & Hate\_all\_muni\_1517\_bin & Hate\_all\_muni\_bin & Hate\_all\_muni\_1517\_bin & Hate\_all\_muni\_bin \\
|
13 |
+
\\[-1.8ex] & (1) & (2) & (3) & (4) & (5) & (6)\\
|
14 |
+
\hline \\[-1.8ex]
|
15 |
+
Excess Males (Age 15 - 44) & 0.116$^{***}$ & 0.069$^{***}$ & 0.089$^{***}$ & 0.051$^{***}$ & 0.095$^{***}$ & 0.057$^{***}$ \\
|
16 |
+
& (0.027) & (0.015) & (0.025) & (0.013) & (0.026) & (0.014) \\
|
17 |
+
& & & & & & \\
|
18 |
+
Log (Population) & 0.162$^{***}$ & 0.086$^{***}$ & 0.156$^{***}$ & 0.081$^{***}$ & 0.152$^{***}$ & 0.078$^{***}$ \\
|
19 |
+
& (0.009) & (0.005) & (0.008) & (0.004) & (0.008) & (0.004) \\
|
20 |
+
& & & & & & \\
|
21 |
+
Log (Population Density) & 0.011 & 0.011$^{***}$ & 0.010 & 0.011$^{***}$ & 0.008 & 0.008$^{**}$ \\
|
22 |
+
& (0.007) & (0.004) & (0.007) & (0.003) & (0.007) & (0.003) \\
|
23 |
+
& & & & & & \\
|
24 |
+
Log (Unemployment Rate) & & & 0.137$^{***}$ & 0.090$^{***}$ & 0.093$^{***}$ & 0.066$^{***}$ \\
|
25 |
+
& & & (0.015) & (0.009) & (0.014) & (0.008) \\
|
26 |
+
& & & & & & \\
|
27 |
+
% of population change (2011 vs 2015) & & & $-$0.059 & $-$0.031 & 0.024 & 0.025 \\
|
28 |
+
& & & (0.086) & (0.041) & (0.100) & (0.050) \\
|
29 |
+
& & & & & & \\
|
30 |
+
Vote share for AfD (2013) & & & 0.307$^{**}$ & 0.120$^{*}$ & 0.370$^{**}$ & 0.106 \\
|
31 |
+
& & & (0.147) & (0.069) & (0.182) & (0.089) \\
|
32 |
+
& & & & & & \\
|
33 |
+
Log (Refugee Inflow) (2014 vs 2015) & & & & & 0.075 & 0.046 \\
|
34 |
+
& & & & & (0.051) & (0.029) \\
|
35 |
+
& & & & & & \\
|
36 |
+
Log (Refugee Size) (2014) & & & & & $-$0.019 & $-$0.011 \\
|
37 |
+
& & & & & (0.014) & (0.007) \\
|
38 |
+
& & & & & & \\
|
39 |
+
Log (General Violence per capita) & & & & & 0.010 & 0.007 \\
|
40 |
+
& & & & & (0.021) & (0.011) \\
|
41 |
+
& & & & & & \\
|
42 |
+
% of High Education & & & & & $-$0.003$^{*}$ & $-$0.002$^{**}$ \\
|
43 |
+
& & & & & (0.002) & (0.001) \\
|
44 |
+
& & & & & & \\
|
45 |
+
Change in Manufacturing Share (2011 vs 2015) & & & & & 0.725 & 0.583$^{**}$ \\
|
46 |
+
& & & & & (0.489) & (0.243) \\
|
47 |
+
& & & & & & \\
|
48 |
+
Share of Manufacturing & & & & & 0.021 & $-$0.023 \\
|
49 |
+
& & & & & (0.092) & (0.048) \\
|
50 |
+
& & & & & & \\
|
51 |
+
Male Disadvantage & & & & & 0.114$^{**}$ & 0.063$^{**}$ \\
|
52 |
+
& & & & & (0.047) & (0.025) \\
|
53 |
+
& & & & & & \\
|
54 |
+
\hline \\[-1.8ex]
|
55 |
+
Observations & 10,307 & 30,921 & 10,029 & 30,087 & 9,282 & 27,846 \\
|
56 |
+
R$^{2}$ & 0.366 & 0.252 & 0.347 & 0.204 & 0.302 & 0.180 \\
|
57 |
+
