Commit
·
16a87fd
1
Parent(s):
59c198f
add 19
Browse files
19/paper.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e7e947769641a855376e68074f4466b6cd671aed7d0971f91ffbce58bb930ca
|
3 |
+
size 1222036
|
19/replication_package/BPV_museums_appendix.R
ADDED
@@ -0,0 +1,848 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##############################################################
|
2 |
+
##############################################################
|
3 |
+
####### Replication code for "Do museums promote reconciliation? Evidence from a field experiment," Journal of Politics
|
4 |
+
####### This file includes code for all analyses and figures in the online appendix
|
5 |
+
##############################################################
|
6 |
+
##############################################################
|
7 |
+
|
8 |
+
require("sandwich")
|
9 |
+
require("plyr")
|
10 |
+
require("lmtest")
|
11 |
+
require(dplyr)
|
12 |
+
require(gridExtra)
|
13 |
+
require("RColorBrewer")
|
14 |
+
require(ggplot2)
|
15 |
+
|
16 |
+
##############################################################
|
17 |
+
###### Read in data and establish main functions
|
18 |
+
##############################################################
|
19 |
+
load(file = "all.Rdata")
|
20 |
+
|
21 |
+
### ATE FUNCTIONS ##
|
22 |
+
# This estimates ATE when we have a pre-treatment measurement
|
23 |
+
est.ate<-function(dv, predv, df){
|
24 |
+
predv <- f(predv)
|
25 |
+
dv <- f(dv)
|
26 |
+
summary(fit.1 <- lm(dv~df$treat + df$pre_ideology_1 +
|
27 |
+
+ predv*df$date_diff + df$base_gender +df$age + df$v))
|
28 |
+
vcv <- vcovHC(fit.1)
|
29 |
+
n <- nobs(fit.1)
|
30 |
+
result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
|
31 |
+
result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
|
32 |
+
return(result)
|
33 |
+
}
|
34 |
+
# This estimates ATE when we don't have a pre-treatment measurement
|
35 |
+
est.ate.np<-function(dv, df){
|
36 |
+
dv <- f(dv)
|
37 |
+
summary(fit.1 <- lm(dv~df$treat + df$pre_ideology_1 + df$base_gender +df$age+df$v))
|
38 |
+
vcv <- vcovHC(fit.1)
|
39 |
+
n <- nobs(fit.1)
|
40 |
+
result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
|
41 |
+
result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
|
42 |
+
return(result)
|
43 |
+
}
|
44 |
+
|
45 |
+
# this function recodes NAs to the mean, per our PAP
|
46 |
+
f <- function(x){
|
47 |
+
m <- mean(x, na.rm = TRUE)
|
48 |
+
x[is.na(x)] <- m
|
49 |
+
x
|
50 |
+
}
|
51 |
+
## recode covariates to means
|
52 |
+
all$age <- f(all$age)
|
53 |
+
all$pre_ideology_1 <- f(all$pre_ideology_1)
|
54 |
+
all$base_gender <- f(all$base_gender)
|
55 |
+
all$date_diff <- f(all$date_diff)
|
56 |
+
# split dataset into left, right, and related to victim for heterogeneous analyses
|
57 |
+
left <- all[all$right == 0,]
|
58 |
+
right <- all[all$right == 1,]
|
59 |
+
itt.d <- all$itt.d
|
60 |
+
|
61 |
+
##############################################################
|
62 |
+
###### Table A1: Number of respondents by condition
|
63 |
+
##############################################################
|
64 |
+
|
65 |
+
