anonymous-submission-acl2025 commited on
Commit
16a87fd
·
1 Parent(s): 59c198f
19/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e7e947769641a855376e68074f4466b6cd671aed7d0971f91ffbce58bb930ca
3
+ size 1222036
19/replication_package/BPV_museums_appendix.R ADDED
@@ -0,0 +1,848 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##############################################################
2
+ ##############################################################
3
+ ####### Replication code for "Do museums promote reconciliation? Evidence from a field experiment," Journal of Politics
4
+ ####### This file includes code for all analyses and figures in the online appendix
5
+ ##############################################################
6
+ ##############################################################
7
+
8
+ require("sandwich")
9
+ require("plyr")
10
+ require("lmtest")
11
+ require(dplyr)
12
+ require(gridExtra)
13
+ require("RColorBrewer")
14
+ require(ggplot2)
15
+
16
+ ##############################################################
17
+ ###### Read in data and establish main functions
18
+ ##############################################################
19
+ load(file = "all.Rdata")
20
+
21
+ ### ATE FUNCTIONS ##
22
+ # This estimates ATE when we have a pre-treatment measurement
23
+ est.ate<-function(dv, predv, df){
24
+ predv <- f(predv)
25
+ dv <- f(dv)
26
+ summary(fit.1 <- lm(dv~df$treat + df$pre_ideology_1 +
27
+ + predv*df$date_diff + df$base_gender +df$age + df$v))
28
+ vcv <- vcovHC(fit.1)
29
+ n <- nobs(fit.1)
30
+ result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
31
+ result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
32
+ return(result)
33
+ }
34
+ # This estimates ATE when we don't have a pre-treatment measurement
35
+ est.ate.np<-function(dv, df){
36
+ dv <- f(dv)
37
+ summary(fit.1 <- lm(dv~df$treat + df$pre_ideology_1 + df$base_gender +df$age+df$v))
38
+ vcv <- vcovHC(fit.1)
39
+ n <- nobs(fit.1)
40
+ result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
41
+ result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
42
+ return(result)
43
+ }
44
+
45
+ # this function recodes NAs to the mean, per our PAP
46
+ f <- function(x){
47
+ m <- mean(x, na.rm = TRUE)
48
+ x[is.na(x)] <- m
49
+ x
50
+ }
51
+ ## recode covariates to means
52
+ all$age <- f(all$age)
53
+ all$pre_ideology_1 <- f(all$pre_ideology_1)
54
+ all$base_gender <- f(all$base_gender)
55
+ all$date_diff <- f(all$date_diff)
56
+ # split dataset into left, right, and related to victim for heterogeneous analyses
57
+ left <- all[all$right == 0,]
58
+ right <- all[all$right == 1,]
59
+ itt.d <- all$itt.d
60
+
61
+ ##############################################################
62
+ ###### Table A1: Number of respondents by condition
63
+ ##############################################################
64
+
65
+ # Note: we do not have data on those who did not show up or opted not to comply with their random assignment
66
+
67
+ # completed by condition
68
+ sum(all$treat==1)
69
+ sum(all$treat==0)
70
+
71
+ # first follow up by condition
72
+ sum(all$f1[all$treat==1])
73
+ sum(all$f1[all$treat==0])
74
+
75
+ # second follow up by condition
76
+ sum(all$f2[all$treat==1])
77
+ sum(all$f2[all$treat==0])
78
+
79
+ # third follow up by condition
80
+ sum(all$f3[all$treat==1])
81
+ sum(all$f3[all$treat==0])
82
+
83
+ ##############################################################
84
+ ###### Table A2: Covariate balance
85
+ ##############################################################
86
+ t.test(all$age~all$treat)
87
+ t.test(all$base_gender~all$treat)
88
+ t.test(all$pre_ideology_1~all$treat)
89
+ t.test(all$v~all$treat)
90
+ t.test(all$pre_political_interest~all$treat)
91
+ t.test(all$pre_party_id~all$treat)
92
+ t.test(all$pre_positive~all$treat)
93
+ t.test(all$pre_negative~all$treat)
94
+ t.test(all$pre_conf_gov~all$treat)
95
+
96
+ ##############################################################
97
+ ###### Table A3: Perceptions of museum by ideology
98
+ ##############################################################
99
+ t.test(all$mm_obj~all$right)
100
+ t.test(all$mm_views_like~all$right)
101
+ t.test(all$mm_views_content~all$right)
102
+ t.test(all$mm_views_inhibit~all$right)
103
+ t.test(all$mm_views_important~all$right)
104
+ t.test(all$mm_new~all$right)
105
+
106
+ ##############################################################
107
+ ###### Table A5: Perceptions of inequality after visiting the MMDH
108
+ ##############################################################
109
+ est.ate(all$current_ineq, all$pre_current_ineq, all)
110
+
111
+ ##############################################################
112
+ ###### Table A6: Full regression results, Political institutions
113
+ ##############################################################
114
+
115
+ # See lines 64-72 in "BPV_museums_maintext.R"
116
+
117
+ ##############################################################
118
+ ###### Table A7: Full regression results, Political institutions by ideology
119
+ ##############################################################
120
+
121
+ # See lines 75-93 in "BPV_museums_maintext.R"
122
+ # Interactions (final three columns of table) reproduced here
123
+ est.ate.int<-function(dv, predv, df){
124
+ predv <- f(predv)
125
+ dv <- f(dv)
126
+ summary(fit.1 <- lm(dv~df$treat*df$pre_ideology_1+
127
+ + predv*df$date_diff + df$base_gender +df$age + df$v))
128
+ vcv <- vcovHC(fit.1)
129
+ n <- nobs(fit.1)
130
+ result <- coeftest(fit.1, vcv)[9, 1:4] / itt.d
131
+ result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
132
+ return(result)
133
+ }
134
+
135
+ est.ate.int(all$democracy, all$pre_democracy, all)
136
+ est.ate.int(all$military_gov, all$pre_military_gov, all)
137
+ est.ate.int(all$inst_gov, all$pre_inst_gov, all)
138
+ est.ate.int(all$inst_mil, all$pre_inst_mil, all)
139
+ est.ate.int(all$inst_police, all$pre_inst_police, all)
140
+ est.ate.int(all$conf_gov, all$pre_conf_gov, all)
141
+ est.ate.int(all$conf_mil, all$pre_conf_mil, all)
142
+ est.ate.int(all$conf_police, all$pre_conf_police, all)
143
+ est.ate.int(all$conf_church, all$pre_conf_church, all)
144
+
145
+ ##############################################################
146
+ ###### Table A8: Full regression results, Transitional justice
147
+ ##############################################################
148
+
149
+ # See lines 164-171 in "BPV_museums_maintext.R"
150
+
151
+ ##############################################################
152
+ ###### Table A9: Full regression results, Transitional justice by ideology
153
+ ##############################################################
154
+
155
+ # See lines 75-93 in "BPV_museums_maintext.R"
156
+ # Interactions (final three columns of table) reproduced below
157
+ est.ate.int.np<-function(dv, df){
158
+ dv <- f(dv)
159
+ summary(fit.1 <- lm(dv~df$treat*df$pre_ideology_1+
160
+ + df$base_gender +df$age + df$v))
161
+ vcv <- vcovHC(fit.1)
162
+ n <- nobs(fit.1)
163
+ result <- coeftest(fit.1, vcv)[7, 1:4] / itt.d
164
+ result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
165
+ return(result)
166
+ }
167
+
168
+ est.ate.int.np(all$justice_advance, all)
169
+ est.ate.int.np(all$justice_account, all)
170
+ est.ate.int(all$current_recomp, all$pre_current_recomp, all)
171
+ est.ate.int.np(all$tj_judicial, all)
172
+ est.ate.int.np(all$tj_apology, all)
173
+ est.ate.int.np(all$policies_apologize, all)
174
+ est.ate.int.np(all$policies_compensate, all)
175
+ est.ate.int.np(all$policies_pardon, all)
176
+
177
+ ##############################################################
178
+ ###### Table A10: Full regression results, emotions
179
+ ##############################################################
180
+
181
+ # See lines 261-297 in "BPV_museums_maintext.R"
182
+
183
+ ##############################################################
184
+ ###### Table A11: Number of respondents by condition
185
+ ##############################################################
186
+
187
+ # See code for A1, above
188
+
189
+ ##############################################################
190
+ ###### Table A12: Test for differential attrition
191
+ ##############################################################
192
+
193
+ ## F-test
194
+ diff.att.full <- lm(all$observerd~(all$treat*all$right)
195
+ +(all$treat*all$base_gender) + (all$treat*all$age) +
196
+ (all$treat*all$v))
197
+ diff.att.1.full <- lm(all$f1~(all$treat*all$right)
198
+ +(all$treat*all$base_gender) + (all$treat*all$age) +
199
+ (all$treat*all$v))
200
+ diff.att.2.full <- lm(all$f2~(all$treat*all$right)
201
+ +(all$treat*all$base_gender) + (all$treat*all$age) +
202
+ (all$treat*all$v))
203
+ diff.att.3.full <- lm(all$f3~(all$treat*all$right)
204
+ +(all$treat*all$base_gender) + (all$treat*all$age) +
205
+ (all$treat*all$v))
206
+ diff.att.red <- lm(all$observerd~all$treat+all$right
207
+ +all$base_gender+all$age + all$v)
208
+ diff.att.1.red <- lm(all$f1~all$treat+all$right
209
+ +all$base_gender+all$age + all$v)
210
+ diff.att.2.red <- lm(all$f2~all$treat+all$right
211
+ +all$base_gender+all$age + all$v)
212
+ diff.att.3.red <- lm(all$f3~all$treat+all$right
213
+ +all$base_gender+all$age + all$v)
214
+ anova(diff.att.full, diff.att.red)
215
+ anova(diff.att.1.full, diff.att.1.red)
216
+ anova(diff.att.2.full, diff.att.2.red)
217
+ anova(diff.att.3.full, diff.att.3.red)
218
+
219
+ ##############################################################
220
+ ###### Table A13: Differential attrition by pre-treatment covariates
221
+ ##############################################################
222
+
223
+ #age
224
+ summary(lm(f(all$f1)~f(all$age)))
225
+ summary(lm(f(all$f2)~f(all$age)))
226
+ summary(lm(f(all$f3)~f(all$age)))
227
+
228
+ # gender
229
+ summary(lm(f(all$f1)~f(all$base_gender)))
230
+ summary(lm(f(all$f2)~f(all$base_gender)))
231
+ summary(lm(f(all$f3)~f(all$base_gender)))
232
+
233
+ # ideology
234
+ summary(lm(f(all$f1)~f(all$pre_ideology_1)))
235
+ summary(lm(f(all$f2)~f(all$pre_ideology_1)))
236
+ summary(lm(f(all$f3)~f(all$pre_ideology_1)))
237
+
238
+ # economic situation
239
+ summary(lm(f(all$f1)~f(all$pre_economic_situation)))
240
+ summary(lm(f(all$f2)~f(all$pre_economic_situation)))
241
+ summary(lm(f(all$f3)~f(all$pre_economic_situation)))
242
+
243
+ # political interest
244
+ summary(lm(f(all$f1)~f(all$pre_political_interest)))
245
+ summary(lm(f(all$f2)~f(all$pre_political_interest)))
246
+ summary(lm(f(all$f3)~f(all$pre_political_interest)))
247
+
248
+ # religiosity
249
+ summary(lm(f(all$f1)~f(all$pre_religion_importance)))
250
+ summary(lm(f(all$f2)~f(all$pre_religion_importance)))
251
+ summary(lm(f(all$f3)~f(all$pre_religion_importance)))
252
+
253
+ # museum visits
254
+ summary(lm(f(all$f1)~f(all$totalmuseums)))
255
+ summary(lm(f(all$f2)~f(all$totalmuseums)))
256
+ summary(lm(f(all$f3)~f(all$totalmuseums)))
257
+
258
+ # trust in the government
259
+ summary(lm(f(all$f1)~f(all$pre_conf_gov)))
260
+ summary(lm(f(all$f2)~f(all$pre_conf_gov)))
261
+ summary(lm(f(all$f3)~f(all$pre_conf_gov)))
262
+
263
+ # satisfaction with the government
264
+ summary(lm(f(all$f1)~f(all$pre_inst_gov)))
265
+ summary(lm(f(all$f2)~f(all$pre_inst_gov)))
266
+ summary(lm(f(all$f3)~f(all$pre_inst_gov)))
267
+
268
+ # inequality is a problem
269
+ summary(lm(f(all$f1)~f(all$pre_current_ineq)))
270
+ summary(lm(f(all$f2)~f(all$pre_current_ineq)))
271
+ summary(lm(f(all$f3)~f(all$pre_current_ineq)))
272
+
273
+ # positive emotions
274
+ summary(lm(f(all$f1)~f(all$pre_positive)))
275
+ summary(lm(f(all$f2)~f(all$pre_positive)))
276
+ summary(lm(f(all$f3)~f(all$pre_positive)))
277
+
278
+ #negative emotions
279
+ summary(lm(f(all$f1)~f(all$pre_negative)))
280
+ summary(lm(f(all$f2)~f(all$pre_negative)))
281
+ summary(lm(f(all$f3)~f(all$pre_negative)))
282
+
283
+ ##############################################################
284
+ ###### Table A14: Differential attrition by round 1 responses
285
+ ##############################################################
286
+
287
+ # pol institutions index
288
+ summary(lm(f(all$f1)~f(all$pol.inst.index)))
289
+ summary(lm(f(all$f2)~f(all$pol.inst.index)))
290
+ summary(lm(f(all$f3)~f(all$pol.inst.index)))
291
+
292
+ # military gov
293
+ summary(lm(f(all$f1)~f(all$military_gov)))
294
+ summary(lm(f(all$f2)~f(all$military_gov)))
295
+ summary(lm(f(all$f3)~f(all$military_gov)))
296
+
297
+ # tj index
298
+ summary(lm(f(all$f1)~f(all$tj.index)))
299
+ summary(lm(f(all$f2)~f(all$tj.index)))
300
+ summary(lm(f(all$f3)~f(all$tj.index)))
301
+
302
+ # compensation
303
+ summary(lm(f(all$f1)~f(all$current_recomp)))
304
+ summary(lm(f(all$f2)~f(all$current_recomp)))
305
+ summary(lm(f(all$f3)~f(all$current_recomp)))
306
+
307
+ # pardon
308
+ summary(lm(f(all$f1)~f(all$policies_pardon)))
309
+ summary(lm(f(all$f2)~f(all$policies_pardon)))
310
+ summary(lm(f(all$f3)~f(all$policies_pardon)))
311
+
312
+ # negative emotions
313
+ summary(lm(f(all$f1)~f(all$negative)))
314
+ summary(lm(f(all$f2)~f(all$negative)))
315
+ summary(lm(f(all$f3)~f(all$negative)))
316
+
317
+ # positive emotions
318
+ summary(lm(f(all$f1)~f(all$positive)))
319
+ summary(lm(f(all$f2)~f(all$positive)))
320
+ summary(lm(f(all$f3)~f(all$positive)))
321
+
322
+
323
+ ##############################################################
324
+ ###### Table A15: Political institutions adjusted for multiple comparisons
325
+ ##############################################################
326
+
327
+ # conducted using results from "BPV_museums_maintext.R" and EGAP calculator - https://egap.shinyapps.io/multiple-comparisons-app/
328
+ # adjusted significance with Bejamini and Hochberg correction
329
+
330
+ ##############################################################
331
+ ###### Table A16: Transitional justice adjusted for multiple comparisons
332
+ ##############################################################
333
+
334
+ # conducted using results from "BPV_museums_maintext.R" and EGAP calculator - https://egap.shinyapps.io/multiple-comparisons-app/
335
+ # adjusted significance with Bejamini and Hochberg correction
336
+
337
+ ##############################################################
338
+ ######Table A17. General museum impressions by recoded ideology.