Adjusted R$^{2}$ & 0.340 & 0.242 & 0.327 & 0.196 & 0.301 & 0.179 \\
|
58 |
+
Residual Std. Error & 0.316 (df = 9904) & 0.247 (df = 30516) & 0.314 (df = 9730) & 0.246 (df = 29786) & 0.320 (df = 9258) & 0.248 (df = 27820) \\
|
59 |
+
F Statistic & 14.206$^{***}$ (df = 402; 9904) & 25.480$^{***}$ (df = 404; 30516) & 17.368$^{***}$ (df = 298; 9730) & 25.406$^{***}$ (df = 300; 29786) & 174.490$^{***}$ (df = 23; 9258) & 244.318$^{***}$ (df = 25; 27820) \\
|
60 |
+
\hline
|
61 |
+
\hline \\[-1.8ex]
|
62 |
+
\textit{Note:} & \multicolumn{6}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
|
63 |
+
\end{tabular}
|
64 |
+
\end{table}
|
32/replication_package/table_C4.tex
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
|
3 |
+
% Date and time: Wed, Sep 09, 2020 - 23:38:34
|
4 |
+
\begin{table}[!htbp] \centering
|
5 |
+
\caption{}
|
6 |
+
\label{}
|
7 |
+
\begin{tabular}{@{\extracolsep{5pt}}lcccccc}
|
8 |
+
\\[-1.8ex]\hline
|
9 |
+
\hline \\[-1.8ex]
|
10 |
+
& \multicolumn{6}{c}{\textit{Dependent variable:}} \\
|
11 |
+
\cline{2-7}
|
12 |
+
\\[-1.8ex] & Physical\_muni\_1517\_bin & Physical\_muni\_bin & Physical\_muni\_1517\_bin & Physical\_muni\_bin & Physical\_muni\_1517\_bin & Physical\_muni\_bin \\
|
13 |
+
\\[-1.8ex] & (1) & (2) & (3) & (4) & (5) & (6)\\
|
14 |
+
\hline \\[-1.8ex]
|
15 |
+
Excess Males (Age 15 - 44) & 3.773$^{***}$ & 3.038$^{***}$ & 2.624$^{***}$ & 1.906$^{**}$ & 2.719$^{***}$ & 1.634$^{*}$ \\
|
16 |
+
& (0.938) & (0.818) & (0.910) & (0.744) & (0.944) & (0.902) \\
|
17 |
+
& & & & & & \\
|
18 |
+
Log (Population) & 1.775$^{***}$ & 1.640$^{***}$ & 1.562$^{***}$ & 1.429$^{***}$ & 1.442$^{***}$ & 1.366$^{***}$ \\
|
19 |
+
& (0.120) & (0.090) & (0.124) & (0.100) & (0.106) & (0.101) \\
|
20 |
+
& & & & & & \\
|
21 |
+
Log (Population Density) & 0.096 & 0.071 & 0.080 & 0.045 & 0.046 & $-$0.018 \\
|
22 |
+
& (0.134) & (0.109) & (0.129) & (0.103) & (0.113) & (0.105) \\
|
23 |
+
& & & & & & \\
|
24 |
+
Log (Unemployment Rate) & & & 1.591$^{***}$ & 1.515$^{***}$ & 1.179$^{***}$ & 1.309$^{***}$ \\
|
25 |
+
& & & (0.346) & (0.304) & (0.282) & (0.256) \\
|
26 |
+
& & & & & & \\
|
27 |
+
% of population change (2011 vs 2015) & & & $-$0.837 & $-$0.368 & 0.023 & 0.154 \\
|
28 |
+
& & & (0.772) & (0.721) & (0.580) & (0.555) \\
|
29 |
+
& & & & & & \\
|
30 |
+
Vote share for AfD (2013) & & & 2.058 & 0.875 & 0.588 & 0.763 \\
|
31 |
+
& & & (6.640) & (6.184) & (5.209) & (5.080) \\
|
32 |
+
& & & & & & \\
|
33 |
+
Log (Refugee Inflow) (2014 vs 2015) & & & & & 0.262 & $-$0.091 \\
|
34 |
+
& & & & & (0.686) & (0.646) \\