# Note: we do not have data on those who did not show up or opted not to comply with their random assignment
|
66 |
+
|
67 |
+
# completed by condition
|
68 |
+
sum(all$treat==1)
|
69 |
+
sum(all$treat==0)
|
70 |
+
|
71 |
+
# first follow up by condition
|
72 |
+
sum(all$f1[all$treat==1])
|
73 |
+
sum(all$f1[all$treat==0])
|
74 |
+
|
75 |
+
# second follow up by condition
|
76 |
+
sum(all$f2[all$treat==1])
|
77 |
+
sum(all$f2[all$treat==0])
|
78 |
+
|
79 |
+
# third follow up by condition
|
80 |
+
sum(all$f3[all$treat==1])
|
81 |
+
sum(all$f3[all$treat==0])
|
82 |
+
|
83 |
+
##############################################################
|
84 |
+
###### Table A2: Covariate balance
|
85 |
+
##############################################################
|
86 |
+
t.test(all$age~all$treat)
|
87 |
+
t.test(all$base_gender~all$treat)
|
88 |
+
t.test(all$pre_ideology_1~all$treat)
|
89 |
+
t.test(all$v~all$treat)
|
90 |
+
t.test(all$pre_political_interest~all$treat)
|
91 |
+
t.test(all$pre_party_id~all$treat)
|
92 |
+
t.test(all$pre_positive~all$treat)
|
93 |
+
t.test(all$pre_negative~all$treat)
|
94 |
+
t.test(all$pre_conf_gov~all$treat)
|
95 |
+
|
96 |
+
##############################################################
|
97 |
+
###### Table A3: Perceptions of museum by ideology
|
98 |
+
##############################################################
|
99 |
+
t.test(all$mm_obj~all$right)
|
100 |
+
t.test(all$mm_views_like~all$right)
|
101 |
+
t.test(all$mm_views_content~all$right)
|
102 |
+
t.test(all$mm_views_inhibit~all$right)
|
103 |
+
t.test(all$mm_views_important~all$right)
|
104 |
+
t.test(all$mm_new~all$right)
|
105 |
+
|
106 |
+
##############################################################
|
107 |
+
###### Table A5: Perceptions of inequality after visiting the MMDH
|
108 |
+
##############################################################
|
109 |
+
est.ate(all$current_ineq, all$pre_current_ineq, all)
|
110 |
+
|
111 |
+
##############################################################
|
112 |
+
###### Table A6: Full regression results, Political institutions
|
113 |
+
##############################################################
|
114 |
+
|
115 |
+
# See lines 64-72 in "BPV_museums_maintext.R"
|
116 |
+
|
117 |
+
##############################################################
|
118 |
+
###### Table A7: Full regression results, Political institutions by ideology
|
119 |
+
##############################################################
|
120 |
+
|
121 |
+
# See lines 75-93 in "BPV_museums_maintext.R"
|
122 |
+
# Interactions (final three columns of table) reproduced here
|
123 |
+
est.ate.int<-function(dv, predv, df){
|
124 |
+
predv <- f(predv)
|
125 |
+
dv <- f(dv)
|
126 |
+
summary(fit.1 <- lm(dv~df$treat*df$pre_ideology_1+
|
127 |
+
+ predv*df$date_diff + df$base_gender +df$age + df$v))
|
128 |
+
vcv <- vcovHC(fit.1)
|
129 |
+
n <- nobs(fit.1)
|
130 |
+
result <- coeftest(fit.1, vcv)[9, 1:4] / itt.d
|
131 |
+
result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
|
132 |
+
return(result)
|
133 |
+
}
|
134 |
+
|
135 |
+
est.ate.int(all$democracy, all$pre_democracy, all)
|
136 |
+