339
+ ##############################################################
340
+
341
+ # Split up by ideology
342
+ ## RECODE FOR ROBUSTNESS HERE ##
343
+ all$pre_ideology_1 <- f(all$pre_ideology_1)
344
+ all$right <- ifelse(all$pre_ideology_1 > 5, 1,0)
345
+ left <- all[all$right == 0,]
346
+ right <- all[all$right == 1,]
347
+
348
+ # mean values on dvs
349
+ t.test(all$mm_obj~all$right)
350
+ t.test(all$mm_views_like~all$right)
351
+ t.test(all$mm_views_content~all$right)
352
+ t.test(all$mm_views_inhibit~all$right)
353
+ t.test(all$mm_views_important~all$right)
354
+ t.test(all$mm_new~all$right)
355
+
356
+ ##############################################################
357
+ ######Table A18. Political institutions by recoded ideology
358
+ ##############################################################
359
+
360
+ dem.right <- est.ate(right$democracy, right$pre_democracy, right)
361
+ mil.right <- est.ate(right$military_gov, right$pre_military_gov, right)
362
+ gov_sat.right <- est.ate(right$inst_gov, right$pre_inst_gov, right)
363
+ mil_sat.right <- est.ate(right$inst_mil, right$pre_inst_mil, right)
364
+ pol_sat.right <- est.ate(right$inst_police, right$pre_inst_police, right)
365
+ gov_trust.right <- est.ate(right$conf_gov, right$pre_conf_gov, right)
366
+ mil_trust.right <- est.ate(right$conf_mil, right$pre_conf_mil, right)
367
+ pol_trust.right <- est.ate(right$conf_police, right$pre_conf_police, right)
368
+ church_trust.right <- est.ate(right$conf_church, right$pre_conf_church, right)
369
+
370
+ dem.left <- est.ate(left$democracy, left$pre_democracy, left)
371
+ mil.left <- est.ate(left$military_gov, left$pre_military_gov, left)
372
+ gov_sat.left <- est.ate(left$inst_gov, left$pre_inst_gov, left)
373
+ mil_sat.left <- est.ate(left$inst_mil, left$pre_inst_mil, left)
374
+ pol_sat.left <- est.ate(left$inst_police, left$pre_inst_police, left)
375
+ gov_trust.left <- est.ate(left$conf_gov, left$pre_conf_gov, left)
376
+ mil_trust.left <- est.ate(left$conf_mil, left$pre_conf_mil, left)
377
+ pol_trust.left <- est.ate(left$conf_police, left$pre_conf_police, left)
378
+ church_trust.left <- est.ate(left$conf_church, left$pre_conf_church, left)
379
+ ## interactions (for appendix)
380
+
381
+ dem_int <- est.ate.int(all$democracy, all$pre_democracy, all)
382
+ mil.int <- est.ate.int(all$military_gov, all$pre_military_gov, all)
383
+ gov_sat.int <- est.ate.int(all$inst_gov, all$pre_inst_gov, all)
384
+ mil_sat.int <- est.ate.int(all$inst_mil, all$pre_inst_mil, all)
385
+ pol_sat.int <- est.ate.int(all$inst_police, all$pre_inst_police, all)
386
+ gov_trust.int <- est.ate.int(all$conf_gov, all$pre_conf_gov, all)
387
+ mil_trust.int <- est.ate.int(all$conf_mil, all$pre_conf_mil, all)
388
+ pol_trust.int <- est.ate.int(all$conf_police, all$pre_conf_police, all)
389
+ church_trust.int <- est.ate.int(all$conf_church, all$pre_conf_church, all)
390
+
391
+ ##############################################################
392
+ ######Table A19. Transitional justice by recoded ideology
393
+ ##############################################################
394
+
395
+ advance.right <- est.ate.np(right$justice_advance, right)
396
+ justice_account.right <- est.ate.np(right$justice_account, right)
397
+ compensation.right <- est.ate(right$current_recomp, right$pre_current_recomp, right)
398
+ judicial.right <- est.ate.np(right$tj_judicial, right)
399
+ inst_apology.right <- est.ate.np(right$tj_apology, right)
400
+ apologize.right <- est.ate.np(right$policies_apologize, right)
401
+ compensate.right <- est.ate.np(right$policies_compensate, right)
402
+ pardoned.right <- est.ate.np(right$policies_pardon, right)
403
+
404
+ advance.left <- est.ate.np(left$justice_advance, left)
405
+ justice_account.left <- est.ate.np(left$justice_account, left)
406
+ compensation.left <- est.ate(left$current_recomp, left$pre_current_recomp, left)
407
+ judicial.left <- est.ate.np(left$tj_judicial, left)
408
+ inst_apology.left <- est.ate.np(left$tj_apology, left)
409
+ apologize.left <- est.ate.np(left$policies_apologize, left)
410
+ compensate.left <- est.ate.np(left$policies_compensate, left)
411
+ pardoned.left <- est.ate.np(left$policies_pardon, left)
412
+
413
+ ##############################################################
414
+ ###### Figure A3: Persistence of responses across treatment groups and ideologies
415
+ ##############################################################
416
+
417
+ # unrecode ideology
418
+ # Split up by ideology
419
+ ## RECODE FOR ROBUSTNESS HERE ##
420
+ all$pre_ideology_1 <- f(all$pre_ideology_1)
421
+ all$right <- ifelse(all$pre_ideology_1 > 4, 1,0)
422
+ left <- all[all$right == 0,]
423
+ right <- all[all$right == 1,]
424
+
425
+ est.ate.np.f<-function(dv){
426
+ summary(fit.1 <- lm(dv~all$treat + all$pre_ideology_1 + all$base_gender +all$age+all$v))
427
+ vcv <- vcovHC(fit.1)
428
+ n <- nobs(fit.1)
429
+ result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
430
+ result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
431
+ return(result)
432
+ }
433
+
434
+ ## PARDON
435
+ pardoned <- est.ate.np(all$policies_pardon, all)
436
+ pardoned_f1<- est.ate.np.f(all$policies_pardon_f1)
437
+ pardoned_f2 <- est.ate.np.f(all$policies_pardon_f2)
438
+ pardoned_f3 <- est.ate.np.f(all$policies_pardon_f3)
439
+ prop.table(table(all$policies_pardon[all$treat==1&all$right==1]))
440
+ prop.table(table(all$policies_pardon_f1[all$treat==1&all$right==1]))
441
+ prop.table(table(all$policies_pardon_f2[all$treat==1&all$right==1]))
442
+ prop.table(table(all$policies_pardon_f3[all$treat==1&all$right==1]))
443
+
444
+ all$pardon <- ifelse(all$policies_pardon==1|all$policies_pardon==0,0,1)
445
+ all$pardon_f1 <- ifelse(all$policies_pardon_f1==1|all$policies_pardon_f1==0,0,1)
446
+ all$pardon_f2 <- ifelse(all$policies_pardon_f2==1|all$policies_pardon_f2==0,0,1)
447
+ all$pardon_f3 <- ifelse(all$policies_pardon_f3==1|all$policies_pardon_f3==0,0,1)
448
+
449
+ pardon.df <- data.frame(all$pardon, all$pardon_f1,all$pardon_f2,all$pardon_f3,all$treat,all$right)
450
+ pardon.df.treat.right <- pardon.df[pardon.df$all.treat==1&pardon.df$all.right==1,]
451
+ pardon.df.treat.right$num <- rowSums(pardon.df.treat.right==1)-2
452
+ prop.table(table(pardon.df.treat.right$num))
453
+
454
+ pardon.df.treat.left <- pardon.df[pardon.df$all.treat==1&pardon.df$all.right==0,]
455
+ pardon.df.treat.left$num <- rowSums(pardon.df.treat.left==1)-1
456
+ prop.table(table(pardon.df.treat.left$num))
457
+
458
+ pardon.df.control.right <- pardon.df[pardon.df$all.treat==0&pardon.df$all.right==1,]
459
+ pardon.df.control.right$num <- rowSums(pardon.df.control.right==1)-1
460
+ prop.table(table(pardon.df.control.right$num))
461
+
462
+ pardon.df.control.left <- pardon.df[pardon.df$all.treat==0&pardon.df$all.right==0,]
463
+ pardon.df.control.left$num <- rowSums(pardon.df.control.left==1)
464
+ pardon.df.control.left$num <- factor(pardon.df.control.left$num, levels = c(0:4))
465
+ prop.table(table(pardon.df.control.left$num))
466
+ df <- data.frame(waveschosen=c(0:4),percent=NA)
467
+
468
+ df$percent <- prop.table(table(pardon.df.control.left$num))
469
+ df$group <- "control left"
470
+ df2 <- data.frame(waveschosen=c(0:4),percent=NA)
471
+ pardon.df.control.right$num <- factor(pardon.df.control.right$num, levels = c(0:4))
472
+
473
+ df2$percent <- prop.table(table(pardon.df.control.right$num))
474
+ df2$group <- "control right"
475
+
476
+ df3 <- data.frame(waveschosen=c(0:4),percent=NA)
477
+ pardon.df.treat.right$num <- factor(pardon.df.treat.right$num, levels = c(0:4))
478
+
479
+ df3$percent <- prop.table(table(pardon.df.treat.right$num))
480
+ df3$group <- "treat right"
481
+
482
+ df4 <- data.frame(waveschosen=c(0:4),percent=NA)
483
+ pardon.df.treat.left$num <- factor(pardon.df.treat.left$num, levels = c(0:4))
484
+
485
+ df4$percent <- prop.table(table(pardon.df.treat.left$num))
486
+ df4$group <- "treat left"
487
+
488
+ pardon.df <- rbind (df,df2,df3,df4)
489
+
490
+ ## trust church
491
+ all$pre_conf_church <- ifelse(all$pre_conf_church==1|all$pre_conf_church==0,0,1)
492
+ all$conf_church <- ifelse(all$conf_church==1|all$conf_church==0,0,1)
493
+ all$conf_church_f1 <- ifelse(all$conf_church_f1==1|all$conf_church_f1==0,0,1)
494
+ all$conf_church_f2 <- ifelse(all$conf_church_f2==1|all$conf_church_f2==0,0,1)
495
+ all$conf_church_f3 <- ifelse(all$conf_church_f3==1|all$conf_church_f3==0,0,1)
496
+
497
+
498
+ trust_church.df <- data.frame(all$conf_church, all$conf_church_f1,all$conf_church_f2,all$conf_church_f3,all$treat,all$right)
499
+ trust_church.treat.right <- trust_church.df[trust_church.df$all.treat==1&trust_church.df$all.right==1,]
500
+ trust_church.treat.right$num <- rowSums(trust_church.treat.right==1)-2
501
+ prop.table(table(trust_church.treat.right$num))
502
+
503
+ trust_church.treat.left <- trust_church.df[trust_church.df$all.treat==1&trust_church.df$all.right==0,]
504
+ trust_church.treat.left$num <- rowSums(trust_church.treat.left==1)-1
505
+ prop.table(table(trust_church.treat.left$num))
506
+
507
+ trust_church.control.right <- trust_church.df[trust_church.df$all.treat==0&trust_church.df$all.right==1,]
508
+ trust_church.control.right$num <- rowSums(trust_church.control.right==1)-1
509
+ prop.table(table(trust_church.control.right$num))
510
+
511
+ trust_church.control.left <- trust_church.df[trust_church.df$all.treat==0&trust_church.df$all.right==0,]
512
+ trust_church.control.left$num <- rowSums(trust_church.control.left==1)
513
+ trust_church.control.left$num <- factor(trust_church.control.left$num, levels = c(0:4))
514
+ prop.table(table(trust_church.control.left$num))
515
+ df <- data.frame(waveschosen=c(0:4),percent=NA)
516
+
517
+ df$percent <- prop.table(table(trust_church.control.left$num))
518
+ df$group <- "control left"
519
+ df2 <- data.frame(waveschosen=c(0:4),percent=NA)
520