|
35 |
+
& & & & & & \\
|
36 |
+
Log (Refugee Size) (2014) & & & & & $-$0.429$^{**}$ & $-$0.288 \\
|
37 |
+
& & & & & (0.210) & (0.202) \\
|
38 |
+
& & & & & & \\
|
39 |
+
Log (General Violence per capita) & & & & & $-$0.303 & $-$0.288 \\
|
40 |
+
& & & & & (0.383) & (0.383) \\
|
41 |
+
& & & & & & \\
|
42 |
+
% of High Education & & & & & $-$0.011 & $-$0.018 \\
|
43 |
+
& & & & & (0.024) & (0.023) \\
|
44 |
+
& & & & & & \\
|
45 |
+
Change in Manufacturing Share (2011 vs 2015) & & & & & 4.548 & $-$0.633 \\
|
46 |
+
& & & & & (8.376) & (8.393) \\
|
47 |
+
& & & & & & \\
|
48 |
+
Share of Manufacturing & & & & & 1.859 & 2.050 \\
|
49 |
+
& & & & & (1.742) & (1.632) \\
|
50 |
+
& & & & & & \\
|
51 |
+
Male Disadvantage & & & & & 1.258 & 1.217 \\
|
52 |
+
& & & & & (0.800) & (0.786) \\
|
53 |
+
& & & & & & \\
|
54 |
+
\hline \\[-1.8ex]
|
55 |
+
Observations & 10,307 & 30,921 & 10,029 & 30,087 & 9,282 & 27,846 \\
|
56 |
+
Log Likelihood & $-$842.859 & $-$1,447.433 & $-$820.949 & $-$1,339.173 & $-$884.639 & $-$1,339.369 \\
|
57 |
+
Akaike Inf. Crit. & 2,491.718 & 3,704.866 & 2,239.899 & 3,280.346 & 1,817.279 & 2,730.737 \\
|
58 |
+
\hline
|
59 |
+
\hline \\[-1.8ex]
|
60 |
+
\textit{Note:} & \multicolumn{6}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
|
61 |
+
\end{tabular}
|
62 |
+
\end{table}
|
32/replication_package/table_C5.tex
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
|
3 |
+
% Date and time: Wed, Sep 09, 2020 - 23:38:36
|
4 |
+
\begin{table}[!htbp] \centering
|
5 |
+
\caption{}
|
6 |
+
\label{}
|
7 |
+
\begin{tabular}{@{\extracolsep{5pt}}lcc}
|
8 |
+
\\[-1.8ex]\hline
|
9 |
+
\hline \\[-1.8ex]
|
10 |
+
& \multicolumn{2}{c}{\textit{Dependent variable:}} \\
|
11 |
+
\cline{2-3}
|
12 |
+
\\[-1.8ex] & Hate\_all\_muni\_1517 & Hate\_all\_muni \\
|
13 |
+
\\[-1.8ex] & (1) & (2)\\
|
14 |
+
\hline \\[-1.8ex]
|
15 |
+
Excess Males (Age 15 - 44) & 1.150$^{***}$ & 1.246$^{***}$ \\
|
16 |
+
& (0.366) & (0.363) \\
|
17 |
+
& & \\
|
18 |
+
Log (Population) & 1.264$^{***}$ & 1.249$^{***}$ \\
|
19 |
+
& (0.039) & (0.038) \\
|
20 |
+
& & \\
|
21 |
+
Log (Population Density) & $-$0.032 & $-$0.030 \\
|
22 |
+
& (0.045) & (0.045) \\
|
23 |
+
& & \\
|
24 |
+
Log (Unemployment Rate) & 0.703$^{***}$ & 0.729$^{***}$ \\
|
25 |
+
& (0.131) & (0.129) \\
|
26 |
+
& & \\
|
27 |
+
% of population change (2011 vs 2015) & 0.072 & 0.096 \\
|
28 |
+
& (0.508) & (0.457) \\
|
29 |
+
& & \\
|
30 |
+
Vote share for AfD (2013) & 4.464$^{*}$ & 4.088 \\
|
31 |
+
& (2.670) & (2.670) \\
|
32 |
+
& & \\