est.ate.int(all$military_gov, all$pre_military_gov, all)
|
137 |
+
est.ate.int(all$inst_gov, all$pre_inst_gov, all)
|
138 |
+
est.ate.int(all$inst_mil, all$pre_inst_mil, all)
|
139 |
+
est.ate.int(all$inst_police, all$pre_inst_police, all)
|
140 |
+
est.ate.int(all$conf_gov, all$pre_conf_gov, all)
|
141 |
+
est.ate.int(all$conf_mil, all$pre_conf_mil, all)
|
142 |
+
est.ate.int(all$conf_police, all$pre_conf_police, all)
|
143 |
+
est.ate.int(all$conf_church, all$pre_conf_church, all)
|
144 |
+
|
145 |
+
##############################################################
|
146 |
+
###### Table A8: Full regression results, Transitional justice
|
147 |
+
##############################################################
|
148 |
+
|
149 |
+
# See lines 164-171 in "BPV_museums_maintext.R"
|
150 |
+
|
151 |
+
##############################################################
|
152 |
+
###### Table A9: Full regression results, Transitional justice by ideology
|
153 |
+
##############################################################
|
154 |
+
|
155 |
+
# See lines 75-93 in "BPV_museums_maintext.R"
|
156 |
+
# Interactions (final three columns of table) reproduced below
|
157 |
+
est.ate.int.np<-function(dv, df){
|
158 |
+
dv <- f(dv)
|
159 |
+
summary(fit.1 <- lm(dv~df$treat*df$pre_ideology_1+
|
160 |
+
+ df$base_gender +df$age + df$v))
|
161 |
+
vcv <- vcovHC(fit.1)
|
162 |
+
n <- nobs(fit.1)
|
163 |
+
result <- coeftest(fit.1, vcv)[7, 1:4] / itt.d
|
164 |
+
result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
|
165 |
+
return(result)
|
166 |
+
}
|
167 |
+
|
168 |
+
est.ate.int.np(all$justice_advance, all)
|
169 |
+
est.ate.int.np(all$justice_account, all)
|
170 |
+
est.ate.int(all$current_recomp, all$pre_current_recomp, all)
|
171 |
+
est.ate.int.np(all$tj_judicial, all)
|
172 |
+
est.ate.int.np(all$tj_apology, all)
|
173 |
+
est.ate.int.np(all$policies_apologize, all)
|
174 |
+
est.ate.int.np(all$policies_compensate, all)
|
175 |
+
est.ate.int.np(all$policies_pardon, all)
|
176 |
+
|
177 |
+
##############################################################
|
178 |
+
###### Table A10: Full regression results, emotions
|
179 |
+
##############################################################
|
180 |
+
|
181 |
+
# See lines 261-297 in "BPV_museums_maintext.R"
|
182 |
+
|
183 |
+
##############################################################
|
184 |
+
###### Table A11: Number of respondents by condition
|
185 |
+
##############################################################
|
186 |
+
|
187 |
+
# See code for A1, above
|
188 |
+
|
189 |
+
##############################################################
|
190 |
+
###### Table A12: Test for differential attrition
|
191 |
+
##############################################################
|
192 |
+
|
193 |
+
## F-test
|
194 |
+
diff.att.full <- lm(all$observerd~(all$treat*all$right)
|
195 |
+
+(all$treat*all$base_gender) + (all$treat*all$age) +
|
196 |
+
(all$treat*all$v))
|
197 |
+
diff.att.1.full <- lm(all$f1~(all$treat*all$right)
|
198 |
+
+(all$treat*all$base_gender) + (all$treat*all$age) +
|
199 |
+
(all$treat*all$v))
|
200 |
+