+ trust_church.control.right$num <- factor(trust_church.control.right$num, levels = c(0:4))
521
+
522
+ df2$percent <- prop.table(table(trust_church.control.right$num))
523
+ df2$group <- "control right"
524
+
525
+ df3 <- data.frame(waveschosen=c(0:4),percent=NA)
526
+ trust_church.treat.right$num <- factor(trust_church.treat.right$num, levels = c(0:4))
527
+
528
+ df3$percent <- prop.table(table(trust_church.treat.right$num))
529
+ df3$group <- "treat right"
530
+
531
+ df4 <- data.frame(waveschosen=c(0:4),percent=NA)
532
+ trust_church.treat.left$num <- factor(trust_church.treat.left$num, levels = c(0:4))
533
+
534
+ df4$percent <- prop.table(table(trust_church.treat.left$num))
535
+ df4$group <- "treat left"
536
+
537
+ churchtrust.df <- rbind (df,df2,df3,df4)
538
+
539
+ ## satisfaction with government
540
+ all$pre_inst_gov <- ifelse(all$pre_inst_gov==1|all$pre_inst_gov==0,0,1)
541
+ all$inst_gov <- ifelse(all$inst_gov==1|all$inst_gov==0,0,1)
542
+ all$inst_gov_f1 <- ifelse(all$inst_gov_f1==1|all$inst_gov_f1==0,0,1)
543
+ all$inst_gov_f2 <- ifelse(all$inst_gov_f2==1|all$inst_gov_f2==0,0,1)
544
+ all$inst_gov_f3 <- ifelse(all$inst_gov_f3==1|all$inst_gov_f3==0,0,1)
545
+
546
+ inst_gov.df <- data.frame(all$inst_gov, all$inst_gov_f1,all$inst_gov_f2,all$inst_gov_f3,all$treat,all$right)
547
+ inst_gov.treat.right <- inst_gov.df[inst_gov.df$all.treat==1&inst_gov.df$all.right==1,]
548
+ inst_gov.treat.right$num <- rowSums(inst_gov.treat.right==1)-2
549
+ prop.table(table(inst_gov.treat.right$num))
550
+
551
+ inst_gov.treat.left <- inst_gov.df[inst_gov.df$all.treat==1&inst_gov.df$all.right==0,]
552
+ inst_gov.treat.left$num <- rowSums(inst_gov.treat.left==1)-1
553
+ prop.table(table(inst_gov.treat.left$num))
554
+
555
+ inst_gov.control.right <- inst_gov.df[inst_gov.df$all.treat==0&inst_gov.df$all.right==1,]
556
+ inst_gov.control.right$num <- rowSums(inst_gov.control.right==1)-1
557
+ prop.table(table(inst_gov.control.right$num))
558
+
559
+ inst_gov.control.left <- inst_gov.df[inst_gov.df$all.treat==0&inst_gov.df$all.right==0,]
560
+ inst_gov.control.left$num <- rowSums(inst_gov.control.left==1)
561
+ inst_gov.control.left$num <- factor(inst_gov.control.left$num, levels = c(0:4))
562
+ prop.table(table(inst_gov.control.left$num))
563
+ df <- data.frame(waveschosen=c(0:4),percent=NA)
564
+
565
+ df$percent <- prop.table(table(inst_gov.control.left$num))
566
+ df$group <- "control left"
567
+ df2 <- data.frame(waveschosen=c(0:4),percent=NA)
568
+ inst_gov.control.right$num <- factor(inst_gov.control.right$num, levels = c(0:4))
569
+
570
+ df2$percent <- prop.table(table(inst_gov.control.right$num))
571
+ df2$group <- "control right"
572
+
573
+ df3 <- data.frame(waveschosen=c(0:4),percent=NA)
574
+ inst_gov.treat.right$num <- factor(inst_gov.treat.right$num, levels = c(0:4))
575
+
576
+ df3$percent <- prop.table(table(inst_gov.treat.right$num))
577
+ df3$group <- "treat right"
578
+
579
+ df4 <- data.frame(waveschosen=c(0:4),percent=NA)
580
+ inst_gov.treat.left$num <- factor(inst_gov.treat.left$num, levels = c(0:4))
581
+
582
+ df4$percent <- prop.table(table(inst_gov.treat.left$num))
583
+ df4$group <- "treat left"
584
+
585
+ govsat.df <- rbind (df,df2,df3,df4)
586
+
587
+
588
+
589
+ ## satisfaction with democracy
590
+
591
+ all$pre_democracy <- ifelse(all$pre_democracy==1|all$pre_democracy==0,0,1)
592
+ all$democracy <- ifelse(all$democracy==1|all$democracy==0,0,1)
593
+ all$democracy_f1 <- ifelse(all$democracy_f1==1|all$democracy_f1==0,0,1)
594
+ all$democracy_f2 <- ifelse(all$democracy_f2==1|all$democracy_f2==0,0,1)
595
+ all$democracy_f3 <- ifelse(all$democracy_f3==1|all$democracy_f3==0,0,1)
596
+
597
+
598
+ democracy.df <- data.frame(all$democracy, all$democracy_f1,all$democracy_f2,all$democracy_f3,all$treat,all$right)
599
+ democracy.treat.right <- democracy.df[democracy.df$all.treat==1&democracy.df$all.right==1,]
600
+ democracy.treat.right$num <- rowSums(democracy.treat.right==1)-2
601
+ prop.table(table(democracy.treat.right$num))
602
+
603
+ democracy.treat.left <- democracy.df[democracy.df$all.treat==1&democracy.df$all.right==0,]
604
+ democracy.treat.left$num <- rowSums(democracy.treat.left==1)-1
605
+ prop.table(table(democracy.treat.left$num))
606
+
607
+ democracy.control.right <- democracy.df[democracy.df$all.treat==0&democracy.df$all.right==1,]
608
+ democracy.control.right$num <- rowSums(democracy.control.right==1)-1
609
+ prop.table(table(democracy.control.right$num))
610
+
611
+ democracy.control.left <- democracy.df[democracy.df$all.treat==0&democracy.df$all.right==0,]
612
+ democracy.control.left$num <- rowSums(democracy.control.left==1)
613
+ democracy.control.left$num <- factor(democracy.control.left$num, levels = c(0:4))
614
+ prop.table(table(democracy.control.left$num))
615
+ df <- data.frame(waveschosen=c(0:4),percent=NA)
616
+
617
+ df$percent <- prop.table(table(democracy.control.left$num))
618
+ df$group <- "control left"
619
+ df2 <- data.frame(waveschosen=c(0:4),percent=NA)
620
+ democracy.control.right$num <- factor(democracy.control.right$num, levels = c(0:4))
621
+
622
+ df2$percent <- prop.table(table(democracy.control.right$num))
623
+ df2$group <- "control right"
624
+
625
+ df3 <- data.frame(waveschosen=c(0:4),percent=NA)
626
+ democracy.treat.right$num <- factor(democracy.treat.right$num, levels = c(0:4))
627
+
628
+ df3$percent <- prop.table(table(democracy.treat.right$num))
629
+ df3$group <- "treat right"
630
+
631
+ df4 <- data.frame(waveschosen=c(0:4),percent=NA)
632
+ democracy.treat.left$num <- factor(democracy.treat.left$num, levels = c(0:4))
633
+
634
+ df4$percent <- prop.table(table(democracy.treat.left$num))
635
+ df4$group <- "treat left"
636
+
637
+ democracy.df <- rbind (df,df2,df3,df4)
638
+
639
+ ## military government
640
+
641
+ military_gov.df <- data.frame(all$military_gov, all$military_gov_f1,all$military_gov_f2,all$military_gov_f3,all$treat,all$right)
642
+ military_gov.treat.right <- military_gov.df[military_gov.df$all.treat==1&military_gov.df$all.right==1,]
643
+ military_gov.treat.right$num <- rowSums(military_gov.treat.right==1)-2
644
+ prop.table(table(military_gov.treat.right$num))
645
+
646
+ military_gov.treat.left <- military_gov.df[military_gov.df$all.treat==1&military_gov.df$all.right==0,]
647
+ military_gov.treat.left$num <- rowSums(military_gov.treat.left==1)-1
648
+ prop.table(table(military_gov.treat.left$num))
649
+
650
+ military_gov.control.right <- military_gov.df[military_gov.df$all.treat==0&military_gov.df$all.right==1,]
651
+ military_gov.control.right$num <- rowSums(military_gov.control.right==1)-1
652
+ prop.table(table(military_gov.control.right$num))
653
+
654
+ military_gov.control.left <- military_gov.df[military_gov.df$all.treat==0&military_gov.df$all.right==0,]
655
+ military_gov.control.left$num <- rowSums(military_gov.control.left==1)
656
+ military_gov.control.left$num <- factor(military_gov.control.left$num, levels = c(0:4))
657
+ prop.table(table(military_gov.control.left$num))
658
+ df <- data.frame(waveschosen=c(0:4),percent=NA)
659
+
660
+ df$percent <- prop.table(table(military_gov.control.left$num))
661
+ df$group <- "control left"
662
+ df2 <- data.frame(waveschosen=c(0:4),percent=NA)
663
+ military_gov.control.right$num <- factor(military_gov.control.right$num, levels = c(0:4))
664
+
665
+ df2$percent <- prop.table(table(military_gov.control.right$num))
666
+ df2$group <- "control right"
667
+
668
+ df3 <- data.frame(waveschosen=c(0:4),percent=NA)
669
+ military_gov.treat.right$num <- factor(military_gov.treat.right$num, levels = c(0:4))
670
+
671
+ df3$percent <- prop.table(table(military_gov.treat.right$num))
672
+ df3$group <- "treat right"
673
+
674
+ df4 <- data.frame(waveschosen=c(0:4),percent=NA)
675
+ military_gov.treat.left$num <- factor(military_gov.treat.left$num, levels = c(0:4))
676
+
677
+ df4$percent <- prop.table(table(military_gov.treat.left$num))
678
+ df4$group <- "treat left"
679
+
680
+ milgov.df <- rbind (df,df2,df3,df4)
681
+
682
+ ## satisfaction with police
683
+
684
+ all$pre_inst_police <- ifelse(all$pre_inst_police==1|all$pre_inst_police==0,0,1)
685
+ all$inst_police <- ifelse(all$inst_police==1|all$inst_police==0,0,1)
686
+ all$inst_police_f1 <- ifelse(all$inst_police_f1==1|all$inst_police_f1==0,0,1)
687
+ all$inst_police_f2 <- ifelse(all$inst_police_f2==1|all$inst_police_f2==0,0,1)
688
+ all$inst_police_f3 <- ifelse(all$inst_police_f3==1|all$inst_police_f3==0,0,1)
689
+
690
+
691
+ inst_police.df <- data.frame(all$inst_police, all$inst_police_f1,all$inst_police_f2,all$inst_police_f3,all$treat,all$right)
692
+ inst_police.treat.right <- inst_police.df[inst_police.df$all.treat==1&inst_police.df$all.right==1,]
693
+ inst_police.treat.right$num <- rowSums(inst_police.treat.right==1)-2
694
+ prop.table(table(inst_police.treat.right$num))
695
+
696
+ inst_police.treat.left <- inst_police.df[inst_police.df$all.treat==1&inst_police.df$all.right==0,]
697
+ inst_police.treat.left$num <- rowSums(inst_police.treat.left==1)-1
698
+ prop.table(table(inst_police.treat.left$num))
699
+
700
+ inst_police.control.right <- inst_police.df[inst_police.df$all.treat==0&inst_police.df$all.right==1,]
701
+ inst_police.control.right$num <- rowSums(inst_police.control.right==1)-1
702
+ prop.table(table(inst_police.control.right$num))
703
+
704
+ inst_police.control.left <- inst_police.df[inst_police.df$all.treat==0&inst_police.df$all.right==0,]
705
+ inst_police.control.left$num <- rowSums(inst_police.control.left==1)
706
+ inst_police.control.left$num <- factor(inst_police.control.left$num, levels = c(0:4))
707
+ prop.table(table(inst_police.control.left$num))
708
+ df <- data.frame(waveschosen=c(0:4),percent=NA)
709
+
710
+ df$percent <- prop.table(table(inst_police.control.left$num))
711
+ df$group <- "control left"
712
+ df2 <- data.frame(waveschosen=c(0:4),percent=NA)
713
+ inst_police.control.right$num <- factor(inst_police.control.right$num, levels = c(0:4))