|
33 |
+
Log (Refugee Inflow) (2014 vs 2015) & 0.588$^{**}$ & 0.541$^{**}$ \\
|
34 |
+
& (0.280) & (0.272) \\
|
35 |
+
& & \\
|
36 |
+
Log (Refugee Size) (2014) & $-$0.189$^{**}$ & $-$0.180$^{*}$ \\
|
37 |
+
& (0.093) & (0.093) \\
|
38 |
+
& & \\
|
39 |
+
Log (General Violence per capita) & 0.034 & $-$0.016 \\
|
40 |
+
& (0.161) & (0.165) \\
|
41 |
+
& & \\
|
42 |
+
% of High Education & $-$0.017 & $-$0.017$^{*}$ \\
|
43 |
+
& (0.011) & (0.011) \\
|
44 |
+
& & \\
|
45 |
+
Change in Manufacturing Share (2011 vs 2015) & 10.081$^{***}$ & 10.432$^{***}$ \\
|
46 |
+
& (3.333) & (3.452) \\
|
47 |
+
& & \\
|
48 |
+
Share of Manufacturing & $-$0.028 & $-$0.035 \\
|
49 |
+
& (0.651) & (0.632) \\
|
50 |
+
& & \\
|
51 |
+
Male Disadvantage & 0.617$^{*}$ & 0.656$^{*}$ \\
|
52 |
+
& (0.337) & (0.345) \\
|
53 |
+
& & \\
|
54 |
+
\hline \\[-1.8ex]
|
55 |
+
Observations & 9,282 & 27,846 \\
|
56 |
+
Log Likelihood & $-$5,125.037 & $-$7,759.071 \\
|
57 |
+
$\theta$ & 1.247$^{***}$ (0.088) & 0.842$^{***}$ (0.053) \\
|
58 |
+
Akaike Inf. Crit. & 10,298.070 & 15,570.140 \\
|
59 |
+
\hline
|
60 |
+
\hline \\[-1.8ex]
|
61 |
+
\textit{Note:} & \multicolumn{2}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
|
62 |
+
\end{tabular}
|
63 |
+
\end{table}
|
32/replication_package/table_C6.tex
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
|
3 |
+
% Date and time: Wed, Sep 09, 2020 - 23:38:37
|
4 |
+
\begin{table}[!htbp] \centering
|
5 |
+
\caption{}
|
6 |
+
\label{}
|
7 |
+
\begin{tabular}{@{\extracolsep{5pt}}lcccc}
|
8 |
+
\\[-1.8ex]\hline
|
9 |
+
\hline \\[-1.8ex]
|
10 |
+
& \multicolumn{4}{c}{\textit{Dependent variable:}} \\
|
11 |
+
\cline{2-5}
|
12 |
+
\\[-1.8ex] & Hate\_all\_muni\_1517\_bin & Hate\_all\_muni\_bin & Hate\_all\_muni\_1517\_bin & Hate\_all\_muni\_bin \\
|
13 |
+
\\[-1.8ex] & (1) & (2) & (3) & (4)\\
|
14 |
+
\hline \\[-1.8ex]
|
15 |
+
Excess Males (Age 15 - 44) & 1.291$^{***}$ & 1.442$^{***}$ & 1.588$^{**}$ & 1.445$^{**}$ \\
|
16 |
+
& (0.462) & (0.410) & (0.791) & (0.701) \\
|
17 |
+
& & & & \\
|
18 |
+
West & 0.075 & $-$0.124 & 0.542 & $-$0.119 \\
|
19 |
+
& (0.161) & (0.118) & (1.063) & (0.913) \\
|
20 |
+
& & & & \\
|
21 |
+
Log (Population) & 1.484$^{***}$ & 1.340$^{***}$ & 1.485$^{***}$ & 1.340$^{***}$ \\
|
22 |
+
& (0.046) & (0.039) & (0.046) & (0.039) \\
|
23 |
+
& & & & \\
|
24 |
+
Log (Population Density) & 0.046 & 0.030 & 0.046 & 0.030 \\
|
25 |
+
& (0.061) & (0.048) & (0.061) & (0.048) \\
|
26 |
+
& & & & \\
|
27 |
+
Log (Unemployment Rate) & 0.585$^{***}$ & 0.653$^{***}$ & 0.577$^{***}$ & 0.653$^{***}$ \\