diff.att.2.full <- lm(all$f2~(all$treat*all$right)
|
201 |
+
+(all$treat*all$base_gender) + (all$treat*all$age) +
|
202 |
+
(all$treat*all$v))
|
203 |
+
diff.att.3.full <- lm(all$f3~(all$treat*all$right)
|
204 |
+
+(all$treat*all$base_gender) + (all$treat*all$age) +
|
205 |
+
(all$treat*all$v))
|
206 |
+
diff.att.red <- lm(all$observerd~all$treat+all$right
|
207 |
+
+all$base_gender+all$age + all$v)
|
208 |
+
diff.att.1.red <- lm(all$f1~all$treat+all$right
|
209 |
+
+all$base_gender+all$age + all$v)
|
210 |
+
diff.att.2.red <- lm(all$f2~all$treat+all$right
|
211 |
+
+all$base_gender+all$age + all$v)
|
212 |
+
diff.att.3.red <- lm(all$f3~all$treat+all$right
|
213 |
+
+all$base_gender+all$age + all$v)
|
214 |
+
anova(diff.att.full, diff.att.red)
|
215 |
+
anova(diff.att.1.full, diff.att.1.red)
|
216 |
+
anova(diff.att.2.full, diff.att.2.red)
|
217 |
+
anova(diff.att.3.full, diff.att.3.red)
|
218 |
+
|
219 |
+
##############################################################
|
220 |
+
###### Table A13: Differential attrition by pre-treatment covariates
|
221 |
+
##############################################################
|
222 |
+
|
223 |
+
#age
|
224 |
+
summary(lm(f(all$f1)~f(all$age)))
|
225 |
+
summary(lm(f(all$f2)~f(all$age)))
|
226 |
+
summary(lm(f(all$f3)~f(all$age)))
|
227 |
+
|
228 |
+
# gender
|
229 |
+
summary(lm(f(all$f1)~f(all$base_gender)))
|
230 |
+
summary(lm(f(all$f2)~f(all$base_gender)))
|
231 |
+
summary(lm(f(all$f3)~f(all$base_gender)))
|
232 |
+
|
233 |
+
# ideology
|
234 |
+
summary(lm(f(all$f1)~f(all$pre_ideology_1)))
|
235 |
+
summary(lm(f(all$f2)~f(all$pre_ideology_1)))
|
236 |
+
summary(lm(f(all$f3)~f(all$pre_ideology_1)))
|
237 |
+
|
238 |
+
# economic situation
|
239 |
+
summary(lm(f(all$f1)~f(all$pre_economic_situation)))
|
240 |
+
summary(lm(f(all$f2)~f(all$pre_economic_situation)))
|
241 |
+
summary(lm(f(all$f3)~f(all$pre_economic_situation)))
|
242 |
+
|
243 |
+
# political interest
|
244 |
+
summary(lm(f(all$f1)~f(all$pre_political_interest)))
|
245 |
+
summary(lm(f(all$f2)~f(all$pre_political_interest)))
|
246 |
+
summary(lm(f(all$f3)~f(all$pre_political_interest)))
|
247 |
+
|
248 |
+
# religiosity
|
249 |
+
summary(lm(f(all$f1)~f(all$pre_religion_importance)))
|
250 |
+
summary(lm(f(all$f2)~f(all$pre_religion_importance)))
|
251 |
+
summary(lm(f(all$f3)~f(all$pre_religion_importance)))
|
252 |
+
|
253 |
+
# museum visits
|
254 |
+
summary(lm(f(all$f1)~f(all$totalmuseums)))
|
255 |
+
summary(lm(f(all$f2)~f(all$totalmuseums)))
|
256 |
+
summary(lm(f(all$f3)~f(all$totalmuseums)))
|
257 |
+
|
258 |
+
# trust in the government
|
259 |
+
summary(lm(f(all$f1)~f(all$pre_conf_gov)))
|
260 |
+
summary(lm(f(all$f2)~f(all$pre_conf_gov)))
|
261 |
+
summary(lm(f(all$f3)~f(all$pre_conf_gov)))
|
262 |
+
|
263 |
+
# satisfaction with the government
|
264 |
+
summary(lm(f(all$f1)~f(all$pre_inst_gov)))
|
265 |
+
summary(lm(f(all$f2)~f(all$pre_inst_gov)))
|
266 |
+
summary(lm(f(all$f3)~f(all$pre_inst_gov)))
|
267 |
+
|
268 |
+
# inequality is a problem
|
269 |
+
summary(lm(f(all$f1)~f(all$pre_current_ineq)))
|
270 |
+
summary(lm(f(all$f2)~f(all$pre_current_ineq)))
|