714
+
715
+ df2$percent <- prop.table(table(inst_police.control.right$num))
716
+ df2$group <- "control right"
717
+
718
+ df3 <- data.frame(waveschosen=c(0:4),percent=NA)
719
+ inst_police.treat.right$num <- factor(inst_police.treat.right$num, levels = c(0:4))
720
+
721
+ df3$percent <- prop.table(table(inst_police.treat.right$num))
722
+ df3$group <- "treat right"
723
+
724
+ df4 <- data.frame(waveschosen=c(0:4),percent=NA)
725
+ inst_police.treat.left$num <- factor(inst_police.treat.left$num, levels = c(0:4))
726
+
727
+ df4$percent <- prop.table(table(inst_police.treat.left$num))
728
+ df4$group <- "treat left"
729
+ police.df <- rbind (df,df2,df3,df4)
730
+
731
+ p1 <- ggplot(data=pardon.df, aes(x=waveschosen, y=percent)) +
732
+ geom_bar(stat="identity", width=0.5,colour="black") +
733
+ facet_grid(. ~ group) +
734
+ geom_text(data=pardon.df, aes(x = waveschosen, y = (percent + .05), label = paste0(round(percent*100,1),"%")), colour="black", size = 2.5) +
735
+ theme_bw() + theme(axis.text.y=element_blank(),
736
+ axis.ticks.y=element_blank(),strip.background =element_rect(fill="white")) +
737
+ ggtitle("Support pardoning perpetrators") +
738
+ xlab("Waves chosen") + ylab(NULL)
739
+ p2<-ggplot(data=churchtrust.df, aes(x=waveschosen, y=percent)) +
740
+ geom_bar(stat="identity", width=0.5,colour="black") +
741
+ facet_grid(. ~ group) +
742
+ geom_text(data=churchtrust.df, aes(x = waveschosen, y = (percent + .05), label = paste0(round(percent*100,1),"%")), colour="black", size = 2.5) +
743
+ theme_bw() + theme(axis.text.y=element_blank(),
744
+ axis.ticks.y=element_blank(),strip.background =element_rect(fill="white")) +
745
+ ggtitle("Trust in church") +
746
+ xlab("Waves chosen") + ylab(NULL)
747
+ p3<-ggplot(data=govsat.df, aes(x=waveschosen, y=percent)) +
748
+ geom_bar(stat="identity", width=0.5,colour="black") +
749
+ facet_grid(. ~ group) +
750
+ geom_text(data=govsat.df, aes(x = waveschosen, y = (percent + .05), label = paste0(round(percent*100,1),"%")), colour="black", size = 2.5) +
751
+ theme_bw() + theme(axis.text.y=element_blank(),
752
+ axis.ticks.y=element_blank(),strip.background =element_rect(fill="white")) +
753
+ ggtitle("Satisfaction with government") +
754
+ xlab("Waves chosen") + ylab(NULL)
755
+ p4<-ggplot(data=democracy.df, aes(x=waveschosen, y=percent)) +
756
+ geom_bar(stat="identity", width=0.5,colour="black") +
757
+ facet_grid(. ~ group) +
758
+ geom_text(data=democracy.df, aes(x = waveschosen, y = (percent + .05), label = paste0(round(percent*100,1),"%")), colour="black", size = 2.5) +
759
+ theme_bw() + theme(axis.text.y=element_blank(),
760
+ axis.ticks.y=element_blank(),strip.background =element_rect(fill="white")) +
761
+ ggtitle("Satisfaction with Democracy") +
762
+ xlab("Waves chosen") + ylab(NULL)
763
+ p5<-ggplot(data=milgov.df, aes(x=waveschosen, y=percent)) +
764
+ geom_bar(stat="identity", width=0.5,colour="black") +
765
+ facet_grid(. ~ group) +
766
+ geom_text(data=milgov.df, aes(x = waveschosen, y = (percent + .05), label = paste0(round(percent*100,1),"%")), colour="black", size = 2.5) +
767
+ theme_bw() + theme(axis.text.y=element_blank(),
768
+ axis.ticks.y=element_blank(),strip.background =element_rect(fill="white")) +
769
+ ggtitle("Support for military government") +
770
+ xlab("Waves chosen") + ylab(NULL)
771
+ p6<-ggplot(data=police.df, aes(x=waveschosen, y=percent)) +
772
+ geom_bar(stat="identity", width=0.5,colour="black") +
773
+ facet_grid(. ~ group) +
774
+ geom_text(data=police.df, aes(x = waveschosen, y = (percent + .05), label = paste0(round(percent*100,1),"%")), colour="black", size = 2.5) +
775
+ theme_bw() + theme(axis.text.y=element_blank(),
776
+ axis.ticks.y=element_blank(),strip.background =element_rect(fill="white")) +
777
+ ggtitle("Satisfaction with Police") +
778
+ xlab("Waves chosen") + ylab(NULL)
779
+
780
+ grid.arrange(p1, p2,p3,p4,p5,p6, nrow = 3)
781
+ #g <- arrangeGrob(p1, p2, p3,p4,p5,p6, nrow=3) #generates g
782
+
783
+
784
+ ##############################################################
785
+ ######Table A20. Political insitutions - dropping missing observations
786
+ ##############################################################
787
+
788
+ load(file = "all.Rdata")
789
+ est.ate<-function(dv, predv, df){
790
+ summary(fit.1 <- lm(dv~df$treat + df$pre_ideology_1 +
791
+ + predv*df$date_diff + df$base_gender +df$age + df$v))
792
+ vcv <- vcovHC(fit.1)
793
+ n <- nobs(fit.1)
794
+ result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
795
+ result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
796
+ return(result)
797
+ }
798
+
799
+ # This estimates ATE when we don't have a pre-treatment measurement
800
+ est.ate.np<-function(dv, df){
801
+ summary(fit.1 <- lm(dv~df$treat + df$pre_ideology_1 + df$base_gender +df$age+df$v))
802
+ vcv <- vcovHC(fit.1)
803
+ n <- nobs(fit.1)
804
+ result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
805
+ result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
806
+ return(result)
807
+ }
808
+
809
+ # pol inst DVs
810
+ dem <- est.ate(all$democracy, all$pre_democracy, all)
811
+ mil <- est.ate(all$military_gov, all$pre_military_gov, all)
812
+ gov_sat <- est.ate(all$inst_gov, all$pre_inst_gov, all)
813
+ mil_sat <- est.ate(all$inst_mil, all$pre_inst_mil, all)
814
+ pol_sat <- est.ate(all$inst_police, all$pre_inst_police, all)
815
+ gov_trust <- est.ate(all$conf_gov, all$pre_conf_gov, all)
816
+ mil_trust <- est.ate(all$conf_mil, all$pre_conf_mil, all)
817
+ pol_trust <- est.ate(all$conf_police, all$pre_conf_police, all)
818
+ church_trust <- est.ate(all$conf_church, all$pre_conf_church, all)
819
+
820
+ ##############################################################
821
+ ######Table A21. Transitional justice - dropping missing observations
822
+ ##############################################################
823
+
824
+ # TJ DVs
825
+ advance <- est.ate.np(all$justice_advance, all)
826
+ justice_account <- est.ate.np(all$justice_account, all)
827
+ compensation <- est.ate(all$current_recomp, all$pre_current_recomp, all)
828
+ judicial <- est.ate.np(all$tj_judicial, all)
829
+ inst_apology <- est.ate.np(all$tj_apology, all)
830
+ apologize <- est.ate.np(all$policies_apologize, all)
831
+ compensate <- est.ate.np(all$policies_compensate, all)
832
+ pardoned <- est.ate.np(all$policies_pardon, all)
833
+
834
+ ##############################################################
835
+ ######Table A22. Balance on measurements collected at baseline among
836
+ # nonparticipants and participants
837
+ ##############################################################
838
+
839
+ # Note that not all subjects who eventually participated in our experiment completed the baseline - nonetheless, many did
840
+ load(file = "baseline.Rdata")
841
+ nonparticipants <- baseline[!(baseline$ID %in% all$ID),]
842
+ participants <- baseline[(baseline$ID %in% all$ID),]
843
+
844
+ t.test(participants$female, nonparticipants$female)
845
+ t.test(participants$ideology, nonparticipants$ideology)
846
+ t.test(participants$pinochet, nonparticipants$pinochet)
847
+ t.test(participants$pinochet_london, nonparticipants$pinochet_london)
848
+ t.test(participants$prosecution, nonparticipants$prosecution)
19/replication_package/BPV_museums_maintext.R ADDED
@@ -0,0 +1,829 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##############################################################
2
+ ##############################################################
3
+ ####### Replication code for "Do museums promote reconciliation? Evidence from a field experiment," Journal of Politics
4
+ ####### This file includes code for all analyses and figures in the main text
5
+ ####### Plots based on those used by Broockman and Kalla (2016)
6
+ ##############################################################
7
+ ##############################################################
8
+
9
+ require("sandwich")
10
+ require("plyr")
11
+ require("lmtest")
12
+ require(dplyr)
13
+ require(gridExtra)
14
+ require("RColorBrewer")
15
+ require(ggplot2)
16
+
17
+ ##############################################################
18
+ ###### Read in data
19
+ ##############################################################
20
+ load(file = "all.Rdata")
21
+ ##############################################################
22
+ ###### Establish main functions
23
+ ##############################################################
24
+
25
+ ### ATE FUNCTIONS ##
26
+ # This estimates ATE when we have a pre-treatment measurement
27
+ est.ate<-function(dv, predv, df){
28
+ predv <- f(predv)
29
+ dv <- f(dv)
30
+ summary(fit.1 <- lm(dv~df$treat + df$pre_ideology_1 +
31
+ + predv*df$date_diff + df$base_gender +df$age + df$v))
32
+ vcv <- vcovHC(fit.1)
33
+ n <- nobs(fit.1)
34
+ result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
35
+ result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
36
+ return(result)
37
+ }
38
+ # This estimates ATE when we don't have a pre-treatment measurement
39
+ est.ate.np<-function(dv, df){
40
+ dv <- f(dv)
41
+ summary(fit.1 <- lm(dv~df$treat + df$pre_ideology_1 + df$base_gender +df$age+df$v))
42
+ vcv <- vcovHC(fit.1)
43
+ n <- nobs(fit.1)
44
+ result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
45
+ result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
46
+ return(result)
47
+ }
48
+
49
+ # this function recodes NAs to the mean, per our PAP
50
+ f <- function(x){
51
+ m <- mean(x, na.rm = TRUE)
52
+ x[is.na(x)] <- m
53
+ x
54
+ }
55
+ ## recode covariates to means
56
+ all$age <- f(all$age)
57
+ all$pre_ideology_1 <- f(all$pre_ideology_1)
58
+ all$base_gender <- f(all$base_gender)
59
+ all$date_diff <- f(all$date_diff)
60
+ # split dataset into left, right, and related to victim for heterogeneous analyses
61
+ left <- all[all$right == 0,]
62
+ right <- all[all$right == 1,]
63