|
28 |
+
& (0.148) & (0.124) & (0.151) & (0.128) \\
|
29 |
+
& & & & \\
|
30 |
+
% of population change (2011 vs 2015) & 0.050 & 0.308 & 0.072 & 0.308 \\
|
31 |
+
& (0.772) & (0.499) & (0.765) & (0.497) \\
|
32 |
+
& & & & \\
|
33 |
+
Vote share for AfD (2013) & 3.865 & 3.183 & 3.860 & 3.183 \\
|
34 |
+
& (3.223) & (2.624) & (3.223) & (2.625) \\
|
35 |
+
& & & & \\
|
36 |
+
Log (Refugee Inflow) (2014 vs 2015) & 1.475$^{***}$ & 1.282$^{***}$ & 1.471$^{***}$ & 1.282$^{***}$ \\
|
37 |
+
& (0.326) & (0.247) & (0.328) & (0.247) \\
|
38 |
+
& & & & \\
|
39 |
+
Log (Refugee Size) (2014) & $-$0.397$^{***}$ & $-$0.386$^{***}$ & $-$0.396$^{***}$ & $-$0.386$^{***}$ \\
|
40 |
+
& (0.094) & (0.079) & (0.094) & (0.079) \\
|
41 |
+
& & & & \\
|
42 |
+
Log (General Violence per capita) & 0.083 & $-$0.092 & 0.086 & $-$0.092 \\
|
43 |
+
& (0.166) & (0.138) & (0.166) & (0.139) \\
|
44 |
+
& & & & \\
|
45 |
+
% of High Education & $-$0.027$^{**}$ & $-$0.021$^{**}$ & $-$0.027$^{**}$ & $-$0.021$^{**}$ \\
|
46 |
+
& (0.012) & (0.010) & (0.012) & (0.010) \\
|
47 |
+
& & & & \\
|
48 |
+
Change in Manufacturing Share (2011 vs 2015) & 7.554$^{*}$ & 8.568$^{**}$ & 7.560$^{*}$ & 8.568$^{**}$ \\
|
49 |
+
& (4.241) & (3.509) & (4.247) & (3.509) \\
|
50 |
+
& & & & \\
|
51 |
+
Share of Manufacturing & $-$0.332 & $-$0.611 & $-$0.337 & $-$0.611 \\
|
52 |
+
& (0.666) & (0.504) & (0.666) & (0.505) \\
|
53 |
+
& & & & \\
|
54 |
+
Male Disadvantage & 1.077$^{***}$ & 1.015$^{***}$ & 1.084$^{***}$ & 1.016$^{***}$ \\
|
55 |
+
& (0.369) & (0.317) & (0.370) & (0.318) \\
|
56 |
+
& & & & \\
|
57 |
+
Excess Males x West & & & $-$0.419 & $-$0.004 \\
|
58 |
+
& & & (0.938) & (0.812) \\
|
59 |
+
& & & & \\
|
60 |
+
\hline \\[-1.8ex]
|
61 |
+
Observations & 9,282 & 27,846 & 9,282 & 27,846 \\
|
62 |
+
Log Likelihood & $-$2,790.647 & $-$5,310.629 & $-$2,790.555 & $-$5,310.629 \\
|
63 |
+
Akaike Inf. Crit. & 5,611.295 & 10,655.260 & 5,613.110 & 10,657.260 \\
|
64 |
+
\hline
|
65 |
+
\hline \\[-1.8ex]
|
66 |
+
\textit{Note:} & \multicolumn{4}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
|
67 |
+
\end{tabular}
|
68 |
+
\end{table}
|
32/replication_package/table_C7.tex
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
|
3 |
+
% Date and time: Wed, Sep 09, 2020 - 23:38:38
|
4 |
+
\begin{table}[!htbp] \centering
|
5 |
+
\caption{}
|
6 |
+
\label{}
|
7 |
+
\begin{tabular}{@{\extracolsep{5pt}}lcc}
|
8 |
+
\\[-1.8ex]\hline
|
9 |
+
\hline \\[-1.8ex]
|
10 |
+
& \multicolumn{2}{c}{\textit{Dependent variable:}} \\