271 |
+
summary(lm(f(all$f3)~f(all$pre_current_ineq)))
|
272 |
+
|
273 |
+
# positive emotions
|
274 |
+
summary(lm(f(all$f1)~f(all$pre_positive)))
|
275 |
+
summary(lm(f(all$f2)~f(all$pre_positive)))
|
276 |
+
summary(lm(f(all$f3)~f(all$pre_positive)))
|
277 |
+
|
278 |
+
#negative emotions
|
279 |
+
summary(lm(f(all$f1)~f(all$pre_negative)))
|
280 |
+
summary(lm(f(all$f2)~f(all$pre_negative)))
|
281 |
+
summary(lm(f(all$f3)~f(all$pre_negative)))
|
282 |
+
|
283 |
+
##############################################################
|
284 |
+
###### Table A14: Differential attrition by round 1 responses
|
285 |
+
##############################################################
|
286 |
+
|
287 |
+
# pol institutions index
|
288 |
+
summary(lm(f(all$f1)~f(all$pol.inst.index)))
|
289 |
+
summary(lm(f(all$f2)~f(all$pol.inst.index)))
|
290 |
+
summary(lm(f(all$f3)~f(all$pol.inst.index)))
|
291 |
+
|
292 |
+
# military gov
|
293 |
+
summary(lm(f(all$f1)~f(all$military_gov)))
|
294 |
+
summary(lm(f(all$f2)~f(all$military_gov)))
|
295 |
+
summary(lm(f(all$f3)~f(all$military_gov)))
|
296 |
+
|
297 |
+
# tj index
|
298 |
+
summary(lm(f(all$f1)~f(all$tj.index)))
|
299 |
+
summary(lm(f(all$f2)~f(all$tj.index)))
|
300 |
+
summary(lm(f(all$f3)~f(all$tj.index)))
|
301 |
+
|
302 |
+
# compensation
|
303 |
+
summary(lm(f(all$f1)~f(all$current_recomp)))
|
304 |
+
summary(lm(f(all$f2)~f(all$current_recomp)))
|
305 |
+
summary(lm(f(all$f3)~f(all$current_recomp)))
|
306 |
+
|
307 |
+
# pardon
|
308 |
+
summary(lm(f(all$f1)~f(all$policies_pardon)))
|
309 |
+
summary(lm(f(all$f2)~f(all$policies_pardon)))
|
310 |
+
summary(lm(f(all$f3)~f(all$policies_pardon)))
|
311 |
+
|
312 |
+
# negative emotions
|
313 |
+
summary(lm(f(all$f1)~f(all$negative)))
|
314 |
+
summary(lm(f(all$f2)~f(all$negative)))
|
315 |
+
summary(lm(f(all$f3)~f(all$negative)))
|
316 |
+
|
317 |
+
# positive emotions
|
318 |
+
summary(lm(f(all$f1)~f(all$positive)))
|
319 |
+
summary(lm(f(all$f2)~f(all$positive)))
|
320 |
+
summary(lm(f(all$f3)~f(all$positive)))
|
321 |
+
|
322 |
+
|
323 |
+
##############################################################
|
324 |
+
###### Table A15: Political institutions adjusted for multiple comparisons
|
325 |
+
##############################################################
|
326 |
+
|
327 |
+
# conducted using results from "BPV_museums_maintext.R" and EGAP calculator - https://egap.shinyapps.io/multiple-comparisons-app/
|
328 |
+
# adjusted significance with Bejamini and Hochberg correction
|
329 |
+
|
330 |
+
##############################################################
|
331 |
+
###### Table A16: Transitional justice adjusted for multiple comparisons
|
332 |
+
##############################################################
|
333 |
+
|
334 |
+
# conducted using results from "BPV_museums_maintext.R" and EGAP calculator - https://egap.shinyapps.io/multiple-comparisons-app/
|
335 |
+
# adjusted significance with Bejamini and Hochberg correction
|
336 |
+
|
337 |
+
##############################################################
|
338 |
+
######Table A17. General museum impressions by recoded ideology.