+ itt.d <- all$itt.d
64
+ ##############################################################
65
+ ###### Figure 1: Political institutions treatment effects
66
+ ##############################################################
67
+
68
+ # Overall
69
+ dem <- est.ate(all$democracy, all$pre_democracy, all)
70
+ mil <- est.ate(all$military_gov, all$pre_military_gov, all)
71
+ gov_sat <- est.ate(all$inst_gov, all$pre_inst_gov, all)
72
+ mil_sat <- est.ate(all$inst_mil, all$pre_inst_mil, all)
73
+ pol_sat <- est.ate(all$inst_police, all$pre_inst_police, all)
74
+ gov_trust <- est.ate(all$conf_gov, all$pre_conf_gov, all)
75
+ mil_trust <- est.ate(all$conf_mil, all$pre_conf_mil, all)
76
+ pol_trust <- est.ate(all$conf_police, all$pre_conf_police, all)
77
+ church_trust <- est.ate(all$conf_church, all$pre_conf_church, all)
78
+
79
+ # right and left
80
+ dem.right <- est.ate(right$democracy, right$pre_democracy, right)
81
+ mil.right <- est.ate(right$military_gov, right$pre_military_gov, right)
82
+ gov_sat.right <- est.ate(right$inst_gov, right$pre_inst_gov, right)
83
+ mil_sat.right <- est.ate(right$inst_mil, right$pre_inst_mil, right)
84
+ pol_sat.right <- est.ate(right$inst_police, right$pre_inst_police, right)
85
+ gov_trust.right <- est.ate(right$conf_gov, right$pre_conf_gov, right)
86
+ mil_trust.right <- est.ate(right$conf_mil, right$pre_conf_mil, right)
87
+ pol_trust.right <- est.ate(right$conf_police, right$pre_conf_police, right)
88
+ church_trust.right <- est.ate(right$conf_church, right$pre_conf_church, right)
89
+
90
+ dem.left <- est.ate(left$democracy, left$pre_democracy, left)
91
+ mil.left <- est.ate(left$military_gov, left$pre_military_gov, left)
92
+ gov_sat.left <- est.ate(left$inst_gov, left$pre_inst_gov, left)
93
+ mil_sat.left <- est.ate(left$inst_mil, left$pre_inst_mil, left)
94
+ pol_sat.left <- est.ate(left$inst_police, left$pre_inst_police, left)
95
+ gov_trust.left <- est.ate(left$conf_gov, left$pre_conf_gov, left)
96
+ mil_trust.left <- est.ate(left$conf_mil, left$pre_conf_mil, left)
97
+ pol_trust.left <- est.ate(left$conf_police, left$pre_conf_police, left)
98
+ church_trust.left <- est.ate(left$conf_church, left$pre_conf_church, left)
99
+
100
+ # make figure
101
+ results.df <- as.data.frame(rbind(dem[1], dem.left[1], dem.right[1],
102
+ mil[1], mil.left[1], mil.right[1],
103
+ gov_sat[1], gov_sat.left[1], gov_sat.right[1],
104
+ mil_sat[1], mil_sat.left[1], mil_sat.right[1],
105
+ pol_sat[1], pol_sat.left[1], pol_sat.right[1],
106
+ gov_trust[1], gov_trust.left[1],gov_trust.right[1],
107
+ mil_trust[1], mil_trust.left[1], mil_trust.right[1],
108
+ pol_trust[1], pol_trust.left[1], pol_trust.right[1],
109
+ church_trust[1], church_trust.left[1], church_trust.right[1]
110
+ ))
111
+ results.df$se <- c(dem[2], dem.left[2], dem.right[2],
112
+ mil[2], mil.left[2], mil.right[2],
113
+ gov_sat[2], gov_sat.left[2], gov_sat.right[2],
114
+ mil_sat[2], mil_sat.left[2], mil_sat.right[2],
115
+ pol_sat[2], pol_sat.left[2], pol_sat.right[2],
116
+ gov_trust[2], gov_trust.left[2],gov_trust.right[2],
117
+ mil_trust[2], mil_trust.left[2], mil_trust.right[2],
118
+ pol_trust[2], pol_trust.left[2], pol_trust.right[2],
119
+ church_trust[2], church_trust.left[2], church_trust.right[2])
120
+ results.df$se <- unlist(results.df$se)
121
+ results.df$point.estimate <- unlist(results.df$point.estimate)
122
+ results.df$Variable <- NA
123
+ results.df$xpos <- NA
124
+ for (i in 1:3){results.df$Variable[i] <- "democracy"}
125
+ for (i in 4:6){results.df$Variable[i] <- "military govt"}
126
+ for (i in 7:9){results.df$Variable[i] <- "govt satisfaction"}
127
+ for (i in 10:12){results.df$Variable[i] <- "military satisfaction"}
128
+ for (i in 13:25){results.df$Variable[i] <- "police satisfaction"}
129
+ for (i in 16:18){results.df$Variable[i] <- "govt trust"}
130
+ for (i in 19:21){results.df$Variable[i] <- "military trust"}
131
+ for (i in 22:24){results.df$Variable[i] <- "police trust"}
132
+ for (i in 25:27){results.df$Variable[i] <- "church trust"}
133
+
134
+ results.df$varnum<- with(results.df, paste0(as.numeric(factor(Variable))))
135
+ results.df$varnum <- as.numeric(results.df$varnum)
136
+ results.df$sample <- rep(1:3, 9)
137
+ results.df$Population <- mapvalues(results.df$sample, c(1,2,3), c("All", "Left", "Right"), warn_missing = TRUE)
138
+ results.df$xpos<- as.numeric(paste(results.df$varnum, results.df$sample, sep = "."))
139
+ results.df$ci.hi <- unlist(results.df$point.estimate) + unlist(results.df$se) * 1.96
140
+ results.df$ci.low <- unlist(results.df$point.estimate) - unlist(results.df$se) * 1.96
141
+ results.df$se.hi <- unlist(results.df$point.estimate) + unlist(results.df$se)
142
+ results.df$se.low <- unlist(results.df$point.estimate) - unlist(results.df$se)
143
+ labels <- unique(results.df$Variable)
144
+ g <- ggplot(results.df,
145
+ aes(x=xpos, y=point.estimate,
146
+ group=Variable, color=Population)) +
147
+ theme(axis.text.x=element_blank(),
148
+ axis.ticks.x=element_blank()) +
149
+ geom_linerange(aes(ymin=ci.low, ymax=ci.hi)) +
150
+ geom_linerange(aes(ymin=se.low, ymax=se.hi),lwd=1) +
151
+ geom_point(color="black") +
152
+ geom_hline(yintercept = 0, linetype = "dashed") +
153
+ ylab("Coefficient") +
154
+ xlab("Variable") +
155
+ ggtitle("Political Institutions")
156
+ g + scale_color_grey() +
157
+ ggplot2::annotate("text",
158
+ label = c("church trust \n ctrl mean=1.15", "dem satisfaction \n ctrl mean=1.16", "govt satisfaction \n ctrl mean=0.80",
159
+ "govt trust \n ctrl mean=0.98", "mil govt (0-1) \n ctrl mean=0.28", "mil satisfaction \n ctrl mean=1.18",
160
+ "mil trust \n ctrl mean=1.17", "pol satisfaction \n ctrl mean=1.56", "pol trust \n ctrl mean=1.67"),
161
+ x = c(1:9)+.2, y = -.5,
162
+ colour = "black", size = 2.8) + theme_bw()
163
+ ggsave("polinst.pdf", width = 10, height = 6)
164
+
165
+ ##############################################################
166
+ ###### Figure 2: Transitional justice treatment effects
167
+ ##############################################################
168
+
169
+ advance <- est.ate.np(all$justice_advance, all)
170
+ justice_account <- est.ate.np(all$justice_account, all)
171
+ compensation <- est.ate(all$current_recomp, all$pre_current_recomp, all)
172
+ judicial <- est.ate.np(all$tj_judicial, all)
173
+ inst_apology <- est.ate.np(all$tj_apology, all)
174
+ apologize <- est.ate.np(all$policies_apologize, all)
175
+ compensate <- est.ate.np(all$policies_compensate, all)
176
+ pardoned <- est.ate.np(all$policies_pardon, all)
177
+
178
+ advance.right <- est.ate.np(right$justice_advance, right)
179
+ justice_account.right <- est.ate.np(right$justice_account, right)
180
+ compensation.right <- est.ate(right$current_recomp, right$pre_current_recomp, right)
181
+ judicial.right <- est.ate.np(right$tj_judicial, right)
182
+ inst_apology.right <- est.ate.np(right$tj_apology, right)
183
+ apologize.right <- est.ate.np(right$policies_apologize, right)
184
+ compensate.right <- est.ate.np(right$policies_compensate, right)
185
+ pardoned.right <- est.ate.np(right$policies_pardon, right)
186
+
187
+ advance.left <- est.ate.np(left$justice_advance, left)
188
+ justice_account.left <- est.ate.np(left$justice_account, left)
189
+ compensation.left <- est.ate(left$current_recomp, left$pre_current_recomp, left)
190
+ judicial.left <- est.ate.np(left$tj_judicial, left)
191
+ inst_apology.left <- est.ate.np(left$tj_apology, left)
192
+ apologize.left <- est.ate.np(left$policies_apologize, left)
193
+ compensate.left <- est.ate.np(left$policies_compensate, left)
194
+ pardoned.left <- est.ate.np(left$policies_pardon, left)
195
+
196
+ results.df.tj <- as.data.frame(rbind(advance[1], advance.left[1],advance.right[1],
197
+ justice_account[1], justice_account.left[1], justice_account.right[1],
198
+ compensation[1], compensation.left[1], compensation.right[1],
199
+ judicial[1],judicial.left[1], judicial.right[1],
200
+ inst_apology[1], inst_apology.left[1], inst_apology.right[1],
201
+ apologize[1], apologize.left[1], apologize.right[1],
202
+ compensate[1], compensate.left[1], compensate.right[1],
203
+ pardoned[1], pardoned.left[1],pardoned.right[1]))
204
+
205
+ results.df.tj$se <- as.data.frame(rbind(advance[2], advance.left[2],advance.right[2],
206
+ justice_account[2], justice_account.left[2], justice_account.right[2],
207
+ compensation[2], compensation.left[2], compensation.right[2],
208
+ judicial[2],judicial.left[2], judicial.right[2],
209
+ inst_apology[2], inst_apology.left[2], inst_apology.right[2],
210
+ apologize[2], apologize.left[2], apologize.right[2],
211
+ compensate[2], compensate.left[2], compensate.right[2],
212
+ pardoned[2], pardoned.left[2],pardoned.right[2]))
213
+ results.df.tj$se <- unlist(results.df.tj$se)
214
+ results.df.tj$point.estimate <- unlist(results.df.tj$point.estimate)
215
+ results.df.tj$Variable <- NA
216
+ results.df.tj$xpos <- NA
217
+ for (i in 1:3){results.df.tj$Variable[i] <- "advance"}
218
+ for (i in 4:6){results.df.tj$Variable[i] <- "accountable"}
219
+ for (i in 7:9){results.df.tj$Variable[i] <- "compensation"}
220
+ for (i in 10:12){results.df.tj$Variable[i] <- "punish"}
221
+ for (i in 13:15){results.df.tj$Variable[i] <- "public apology"}
222
+ for (i in 16:18){results.df.tj$Variable[i] <- "forced apology"}
223
+ for (i in 19:21){results.df.tj$Variable[i] <- "forced compensation"}
224
+ for (i in 22:34){results.df.tj$Variable[i] <- "pardoned"}
225
+
226
+ # X position of different canvasser groups
227
+ results.df.tj$varnum<- with(results.df.tj, paste0(as.numeric(factor(Variable))))
228
+ results.df.tj$varnum <- as.numeric(results.df.tj$varnum)
229
+ results.df.tj$sample <- rep(1:3, 8)
230
+ results.df.tj$Population <- mapvalues(results.df.tj$sample, c(1,2,3), c("All", "Left", "Right"), warn_missing = TRUE)
231
+ results.df.tj$xpos<- as.numeric(paste(results.df.tj$varnum, results.df.tj$sample, sep = "."))