|
11 |
+
\cline{2-3}
|
12 |
+
\\[-1.8ex] & Hate\_all\_muni\_1517\_bin & Hate\_all\_muni\_bin \\
|
13 |
+
\\[-1.8ex] & (1) & (2)\\
|
14 |
+
\hline \\[-1.8ex]
|
15 |
+
Excess Males (Age 15 - 44) & $-$8.441 & $-$17.754 \\
|
16 |
+
& (18.923) & (15.168) \\
|
17 |
+
& & \\
|
18 |
+
Log (Refugee Inflow) (2014 vs 2015) & $-$0.544 & $-$2.018 \\
|
19 |
+
& (2.711) & (2.185) \\
|
20 |
+
& & \\
|
21 |
+
Log (Population) & 1.522$^{***}$ & 1.372$^{***}$ \\
|
22 |
+
& (0.055) & (0.042) \\
|
23 |
+
& & \\
|
24 |
+
Log (Population Density) & 0.019 & 0.001 \\
|
25 |
+
& (0.066) & (0.049) \\
|
26 |
+
& & \\
|
27 |
+
Log (Unemployment Rate) & 0.630$^{***}$ & 0.708$^{***}$ \\
|
28 |
+
& (0.155) & (0.130) \\
|
29 |
+
& & \\
|
30 |
+
% of population change (2011 vs 2015) & $-$0.299 & 0.017 \\
|
31 |
+
& (0.856) & (0.548) \\
|
32 |
+
& & \\
|
33 |
+
Vote share for AfD (2013) & 5.358 & 3.192 \\
|
34 |
+
& (3.386) & (2.726) \\
|
35 |
+
& & \\
|
36 |
+
Log (Refugee Size) (2014) & $-$0.209$^{**}$ & $-$0.190$^{**}$ \\
|
37 |
+
& (0.104) & (0.085) \\
|
38 |
+
& & \\
|
39 |
+
Log (General Violence per capita) & 0.141 & 0.035 \\
|
40 |
+
& (0.190) & (0.152) \\
|
41 |
+
& & \\
|
42 |
+
% of High Education & $-$0.022$^{*}$ & $-$0.019$^{*}$ \\
|
43 |
+
& (0.013) & (0.011) \\
|
44 |
+
& & \\
|
45 |
+
Change in Manufacturing Share (2011 vs 2015) & 8.200$^{**}$ & 9.647$^{***}$ \\
|
46 |
+
& (4.077) & (3.200) \\
|
47 |
+
& & \\
|
48 |
+
Share of Manufacturing & 0.044 & $-$0.335 \\
|
49 |
+
& (0.750) & (0.606) \\
|
50 |
+
& & \\
|
51 |
+
Male Disadvantage & 0.929$^{**}$ & 0.865$^{***}$ \\
|
52 |
+
& (0.372) & (0.321) \\
|
53 |
+
& & \\
|
54 |
+
Excess Males × Log (Refugee Inflow) & 1.290 & 2.524 \\
|
55 |
+
& (2.477) & (1.987) \\
|
56 |
+
& & \\
|
57 |
+
\hline \\[-1.8ex]
|
58 |
+
Observations & 9,282 & 27,846 \\
|
59 |
+
Log Likelihood & $-$2,776.125 & $-$5,289.906 \\
|
60 |
+
Akaike Inf. Crit. & 5,602.249 & 10,633.810 \\
|
61 |
+
\hline
|
62 |
+
\hline \\[-1.8ex]
|
63 |
+
\textit{Note:} & \multicolumn{2}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
|
64 |
+
\end{tabular}
|
65 |
+
\end{table}
|
32/replication_package/table_C9.tex
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
|
3 |
+
% Date and time: Wed, Sep 09, 2020 - 23:38:39
|
4 |
+
\begin{table}[!htbp] \centering
|
5 |
+
\caption{}
|
6 |
+
\label{}
|
7 |
+
\begin{tabular}{@{\extracolsep{5pt}}lccccc}
|
8 |
+
\\[-1.8ex]\hline
|
9 |
+
\hline \\[-1.8ex]
|
10 |
+
& \multicolumn{5}{c}{\textit{Dependent variable:}} \\
|
11 |
+
\cline{2-6}
|
12 |
+