|
339 |
+
##############################################################
|
340 |
+
|
341 |
+
# Split up by ideology
|
342 |
+
## RECODE FOR ROBUSTNESS HERE ##
|
343 |
+
all$pre_ideology_1 <- f(all$pre_ideology_1)
|
344 |
+
all$right <- ifelse(all$pre_ideology_1 > 5, 1,0)
|
345 |
+
left <- all[all$right == 0,]
|
346 |
+
right <- all[all$right == 1,]
|
347 |
+
|
348 |
+
# mean values on dvs
|
349 |
+
t.test(all$mm_obj~all$right)
|
350 |
+
t.test(all$mm_views_like~all$right)
|
351 |
+
t.test(all$mm_views_content~all$right)
|
352 |
+
t.test(all$mm_views_inhibit~all$right)
|
353 |
+
t.test(all$mm_views_important~all$right)
|
354 |
+
t.test(all$mm_new~all$right)
|
355 |
+
|
356 |
+
##############################################################
|
357 |
+
######Table A18. Political institutions by recoded ideology
|
358 |
+
##############################################################
|
359 |
+
|
360 |
+
dem.right <- est.ate(right$democracy, right$pre_democracy, right)
|
361 |
+
mil.right <- est.ate(right$military_gov, right$pre_military_gov, right)
|
362 |
+
gov_sat.right <- est.ate(right$inst_gov, right$pre_inst_gov, right)
|
363 |
+
mil_sat.right <- est.ate(right$inst_mil, right$pre_inst_mil, right)
|
364 |
+
pol_sat.right <- est.ate(right$inst_police, right$pre_inst_police, right)
|
365 |
+
gov_trust.right <- est.ate(right$conf_gov, right$pre_conf_gov, right)
|
366 |
+
mil_trust.right <- est.ate(right$conf_mil, right$pre_conf_mil, right)
|
367 |
+
pol_trust.right <- est.ate(right$conf_police, right$pre_conf_police, right)
|
368 |
+
church_trust.right <- est.ate(right$conf_church, right$pre_conf_church, right)
|
369 |
+
|
370 |
+
dem.left <- est.ate(left$democracy, left$pre_democracy, left)
|
371 |
+
mil.left <- est.ate(left$military_gov, left$pre_military_gov, left)
|
372 |
+
gov_sat.left <- est.ate(left$inst_gov, left$pre_inst_gov, left)
|
373 |
+
mil_sat.left <- est.ate(left$inst_mil, left$pre_inst_mil, left)
|
374 |
+
pol_sat.left <- est.ate(left$inst_police, left$pre_inst_police, left)
|
375 |
+
gov_trust.left <- est.ate(left$conf_gov, left$pre_conf_gov, left)
|
376 |
+
mil_trust.left <- est.ate(left$conf_mil, left$pre_conf_mil, left)
|
377 |
+
pol_trust.left <- est.ate(left$conf_police, left$pre_conf_police, left)
|
378 |
+
church_trust.left <- est.ate(left$conf_church, left$pre_conf_church, left)
|
379 |
+
## interactions (for appendix)
|
380 |
+
|
381 |
+
dem_int <- est.ate.int(all$democracy, all$pre_democracy, all)
|
382 |
+
mil.int <- est.ate.int(all$military_gov, all$pre_military_gov, all)
|
383 |
+
gov_sat.int <- est.ate.int(all$inst_gov, all$pre_inst_gov, all)
|
384 |
+
mil_sat.int <- est.ate.int(all$inst_mil, all$pre_inst_mil, all)
|
385 |
+
pol_sat.int <- est.ate.int(all$inst_police, all$pre_inst_police, all)
|
386 |
+
gov_trust.int <- est.ate.int(all$conf_gov, all$pre_conf_gov, all)
|
387 |
+
mil_trust.int <- est.ate.int(all$conf_mil, all$pre_conf_mil, all)
|
388 |
+
pol_trust.int <- est.ate.int(all$conf_police, all$pre_conf_police, all)
|
389 |
+
church_trust.int <- est.ate.int(all$conf_church, all$pre_conf_church, all)
|
390 |
+
|
391 |
+
##############################################################
|
392 |
+
######Table A19. Transitional justice by recoded ideology
|
393 |
+