232
+ results.df.tj$se.high <- results.df.tj$point.estimate + results.df.tj$se
233
+ results.df.tj$se.low <- results.df.tj$point.estimate - results.df.tj$se
234
+ results.df.tj$ci.high <- results.df.tj$point.estimate + results.df.tj$se * 1.96
235
+ results.df.tj$ci.low <- results.df.tj$point.estimate - results.df.tj$se * 1.96
236
+ labels <- unique(results.df.tj$Variable)
237
+
238
+ q <- ggplot(results.df.tj,
239
+ aes(x=xpos, y=point.estimate,
240
+ group=Variable, color=Population)) +
241
+ theme(axis.text.x=element_blank(),
242
+ axis.ticks.x=element_blank()) +
243
+ # CIs
244
+ geom_linerange(aes(ymin=se.low, ymax=se.high), lwd=1) +
245
+ geom_linerange(aes(ymin=ci.low, ymax=ci.high)) +
246
+ # Point estimate points
247
+ geom_point(color="black") +
248
+ geom_hline(yintercept = 0, linetype = "dashed") +
249
+ ggplot2::annotate("text",
250
+ label = c("accountable (0-4) \n ctrl mean=2.79", "advance (0-4) \n ctrl mean=1.94", "compensation (0-3) \n ctrl mean=1.93 ",
251
+ "force apology (0-3) \n ctrl mean=1.83", "force compensation (0-3) \n ctrl mean = 1.51", "pardoned (0-3) \n ctrl mean=0.56",
252
+ "public apology (0-3) \n ctrl mean=1.99", "punish (0-3) \n ctrl mean=2.19"),
253
+ x = c(1:8)+.28, y = -1.5,
254
+ colour = "black", size = 2.6) +
255
+ xlab("Variable") + ylab("Coefficient") +
256
+ ggtitle("Transitional Justice")
257
+ q + scale_color_grey()+theme_bw()
258
+ ggsave("tj.pdf", width = 10, height = 6)
259
+
260
+ ##############################################################
261
+ ###### Figure 3: Positive (a) and negative (b) emotions treatment effects
262
+ ##############################################################
263
+
264
+ ##### Part (a) - Positive emotions
265
+ ## all positive
266
+ positive <- est.ate(all$positive, all$pre_positive, all)
267
+ interested <- est.ate(all$interested, all$pre_interested, all)
268
+ stimulated <- est.ate(all$stimulated, all$pre_stimulated, all)
269
+ enthusiastic <- est.ate(all$enthusiastic, all$pre_enthusiastic, all)
270
+ energetic <- est.ate(all$energetic, all$pre_energetic, all)
271
+ proud <- est.ate(all$proud, all$pre_proud, all)
272
+ alert <- est.ate(all$alert, all$pre_alert, all)
273
+ inspired <- est.ate(all$inspired, all$pre_inspired, all)
274
+ decided <- est.ate(all$decided, all$pre_decided, all)
275
+ attentive <- est.ate(all$attentive, all$pre_attentive, all)
276
+ active <- est.ate(all$active, all$pre_active, all)
277
+
278
+ ## right positive
279
+ positive.right <- est.ate(right$positive, right$pre_positive, right)
280
+ interested.right <- est.ate(right$interested, right$pre_interested, right)
281
+ stimulated.right <- est.ate(right$stimulated, right$pre_stimulated, right)
282
+ enthusiastic.right <- est.ate(right$enthusiastic, right$pre_enthusiastic, right)
283
+ energetic.right <- est.ate(right$energetic, right$pre_energetic, right)
284
+ proud.right <- est.ate(right$proud, right$pre_proud, right)
285
+ alert.right <- est.ate(right$alert, right$pre_alert, right)
286
+ inspired.right <- est.ate(right$inspired, right$pre_inspired, right)
287
+ decided.right <- est.ate(right$decided, right$pre_decided, right)
288
+ attentive.right <- est.ate(right$attentive, right$pre_attentive, right)
289
+ active.right <- est.ate(right$active, right$pre_active, right)
290
+
291
+ ## left positive
292
+ positive.left <- est.ate(left$positive, left$pre_positive, left)
293
+ interested.left <- est.ate(left$interested, left$pre_interested, left)
294
+ stimulated.left <- est.ate(left$stimulated, left$pre_stimulated, left)
295
+ enthusiastic.left <- est.ate(left$enthusiastic, left$pre_enthusiastic, left)
296
+ energetic.left <- est.ate(left$energetic, left$pre_energetic, left)
297
+ proud.left <- est.ate(left$proud, left$pre_proud, left)
298
+ alert.left <- est.ate(left$alert, left$pre_alert, left)
299
+ inspired.left <- est.ate(left$inspired, left$pre_inspired, left)
300
+ decided.left <- est.ate(left$decided, left$pre_decided, left)
301
+ attentive.left <- est.ate(left$attentive, left$pre_attentive, left)
302
+ active.left <- est.ate(left$active, left$pre_active, left)
303
+
304
+ results.df.pos <- as.data.frame(rbind(positive[1], positive.left[1], positive.right[1],
305
+ interested[1],interested.left[1], interested.right[1],
306
+ stimulated[1], stimulated.left[1], stimulated.right[1],
307
+ enthusiastic[1], enthusiastic.left[1], enthusiastic.right[1],
308
+ energetic[1], energetic.left[1], energetic.right[1],
309
+ proud[1], proud.left[1], proud.right[1],
310
+ alert[1], alert.left[1], alert.right[1],
311
+ inspired[1], inspired.left[1], inspired.right[1],
312
+ decided[1], decided.left[1],decided.right[1],
313
+ attentive[1], attentive.left[1],attentive.right[1],
314
+ active[1], active.left[1],active.right[1]))
315
+ results.df.pos$se <- c(positive[2], positive.left[2], positive.right[2],
316
+ interested[2],interested.left[2], interested.right[2],
317
+ stimulated[2], stimulated.left[2], stimulated.right[2],
318
+ enthusiastic[2], enthusiastic.left[2], enthusiastic.right[2],
319
+ energetic[2], energetic.left[2], energetic.right[2],
320
+ proud[2], proud.left[2], proud.right[2],
321
+ alert[2], alert.left[2], alert.right[2],
322
+ inspired[2], inspired.left[2], inspired.right[2],
323
+ decided[2], decided.left[2],decided.right[2],
324
+ attentive[2], attentive.left[2],attentive.right[2],
325
+ active[2], active.left[2],active.right[2])
326
+
327
+ results.df.pos$se <- unlist(results.df.pos$se)
328
+ results.df.pos$point.estimate <- unlist(results.df.pos$point.estimate)
329
+ results.df.pos$Variable <- NA
330
+ results.df.pos$xpos <- NA
331
+ for (i in 1:3){results.df.pos$Variable[i] <- "positive"}
332
+ for (i in 4:6){results.df.pos$Variable[i] <- "interested"}
333
+ for (i in 7:9){results.df.pos$Variable[i] <- "stimulated"}
334
+ for (i in 10:12){results.df.pos$Variable[i] <- "enthusiastic"}
335
+ for (i in 13:15){results.df.pos$Variable[i] <- "energetic"}
336
+ for (i in 16:18){results.df.pos$Variable[i] <- "proud"}
337
+ for (i in 19:21){results.df.pos$Variable[i] <- "alert"}
338
+ for (i in 22:24){results.df.pos$Variable[i] <- "inspired"}
339
+ for (i in 25:27){results.df.pos$Variable[i] <- "decided"}
340
+ for (i in 28:30){results.df.pos$Variable[i] <- "attentive"}
341
+ for (i in 31:33){results.df.pos$Variable[i] <- "active"}
342
+
343
+ # X position of different canvasser groups
344
+ results.df.pos$varnum<- with(results.df.pos, paste0(as.numeric(factor(Variable))))
345
+ results.df.pos$varnum <- as.numeric(results.df.pos$varnum)
346
+ results.df.pos$sample <- rep(1:3, 11)
347
+ results.df.pos$Population <- mapvalues(results.df.pos$sample, c(1,2,3), c("All", "Left", "Right"), warn_missing = TRUE)
348
+ results.df.pos$xpos<- as.numeric(paste(results.df.pos$varnum, results.df.pos$sample, sep = "."))
349
+ results.df.pos$se.high <- results.df.pos$point.estimate + results.df.pos$se
350
+ results.df.pos$se.low <- results.df.pos$point.estimate - results.df.pos$se
351
+ results.df.pos$ci.high <- results.df.pos$point.estimate + results.df.pos$se * 1.96
352
+ results.df.pos$ci.low <- results.df.pos$point.estimate - results.df.pos$se * 1.96
353
+ labels <- unique(results.df.pos$Variable)
354
+ results.df.pos[1:3, 4] = results.df.pos$xpos[1:3] - 8
355
+ results.df.pos[31:33, 4] = results.df.pos$xpos[31:33] + 8
356
+
357
+ pos <- ggplot(results.df.pos,
358
+ aes(x=xpos, y=point.estimate,
359
+ group=Variable, color=Population)) +
360
+ theme(axis.text.x=element_blank(),
361
+ axis.ticks.x=element_blank(),
362
+ plot.title=element_blank()) +
363
+ # CIs
364
+ geom_linerange(aes(ymin=se.low, ymax=se.high), lwd=1) +
365
+ geom_linerange(aes(ymin=ci.low, ymax=ci.high)) +
366
+ # Point estimate points
367
+ geom_point(color="black") +
368
+ geom_hline(yintercept = 0, linetype = "dashed") +
369
+ ggplot2::annotate("text",
370
+ label = c("positive (aggregated) \n ctrl mean=18.76", "alert \n ctrl mean=1.26", "attentive \n ctrl mean=2.41",
371
+ "decided \n ctrl mean=2.14", "energetic \n ctrl mean=1.81","enthusiastic \n ctrl mean=2.01",
372
+ "inspired \n ctrl mean=1.52", "interested \n ctrl mean=2.53",
373
+ "active \n ctrl mean=2.07","proud \n ctrl mean=1.24", "stimulated \n ctrl mean=1.70"),
374
+ x = c(1:11)+.28, y = -5.8,
375
+ colour = "black", size = 2.6) +
376
+ xlab("Variable") + ylab("Coefficient") +ggtitle("Positive Emotions")+scale_color_grey()+theme_bw()
377
+ pos <- pos + labs(title="Positive Emotions")
378
+ ggsave("pos.pdf", width = 10, height = 6)
379
+
380
+ ##### Part (b) - Negative emotions
381
+
382
+ negative <- est.ate(all$negative, all$pre_negative, all)
383
+ tense <- est.ate(all$tense, all$pre_tense, all)
384
+ scared <- est.ate(all$scared, all$pre_scared, all)
385
+ guilty <- est.ate(all$guilty, all$pre_guilty, all)
386
+ hostile <- est.ate(all$hostile, all$pre_hostile, all)
387
+ irritable <- est.ate(all$irritable, all$pre_irritable, all)
388
+ nervous <- est.ate(all$nervous, all$pre_nervous, all)
389
+ fearful <- est.ate(all$fearful, all$pre_fearful, all)
390
+ disgusted <- est.ate(all$disgusted, all$pre_disgusted, all)
391
+ afraid <- est.ate(all$afraid, all$pre_afraid, all)
392
+ embarrassed <- est.ate(all$embarrassed, all$pre_embarrassed, all)
393
+
394
+ ## right negative
395
+ negative.right <- est.ate(right$negative, right$pre_negative, right)
396
+ tense.right <- est.ate(right$tense, right$pre_tense, right)
397
+ scared.right <- est.ate(right$scared, right$pre_scared, right)
398
+ guilty.right <- est.ate(right$guilty, right$pre_guilty, right)
399
+ hostile.right <- est.ate(right$hostile, right$pre_hostile, right)
400
+ irritable.right <- est.ate(right$irritable, right$pre_irritable, right)
401
+ nervous.right <- est.ate(right$nervous, right$pre_nervous, right)
402
+ fearful.right <- est.ate(right$fearful, right$pre_fearful, right)
403
+ disgusted.right <- est.ate(right$disgusted, right$pre_disgusted, right)
404
+ afraid.right <- est.ate(right$afraid, right$pre_afraid, right)
405
+ embarrassed.right <- est.ate(right$embarrassed, right$pre_embarrassed, right)
406
+
407
+ ## left negative
408
+ negative.left <- est.ate(left$negative, left$pre_negative, left)
409
+ tense.left <- est.ate(left$tense, left$pre_tense, left)
410
+ scared.left <- est.ate(left$scared, left$pre_scared, left)
411
+ guilty.left <- est.ate(left$guilty, left$pre_guilty, left)
412
+ hostile.left <- est.ate(left$hostile, left$pre_hostile, left)
413
+ irritable.left <- est.ate(left$irritable, left$pre_irritable, left)
414
+ nervous.left <- est.ate(left$nervous, left$pre_nervous, left)
415
+ fearful.left <- est.ate(left$fearful, left$pre_fearful, left)
416
+ disgusted.left <- est.ate(left$disgusted, left$pre_disgusted, left)
417
+ afraid.left <- est.ate(left$afraid, left$pre_afraid, left)
418
+ embarrassed.left <- est.ate(left$embarrassed, left$pre_embarrassed, left)
419
+
420
+ # Make DF of summary stats
421
+ results.df.neg <- as.data.frame(rbind(negative[1], negative.left[1], negative.right[1],
422
+ tense[1], tense.left[1], tense.right[1],
423
+ scared[1],scared.left[1], scared.right[1],
424
+ guilty[1], guilty.left[1], guilty.right[1],
425
+ hostile[1], hostile.left[1], hostile.right[1],
426
+ irritable[1], irritable.left[1], irritable.right[1],
427
+ nervous[1], nervous.left[1], nervous.right[1],
428
+ fearful[1], fearful.left[1], fearful.right[1],
429
+ disgusted[1], disgusted.left[1],disgusted.right[1],
430
+ afraid[1], afraid.left[1],afraid.right[1],
431
+ embarrassed[1], embarrassed.left[1], embarrassed.right[1]))
432
+ results.df.neg$se <- c(negative[2], negative.left[2], negative.right[2],
433
+ tense[2], tense.left[2], tense.right[2],
434
+ scared[2],scared.left[2], scared.right[2],
435
+ guilty[2], guilty.left[2], guilty.right[2],
436
+ hostile[2], hostile.left[2], hostile.right[2],
437
+ irritable[2], irritable.left[2], irritable.right[2],
438
+ nervous[2], nervous.left[2], nervous.right[2],
439
+ fearful[2], fearful.left[2], fearful.right[2],
440
+ disgusted[2], disgusted.left[2],disgusted.right[2],
441
+ afraid[2], afraid.left[2],afraid.right[2],
442
+ embarrassed[2], embarrassed.left[2], embarrassed.right[2])
443
+
444
+ results.df.neg$point.estimate <- unlist(results.df.neg$point.estimate)
445
+ results.df.neg$se <- unlist(results.df.neg$se)
446
+ results.df.neg$Variable <- NA
447
+ results.df.neg$xneg <- NA
448
+ for (i in 1:3){results.df.neg$Variable[i] <- "negative"}
449
+ for (i in 4:6){results.df.neg$Variable[i] <- "tense"}
450
+ for (i in 7:9){results.df.neg$Variable[i] <- "scared"}
451
+ for (i in 10:12){results.df.neg$Variable[i] <- "guilty"}
452
+ for (i in 13:15){results.df.neg$Variable[i] <- "hostile"}
453
+ for (i in 16:18){results.df.neg$Variable[i] <- "irritable"}
454
+ for (i in 19:21){results.df.neg$Variable[i] <- "nervous"}
455
+ for (i in 22:24){results.df.neg$Variable[i] <- "fearful"}
456
+ for (i in 25:27){results.df.neg$Variable[i] <- "disgusted"}
457
+ for (i in 28:30){results.df.neg$Variable[i] <- "afraid"}
458
+ for (i in 31:33){results.df.neg$Variable[i] <- "embarrassed"}
459
+
460
+ results.df.neg$varnum<- with(results.df.neg, paste0(as.numeric(factor(Variable))))
461
+ results.df.neg$varnum <- as.numeric(results.df.neg$varnum)
462
+ results.df.neg$sample <- rep(1:3, 11)
463
+ results.df.neg$Population <- mapvalues(results.df.neg$sample, c(1,2,3), c("All", "Left", "Right"), warn_missing = TRUE)
464
+ results.df.neg$xneg<- as.numeric(paste(results.df.neg$varnum, results.df.neg$sample, sep = "."))