\\[-1.8ex] & \multicolumn{5}{c}{Hate\_all\_muni\_bin} \\
|
13 |
+
\\[-1.8ex] & (1) & (2) & (3) & (4) & (5)\\
|
14 |
+
\hline \\[-1.8ex]
|
15 |
+
Future-Treatment & $-$1.326 & 0.480 & 0.544 & $-$0.277 & $-$0.243 \\
|
16 |
+
& (1.551) & (1.061) & (1.592) & (0.773) & (1.043) \\
|
17 |
+
& & & & & \\
|
18 |
+
\hline \\[-1.8ex]
|
19 |
+
Observations & 8,939 & 8,681 & 8,679 & 26,299 & 13,147 \\
|
20 |
+
Log Likelihood & $-$1,366.904 & $-$2,312.448 & $-$1,546.793 & $-$5,284.379 & $-$4,558.570 \\
|
21 |
+
Akaike Inf. Crit. & 2,783.807 & 4,674.896 & 3,143.587 & 10,622.760 & 9,171.140 \\
|
22 |
+
\hline
|
23 |
+
\hline \\[-1.8ex]
|
24 |
+
\textit{Note:} & \multicolumn{5}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
|
25 |
+
\end{tabular}
|
26 |
+
\end{table}
|
32/replication_package/table_D5_1.tex
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
|
3 |
+
% Date and time: Wed, Sep 09, 2020 - 23:38:46
|
4 |
+
\begin{table}[!htbp] \centering
|
5 |
+
\caption{}
|
6 |
+
\label{}
|
7 |
+
\begin{tabular}{@{\extracolsep{5pt}}lccccc}
|
8 |
+
\\[-1.8ex]\hline
|
9 |
+
\hline \\[-1.8ex]
|
10 |
+
& \multicolumn{5}{c}{\textit{Dependent variable:}} \\
|
11 |
+
\cline{2-6}
|
12 |
+
\\[-1.8ex] & formula.7.means & formula.7.justified & formula.7.message & formula.7.prevent & formula.7.condemn \\
|
13 |
+
\\[-1.8ex] & (1) & (2) & (3) & (4) & (5)\\
|
14 |
+
\hline \\[-1.8ex]
|
15 |
+
Mate Competition & 0.155$^{***}$ & 0.173$^{***}$ & 0.192$^{***}$ & 0.204$^{***}$ & 0.027 \\
|
16 |
+
& (0.019) & (0.019) & (0.019) & (0.018) & (0.021) \\
|
17 |
+
& & & & & \\
|
18 |
+
Job Competition & 0.056$^{***}$ & 0.050$^{***}$ & 0.097$^{***}$ & 0.087$^{***}$ & 0.017 \\
|
19 |
+
& (0.019) & (0.019) & (0.019) & (0.018) & (0.021) \\
|
20 |
+
& & & & & \\
|
21 |
+
Life Satisfaction & $-$0.0001 & $-$0.009 & $-$0.004 & $-$0.011$^{*}$ & $-$0.007 \\
|
22 |
+
& (0.006) & (0.006) & (0.006) & (0.006) & (0.007) \\
|
23 |
+
& & & & & \\
|
24 |
+
\hline \\[-1.8ex]
|
25 |
+
Observations & 3,008 & 3,008 & 3,008 & 3,008 & 3,008 \\
|
26 |
+
R$^{2}$ & 0.459 & 0.453 & 0.448 & 0.469 & 0.347 \\
|
27 |
+
Adjusted R$^{2}$ & 0.431 & 0.424 & 0.419 & 0.441 & 0.313 \\
|
28 |
+
Residual Std. Error (df = 2857) & 0.670 & 0.683 & 0.679 & 0.643 & 0.745 \\
|
29 |
+
F Statistic (df = 150; 2857) & 16.170$^{***}$ & 15.746$^{***}$ & 15.462$^{***}$ & 16.814$^{***}$ & 10.136$^{***}$ \\
|
30 |
+
\hline
|
31 |
+
\hline \\[-1.8ex]
|
32 |
+
\textit{Note:} & \multicolumn{5}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
|
33 |
+
\end{tabular}
|
34 |
+
\end{table}
|