##############################################################
|
394 |
+
|
395 |
+
advance.right <- est.ate.np(right$justice_advance, right)
|
396 |
+
justice_account.right <- est.ate.np(right$justice_account, right)
|
397 |
+
compensation.right <- est.ate(right$current_recomp, right$pre_current_recomp, right)
|
398 |
+
judicial.right <- est.ate.np(right$tj_judicial, right)
|
399 |
+
inst_apology.right <- est.ate.np(right$tj_apology, right)
|
400 |
+
apologize.right <- est.ate.np(right$policies_apologize, right)
|
401 |
+
compensate.right <- est.ate.np(right$policies_compensate, right)
|
402 |
+
pardoned.right <- est.ate.np(right$policies_pardon, right)
|
403 |
+
|
404 |
+
advance.left <- est.ate.np(left$justice_advance, left)
|
405 |
+
justice_account.left <- est.ate.np(left$justice_account, left)
|
406 |
+
compensation.left <- est.ate(left$current_recomp, left$pre_current_recomp, left)
|
407 |
+
judicial.left <- est.ate.np(left$tj_judicial, left)
|
408 |
+
inst_apology.left <- est.ate.np(left$tj_apology, left)
|
409 |
+
apologize.left <- est.ate.np(left$policies_apologize, left)
|
410 |
+
compensate.left <- est.ate.np(left$policies_compensate, left)
|
411 |
+
pardoned.left <- est.ate.np(left$policies_pardon, left)
|
412 |
+
|
413 |
+
##############################################################
|
414 |
+
###### Figure A3: Persistence of responses across treatment groups and ideologies
|
415 |
+
##############################################################
|
416 |
+
|
417 |
+
# unrecode ideology
|
418 |
+
# Split up by ideology
|
419 |
+
## RECODE FOR ROBUSTNESS HERE ##
|
420 |
+
all$pre_ideology_1 <- f(all$pre_ideology_1)
|
421 |
+
all$right <- ifelse(all$pre_ideology_1 > 4, 1,0)
|
422 |
+
left <- all[all$right == 0,]
|
423 |
+
right <- all[all$right == 1,]
|
424 |
+
|
425 |
+
est.ate.np.f<-function(dv){
|
426 |
+
summary(fit.1 <- lm(dv~all$treat + all$pre_ideology_1 + all$base_gender +all$age+all$v))
|
427 |
+
vcv <- vcovHC(fit.1)
|
428 |
+
n <- nobs(fit.1)
|
429 |
+
result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
|
430 |
+
result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
|
431 |
+
return(result)
|
432 |
+
}
|
433 |
+
|
434 |
+
## PARDON
|
435 |
+
pardoned <- est.ate.np(all$policies_pardon, all)
|
436 |
+
pardoned_f1<- est.ate.np.f(all$policies_pardon_f1)
|
437 |
+
pardoned_f2 <- est.ate.np.f(all$policies_pardon_f2)
|
438 |
+
pardoned_f3 <- est.ate.np.f(all$policies_pardon_f3)
|
439 |
+
prop.table(table(all$policies_pardon[all$treat==1&all$right==1]))
|
440 |
+
prop.table(table(all$policies_pardon_f1[all$treat==1&all$right==1]))
|
441 |
+
prop.table(table(all$policies_pardon_f2[all$treat==1&all$right==1]))
|
442 |
+
prop.table(table(all$policies_pardon_f3[all$treat==1&all$right==1]))
|
443 |
+
|
444 |
+
all$pardon <- ifelse(all$policies_pardon==1|all$policies_pardon==0,0,1)
|
445 |
+
all$pardon_f1 <- ifelse(all$policies_pardon_f1==1|all$policies_pardon_f1==0,0,1)
|
446 |
+
all$pardon_f2 <- ifelse(all$policies_pardon_f2==1|all$policies_pardon_f2==0,0,1)
|
447 |
+
all$pardon_f3 <- ifelse(all$policies_pardon_f3==1|all$policies_pardon_f3==0,0,1)
|
448 |
+
|
449 |
+
pardon.df <- data.frame(all$pardon, all$pardon_f1,all$pardon_f2,all$pardon_f3,all$treat,all$right)
|
450 |
+
pardon.df.treat.right <- pardon.df[pardon.df$all.treat==1&pardon.df$all.right==1,]