465
+ results.df.neg$se.high <- results.df.neg$point.estimate + results.df.neg$se
466
+ results.df.neg$se.low <- results.df.neg$point.estimate - results.df.neg$se
467
+ results.df.neg$ci.high <- results.df.neg$point.estimate + results.df.neg$se * 1.96
468
+ results.df.neg$ci.low <- results.df.neg$point.estimate - results.df.neg$se * 1.96
469
+ labels <- unique(results.df.neg$Variable)
470
+ results.df.neg[1:3, 4] = results.df.neg$xneg[1:3] - 7
471
+ results.df.neg[28:30, 4] = results.df.neg$xneg[28:30] + 7
472
+
473
+ neg <- ggplot(results.df.neg,
474
+ aes(x=xneg, y=point.estimate,
475
+ group=Variable, color=Population)) +
476
+ theme(axis.text.x=element_blank(),
477
+ axis.ticks.x=element_blank()) +
478
+ # CIs
479
+ geom_linerange(aes(ymin=se.low, ymax=se.high), lwd=1) +
480
+ geom_linerange(aes(ymin=ci.low, ymax=ci.high)) +
481
+ # Point estimate points
482
+ geom_point(color="black") +
483
+ geom_hline(yintercept = 0, linetype = "dashed") +
484
+ ggplot2::annotate("text",
485
+ label = c("negative \n ctrl mean=3.44","disgusted \n ctrl mean=0.29", "embarrassed \n ctrl mean=0.26",
486
+ "fearful \n ctrl mean=0.22","guilty \n ctrl mean=0.24","hostile \n ctrl mean=0.33",
487
+ "irritable \n ctrl mean=0.54","afraid \n ctrl mean=0.16", "nervous \n ctrl mean=0.56",
488
+ "scared \n ctrl mean = 0.16","tense \n ctrl mean = 0.68"),
489
+ x = c(1:11)+.28, y = -1.5,
490
+ colour = "black", size = 2.6) +
491
+ xlab("Variable") + ylab("Coefficient")
492
+ neg + scale_color_grey()+theme_bw()
493
+ ggsave("neg.pdf", width = 10, height = 6)
494
+
495
+
496
+ ##############################################################
497
+ ###### Figure 4: Durability of treatment effects
498
+ ##############################################################
499
+
500
+ ### this estimates ATE for follow up variables
501
+ est.ate.f <-function(dv, predv){
502
+ predv <- f(predv)
503
+ summary(fit.1 <- lm(dv~all$treat + all$pre_ideology_1 +
504
+ + predv*all$date_diff + all$base_gender +all$age + all$v))
505
+ vcv <- vcovHC(fit.1)
506
+ n <- nobs(fit.1)
507
+ result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
508
+ result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
509
+ return(result)
510
+ }
511
+
512
+ # estimates ATE for follow up when we don't have a pre-treatment measurement
513
+ est.ate.np.f<-function(dv){
514
+ summary(fit.1 <- lm(dv~all$treat + all$pre_ideology_1 + all$base_gender +all$age+all$v))
515
+ vcv <- vcovHC(fit.1)
516
+ n <- nobs(fit.1)
517
+ result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
518
+ result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
519
+ return(result)
520
+ }
521
+
522
+ par(mfrow=c(4, 2))
523
+ par(oma = c(2.9, 3, 1, 0)) # make room (i.e. the 4's) for the overall x and y axis titles
524
+ par(mar = c(2.5, 2, 1.5, 1)) # make the plots be closer together
525
+ par(cex.main = 0.8)
526
+
527
+ ##### GRAPH 1 - CHURCH TRUST ######
528
+
529
+ church_trust_pre <- est.ate.np(all$pre_conf_church, all)
530
+ church_trust <- est.ate(all$conf_church, all$pre_conf_church,all)
531
+ church_trust_f1 <- est.ate.f(all$conf_church_f1, all$pre_conf_church)
532
+ church_trust_f2 <- est.ate.f(all$conf_church_f2, all$pre_conf_church)
533
+ church_trust_f3 <- est.ate.f(all$conf_church_f3, all$pre_conf_church)
534
+
535
+ coefs <- unlist(c(church_trust_pre[1], church_trust[1], church_trust_f1[1],
536
+ church_trust_f2[1], church_trust_f3[1]))
537
+
538
+ ses <- unlist(c(church_trust_pre[2], church_trust[2], church_trust_f1[2],
539
+ church_trust_f2[2], church_trust_f3[2]))
540
+
541
+
542
+ plot(NA, xlim = c(-2, 25), ylim = c(-.5, .5),xlab = '', ylab = '')
543
+ title("Trust in church (0-3)")
544
+ abline(v = -1, col = "gray")
545
+ abline(v = 0, col = "gray")
546
+ abline(v = 1, col = "gray")
547
+ abline(v = 8, col = "gray")
548
+ abline(v = 24, col = "gray")
549
+ abline(h = 0, col = "red")
550
+
551
+ points(-1, coefs[1], pch = 23, col = "black", bg = "black")
552
+ points(0, coefs[2], pch = 23, col = "black", bg = "black")
553
+ points(1, coefs[3], pch = 23, col = "black", bg = "black")
554
+ points(8, coefs[4], pch = 23, col = "black", bg = "black")
555
+ points(24, coefs[5], pch = 23, col = "black", bg = "black")
556
+
557
+ segments(-1, (coefs - ses)[1], -1, (coefs + ses)[1], col = "black", lwd = 2)
558
+ segments(0, (coefs - ses)[2], 0, (coefs + ses)[2], col = "black", lwd = 2)
559
+ segments(1, (coefs - ses)[3], 1, (coefs + ses)[3], col = "black", lwd = 2)
560
+ segments(8.0, (coefs - ses)[4], 8, (coefs + ses)[4], col = "black", lwd = 2)
561
+ segments(24.0, (coefs - ses)[5], 24, (coefs + ses)[5], col = "black", lwd = 2)
562
+ segments(-1, (coefs - 1.96*ses)[1], -1, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
563
+ segments(0, (coefs - 1.96*ses)[2], 0, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
564
+ segments(1, (coefs - 1.96*ses)[3], 1, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
565
+ segments(8.0, (coefs - 1.96*ses)[4], 8, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
566
+ segments(24.0, (coefs - 1.96*ses)[5], 24, (coefs + 1.96*ses)[5], col = "black", lwd = 1)
567
+
568
+ text(-2, -.2, "pre", cex = .6)
569
+ text(-1, -.25, "treatment", cex = .6)
570
+ text(.2, .3, "treatment", cex = .6)
571
+ text(3, .07, "follow up", cex = .6)
572
+ text(10, .07, "follow up", cex = .6)
573
+ text(22, .13, "follow up", cex = .6)
574
+
575
+ ##### GRAPH 2 - PARDONING ######
576
+
577
+ pardoned <- est.ate.np(all$policies_pardon,all)
578
+ pardoned_f1<- est.ate.np.f(all$policies_pardon_f1)
579
+ pardoned_f2 <- est.ate.np.f(all$policies_pardon_f2)
580
+ pardoned_f3 <- est.ate.np.f(all$policies_pardon_f3)
581
+
582
+ coefs <- unlist(c(pardoned[1], pardoned_f1[1],
583
+ pardoned_f2[1], pardoned_f3[1]))
584
+
585
+ ses <- unlist(c(pardoned[2], pardoned_f1[2],
586
+ pardoned_f2[2], pardoned_f3[2]))
587
+
588
+ plot(NA, xlim = c(-.5, 25), ylim = c(-.2, .5), xlab = '', ylab = '')
589
+ title("Support for pardoning perpetrators (0-4)")
590
+ abline(v = 0, col = "gray")
591
+ abline(v = 1, col = "gray")
592
+ abline(v = 8, col = "gray")
593
+ abline(v = 24, col = "gray")
594
+ abline(h = 0, col = "red")
595
+
596
+ points(0, coefs[1], pch = 23, col = "black", bg = "black")
597
+ points(1, coefs[2], pch = 23, col = "black", bg = "black")
598
+ points(8, coefs[3], pch = 23, col = "black", bg = "black")
599
+ points(24, coefs[4], pch = 23, col = "black", bg = "black")
600
+
601
+ segments(0, (coefs - ses)[1], 0, (coefs + ses)[1], col = "black", lwd = 2)
602
+ segments(1, (coefs - ses)[2], 1, (coefs + ses)[2], col = "black", lwd = 2)
603
+ segments(8.0, (coefs - ses)[3], 8, (coefs + ses)[3], col = "black", lwd = 2)
604
+ segments(24.0, (coefs - ses)[4], 24, (coefs + ses)[4], col = "black", lwd = 2)
605
+
606
+ segments(0, (coefs - 1.96*ses)[1], 0, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
607
+ segments(1, (coefs - 1.96*ses)[2], 1, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
608
+ segments(8.0, (coefs - 1.96*ses)[3], 8, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
609
+ segments(24.0, (coefs - 1.96*ses)[4], 24, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
610
+
611
+ ##### GRAPH 3 - GOVT SATISFACTION ######
612
+ gov_sat_pre <- est.ate.np(all$pre_inst_gov,all)
613
+ gov_sat <- est.ate(all$inst_gov, all$pre_inst_gov,all)
614
+ gov_sat_f1 <- est.ate.f(all$inst_gov_f1, all$pre_inst_gov)
615
+ gov_sat_f2 <- est.ate.f(all$inst_gov_f2, all$pre_inst_gov)
616
+ gov_sat_f3 <- est.ate.f(all$inst_gov_f3, all$pre_inst_gov)
617
+
618
+ coefs <- unlist(c(gov_sat_pre[1], gov_sat[1], gov_sat_f1[1],
619
+ gov_sat_f2[1], gov_sat_f3[1]))
620
+
621
+ ses <- unlist(c(gov_sat_pre[2], gov_sat[2], gov_sat_f1[2],
622
+ gov_sat_f2[2], gov_sat_f3[2]))
623
+
624
+
625
+ plot(NA, xlim = c(-2, 25), ylim = c(-.4, .5), xlab = '', ylab = '')
626
+ title("Satisfaction with government (0-3)")
627
+ abline(v = -1, col = "gray")
628
+ abline(v = 0, col = "gray")
629
+ abline(v = 1, col = "gray")
630
+ abline(v = 8, col = "gray")
631
+ abline(v = 24, col = "gray")
632
+ abline(h = 0, col = "red")
633
+
634
+ points(-1, coefs[1], pch = 23, col = "black", bg = "black")
635
+ points(0, coefs[2], pch = 23, col = "black", bg = "black")
636
+ points(1, coefs[3], pch = 23, col = "black", bg = "black")
637
+ points(8, coefs[4], pch = 23, col = "black", bg = "black")
638
+ points(24, coefs[5], pch = 23, col = "black", bg = "black")
639
+
640
+ segments(-1, (coefs - ses)[1], -1, (coefs + ses)[1], col = "black", lwd = 2)
641
+ segments(0, (coefs - ses)[2], 0, (coefs + ses)[2], col = "black", lwd = 2)
642
+ segments(1, (coefs - ses)[3], 1, (coefs + ses)[3], col = "black", lwd = 2)
643
+ segments(8.0, (coefs - ses)[4], 8, (coefs + ses)[4], col = "black", lwd = 2)
644
+ segments(24.0, (coefs - ses)[5], 24, (coefs + ses)[5], col = "black", lwd = 2)
645
+ segments(-1, (coefs - 1.96*ses)[1], -1, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
646
+ segments(0, (coefs - 1.96*ses)[2], 0, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
647
+ segments(1, (coefs - 1.96*ses)[3], 1, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
648
+ segments(8.0, (coefs - 1.96*ses)[4], 8, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
649
+ segments(24.0, (coefs - 1.96*ses)[5], 24, (coefs + 1.96*ses)[5], col = "black", lwd = 1)
650
+
651
+ ##### GRAPH 4 - DEMOCRACY ######
652
+ dem_pre <- est.ate.np(all$pre_democracy,all)
653
+ dem <- est.ate(all$democracy, all$pre_democracy,all)
654
+ dem_f1 <- est.ate.f(all$democracy_f1, all$pre_democracy)
655
+ dem_f2 <- est.ate.f(all$democracy_f2, all$pre_democracy)
656
+ dem_f3 <- est.ate.f(all$democracy_f3, all$pre_democracy)
657
+
658
+ coefs <- unlist(c(dem_pre[1], dem[1], dem_f1[1],dem_f2[1], dem_f3[1]))
659
+
660
+ ses <- unlist(c(dem_pre[2], dem[2], dem_f1[2],dem_f2[2], dem_f3[2]))
661
+
662
+ plot(NA, xlim = c(-2, 25), ylim = c(-.4, .3), xlab = '', ylab = '')
663
+ title("Satisfaction with democracy (0-3)")
664
+ abline(v = -1, col = "gray")
665
+ abline(v = 0, col = "gray")
666
+ abline(v = 1, col = "gray")
667
+ abline(v = 8, col = "gray")
668
+ abline(v = 24, col = "gray")
669
+ abline(h = 0, col = "red")
670
+
671
+ points(-1, coefs[1], pch = 23, col = "black", bg = "black")
672
+ points(0, coefs[2], pch = 23, col = "black", bg = "black")
673
+ points(1, coefs[3], pch = 23, col = "black", bg = "black")
674
+ points(8, coefs[4], pch = 23, col = "black", bg = "black")
675
+ points(24, coefs[5], pch = 23, col = "black", bg = "black")
676
+
677
+ segments(-1, (coefs - ses)[1], -1, (coefs + ses)[1], col = "black", lwd = 2)
678
+ segments(0, (coefs - ses)[2], 0, (coefs + ses)[2], col = "black", lwd = 2)
679
+ segments(1, (coefs - ses)[3], 1, (coefs + ses)[3], col = "black", lwd = 2)
680
+ segments(8.0, (coefs - ses)[4], 8, (coefs + ses)[4], col = "black", lwd = 2)
681
+ segments(24.0, (coefs - ses)[5], 24, (coefs + ses)[5], col = "black", lwd = 2)
682
+ segments(-1, (coefs - 1.96*ses)[1], -1, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
683
+ segments(0, (coefs - 1.96*ses)[2], 0, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
684
+ segments(1, (coefs - 1.96*ses)[3], 1, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
685
+ segments(8.0, (coefs - 1.96*ses)[4], 8, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
686
+ segments(24.0, (coefs - 1.96*ses)[5], 24, (coefs + 1.96*ses)[5], col = "black", lwd = 1)
687
+
688
+ ##### GRAPH 5 - MIL GOV ######
689
+ mil_pre <- est.ate.np(all$pre_military_gov,all)
690
+ mil <- est.ate(all$military_gov, all$pre_military_gov,all)
691
+ mil_f1 <- est.ate.f(all$military_gov_f1, all$pre_military_gov)
692
+ mil_f2 <- est.ate.f(all$military_gov_f2, all$pre_military_gov)
693
+ mil_f3 <- est.ate.f(all$military_gov_f3, all$pre_military_gov)
694
+
695
+ coefs <- unlist(c(mil_pre[1], mil[1], mil_f1[1],mil_f2[1], mil_f3[1]))
696
+ ses <- unlist(c(mil_pre[2], mil[2], mil_f1[2],mil_f2[2], mil_f3[2]))
697
+
698
+ plot(NA, xlim = c(-2, 25), ylim = c(-.2, .3), xlab = '', ylab = '')
699
+ title("Support for military gov (0-1)")
700
+ abline(v = -1, col = "gray")
701
+ abline(v = 0, col = "gray")
702
+ abline(v = 1, col = "gray")
703
+ abline(v = 8, col = "gray")
704
+ abline(v = 24, col = "gray")
705
+ abline(h = 0, col = "red")
706
+
707
+ points(-1, coefs[1], pch = 23, col = "black", bg = "black")
708
+ points(0, coefs[2], pch = 23, col = "black", bg = "black")
709
+ points(1, coefs[3], pch = 23, col = "black", bg = "black")
710
+ points(8, coefs[4], pch = 23, col = "black", bg = "black")
711
+ points(24, coefs[5], pch = 23, col = "black", bg = "black")
712
+
713
+ segments(-1, (coefs - ses)[1], -1, (coefs + ses)[1], col = "black", lwd = 2)
714
+ segments(0, (coefs - ses)[2], 0, (coefs + ses)[2], col = "black", lwd = 2)
715
+ segments(1, (coefs - ses)[3], 1, (coefs + ses)[3], col = "black", lwd = 2)
716
+ segments(8.0, (coefs - ses)[4], 8, (coefs + ses)[4], col = "black", lwd = 2)
717
+ segments(24.0, (coefs - ses)[5], 24, (coefs + ses)[5], col = "black", lwd = 2)
718
+
719
+ segments(-1, (coefs - 1.96*ses)[1], -1, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
720
+ segments(0, (coefs - 1.96*ses)[2], 0, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
721
+ segments(1, (coefs - 1.96*ses)[3], 1, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
722
+ segments(8.0, (coefs - 1.96*ses)[4], 8, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
723
+ segments(24.0, (coefs - 1.96*ses)[5], 24, (coefs + 1.96*ses)[5], col = "black", lwd = 1)
724
+
725
+ ##### GRAPH 6 - ADVANCE ######
726
+ advance <- est.ate.np(all$justice_advance,all)
727
+ advance_f1 <- est.ate.np.f(all$justice_advance_f1)
728
+ advance_f2 <- est.ate.np.f(all$justice_advance_f2)
729
+ advance_f3 <- est.ate.np.f(all$justice_advance_f3)
730
+
731
+ coefs <- unlist(c(advance[1], advance_f1[1], advance_f2[1], advance_f3[1]))
732
+
733
+ ses <- unlist(c(advance[2], advance_f1[2], advance_f2[2], advance_f3[2]))
734
+
735
+ plot(NA, xlim = c(-.5, 25), ylim = c(-.8, .2), xlab = '', ylab = '')
736
+ title("Obsession with the past \n makes it hard to advance (0-4)")
737
+ abline(v = 0, col = "gray")
738
+ abline(v = 1, col = "gray")
739
+ abline(v = 8, col = "gray")
740
+ abline(v = 24, col = "gray")
741
+ abline(h = 0, col = "red")
742
+
743
+ points(0, coefs[1], pch = 23, col = "black", bg = "black")
744
+ points(1, coefs[2], pch = 23, col = "black", bg = "black")
745
+ points(8, coefs[3], pch = 23, col = "black", bg = "black")
746
+ points(24, coefs[4], pch = 23, col = "black", bg = "black")
747
+
748
+ segments(0, (coefs - ses)[1], 0, (coefs + ses)[1], col = "black", lwd = 2)
749
+ segments(1, (coefs - ses)[2], 1, (coefs + ses)[2], col = "black", lwd = 2)
750
+ segments(8.0, (coefs - ses)[3], 8, (coefs + ses)[3], col = "black", lwd = 2)
751
+ segments(24, (coefs - ses)[4], 24, (coefs + ses)[4], col = "black", lwd = 2)
752
+ segments(0, (coefs - 1.96*ses)[1], 0, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
753
+ segments(1, (coefs - 1.96*ses)[2], 1, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
754
+ segments(8.0, (coefs - 1.96*ses)[3], 8, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
755
+ segments(24.0, (coefs - 1.96*ses)[4], 24, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
756
+
757
+ ## GRAPH 7 - COMPENSATION ##
758
+ comp_pre <- est.ate.np(all$pre_current_recomp,all)
759
+ comp <- est.ate(all$current_recomp, all$pre_current_recomp,all)
760
+ comp_f1 <- est.ate.f(all$current_recomp_f1, all$pre_current_recomp)
761
+ comp_f2 <- est.ate.f(all$current_recomp_f2, all$pre_current_recomp)
762
+ comp_f3 <- est.ate.f(all$current_recomp_f3, all$pre_current_recomp)
763
+
764
+ coefs <- unlist(c(comp_pre[1], comp[1], comp_f1[1],comp_f2[1], comp_f3[1]))
765
+
766
+ ses <- unlist(c(comp_pre[2], comp[2], comp_f1[2], comp_f2[2], comp_f3[2]))
767
+
768
+ plot(NA, xlim = c(-2, 25), ylim = c(-.4, .4), xlab = '', ylab = '')
769
+ title("Support for victim compensation (0-3)")
770
+ abline(v = -1, col = "gray")
771
+ abline(v = 0, col = "gray")
772
+ abline(v = 1, col = "gray")
773
+ abline(v = 8, col = "gray")
774
+ abline(v = 24, col = "gray")
775
+ abline(h = 0, col = "red")
776
+
777
+ points(-1, coefs[1], pch = 23, col = "black", bg = "black")
778
+ points(0, coefs[2], pch = 23, col = "black", bg = "black")
779
+ points(1, coefs[3], pch = 23, col = "black", bg = "black")
780
+ points(8, coefs[4], pch = 23, col = "black", bg = "black")
781
+ points(24, coefs[5], pch = 23, col = "black", bg = "black")
782
+
783
+ segments(-1, (coefs - ses)[1], -1, (coefs + ses)[1], col = "black", lwd = 2)
784
+ segments(0, (coefs - ses)[2], 0, (coefs + ses)[2], col = "black", lwd = 1)
785
+ segments(1, (coefs - ses)[3], 1, (coefs + ses)[3], col = "black", lwd = 2)
786
+ segments(8.0, (coefs - ses)[4], 8, (coefs + ses)[4], col = "black", lwd = 2)
787
+ segments(24.0, (coefs - ses)[5], 24, (coefs + ses)[5], col = "black", lwd = 2)
788
+ segments(-1, (coefs - 1.96*ses)[1], -1, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
789
+ segments(0, (coefs - 1.96*ses)[2], 0, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
790
+ segments(1, (coefs - 1.96*ses)[3], 1, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
791
+ segments(8.0, (coefs - 1.96*ses)[4], 8, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
792
+ segments(24.0, (coefs - 1.96*ses)[5], 24, (coefs + 1.96*ses)[5], col = "black", lwd = 1)
793
+
794
+ ## GRAPH 8 - PUBLIC APOLOGY ##
795
+
796
+ tj_apology <- est.ate.np(all$tj_apology,all)
797
+ tj_apology_f1 <- est.ate.np.f(all$tj_apology_f1)
798
+ tj_apology_f2 <- est.ate.np.f(all$tj_apology_f2)
799
+ tj_apology_f3 <- est.ate.np.f(all$tj_apology_f3)
800
+
801
+ coefs <- unlist(c(tj_apology[1], tj_apology_f1[1], tj_apology_f2[1], tj_apology_f3[1]))
802
+
803
+ ses <- unlist(c(tj_apology[2], tj_apology_f1[2], tj_apology_f2[2], tj_apology_f3[2]))
804
+
805
+ plot(NA, xlim = c(-.5, 25), ylim = c(-.2, .5), xlab = '', ylab = '')
806
+ title("Military should apologize (0-4)")
807
+ abline(v = 0, col = "gray")
808
+ abline(v = 1, col = "gray")
809
+ abline(v = 8, col = "gray")
810
+ abline(v = 24, col = "gray")
811
+ abline(h = 0, col = "red")
812
+
813
+ points(0, coefs[1], pch = 23, col = "black", bg = "black")
814
+ points(1, coefs[2], pch = 23, col = "black", bg = "black")
815
+ points(8, coefs[3], pch = 23, col = "black", bg = "black")
816
+ points(24, coefs[4], pch = 23, col = "black", bg = "black")
817
+
818
+ segments(0, (coefs - ses)[1], 0, (coefs + ses)[1], col = "black", lwd = 2)
819
+ segments(1, (coefs - ses)[2], 1, (coefs + ses)[2], col = "black", lwd = 2)
820
+ segments(8.0, (coefs - ses)[3], 8, (coefs + ses)[3], col = "black", lwd = 2)
821
+
822
+ segments(24.0, (coefs - ses)[4], 24, (coefs + ses)[4], col = "black", lwd = 2)
823
+ segments(0, (coefs - 1.96*ses)[1], 0, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
824
+ segments(1, (coefs - 1.96*ses)[2], 1, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
825
+ segments(8.0, (coefs - 1.96*ses)[3], 8, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
826
+ segments(24.0, (coefs - 1.96*ses)[4], 24, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
827
+
828
+ mtext('Weeks from Treatment', side = 1, outer = TRUE, line = 2)
829
+ mtext('Coefficient', side = 2, outer = TRUE, line = 2)
19/replication_package/Codebook.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c98532969543a114a9880334a7e30c521ddca3deaa6c76318bc118de8c43d071
3
+ size 97238
19/replication_package/all.Rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4ed1b5544caed6a1166d7ac4a49d59721a52648441bb5083e715be78c30bb6c
3
+ size 29977
19/replication_package/baseline.Rdata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76030af9231de2450b8f8d32bd8450665c31022ee2f285cc7ded08ba3d406d9e
3
+ size 14901
19/should_reproduce.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03563f78eb08f88bc1de997026a9b93fecabe84916dd65a05defe0b06dccf9f2
3
+ size 35