|
451 |
+
pardon.df.treat.right$num <- rowSums(pardon.df.treat.right==1)-2
|
452 |
+
prop.table(table(pardon.df.treat.right$num))
|
453 |
+
|
454 |
+
pardon.df.treat.left <- pardon.df[pardon.df$all.treat==1&pardon.df$all.right==0,]
|
455 |
+
pardon.df.treat.left$num <- rowSums(pardon.df.treat.left==1)-1
|
456 |
+
prop.table(table(pardon.df.treat.left$num))
|
457 |
+
|
458 |
+
pardon.df.control.right <- pardon.df[pardon.df$all.treat==0&pardon.df$all.right==1,]
|
459 |
+
pardon.df.control.right$num <- rowSums(pardon.df.control.right==1)-1
|
460 |
+
prop.table(table(pardon.df.control.right$num))
|
461 |
+
|
462 |
+
pardon.df.control.left <- pardon.df[pardon.df$all.treat==0&pardon.df$all.right==0,]
|
463 |
+
pardon.df.control.left$num <- rowSums(pardon.df.control.left==1)
|
464 |
+
pardon.df.control.left$num <- factor(pardon.df.control.left$num, levels = c(0:4))
|
465 |
+
prop.table(table(pardon.df.control.left$num))
|
466 |
+
df <- data.frame(waveschosen=c(0:4),percent=NA)
|
467 |
+
|
468 |
+
df$percent <- prop.table(table(pardon.df.control.left$num))
|
469 |
+
df$group <- "control left"
|
470 |
+
df2 <- data.frame(waveschosen=c(0:4),percent=NA)
|
471 |
+
pardon.df.control.right$num <- factor(pardon.df.control.right$num, levels = c(0:4))
|
472 |
+
|
473 |
+
df2$percent <- prop.table(table(pardon.df.control.right$num))
|
474 |
+
df2$group <- "control right"
|
475 |
+
|
476 |
+
df3 <- data.frame(waveschosen=c(0:4),percent=NA)
|
477 |
+
pardon.df.treat.right$num <- factor(pardon.df.treat.right$num, levels = c(0:4))
|
478 |
+
|
479 |
+
df3$percent <- prop.table(table(pardon.df.treat.right$num))
|
480 |
+
df3$group <- "treat right"
|
481 |
+
|
482 |
+
df4 <- data.frame(waveschosen=c(0:4),percent=NA)
|
483 |
+
pardon.df.treat.left$num <- factor(pardon.df.treat.left$num, levels = c(0:4))
|
484 |
+
|
485 |
+
df4$percent <- prop.table(table(pardon.df.treat.left$num))
|
486 |
+
df4$group <- "treat left"
|
487 |
+
|
488 |
+
pardon.df <- rbind (df,df2,df3,df4)
|
489 |
+
|
490 |
+
## trust church
|
491 |
+
all$pre_conf_church <- ifelse(all$pre_conf_church==1|all$pre_conf_church==0,0,1)
|
492 |
+
all$conf_church <- ifelse(all$conf_church==1|all$conf_church==0,0,1)
|
493 |
+
all$conf_church_f1 <- ifelse(all$conf_church_f1==1|all$conf_church_f1==0,0,1)
|
494 |
+
all$conf_church_f2 <- ifelse(all$conf_church_f2==1|all$conf_church_f2==0,0,1)
|
495 |
+
all$conf_church_f3 <- ifelse(all$conf_church_f3==1|all$conf_church_f3==0,0,1)
|
496 |
+
|
497 |
+
|
498 |
+
trust_church.df <- data.frame(all$conf_church, all$conf_church_f1,all$conf_church_f2,all$conf_church_f3,all$treat,all$right)
|
499 |
+
trust_church.treat.right <- trust_church.df[trust_church.df$all.treat==1&trust_church.df$all.right==1,]
|
500 |
+
trust_church.treat.right$num <- rowSums(trust_church.treat.right==1)-2
|
501 |
+
prop.table(table(trust_church.treat.right$num))
|
502 |
+
|
503 |
+
trust_church.treat.left <- trust_church.df[trust_church.df$all.treat==1&trust_church.df$all.right==0,]
|
504 |
+
trust_church.treat.left$num <- rowSums(trust_church.treat.left==1)-1
|
505 |
+
prop.table(table(trust_church.treat.left$num))
|
506 |
+
|
507 |
+
trust_church.control.right <- trust_church.df[trust_church.df$all.treat==0&trust_church.df$all.right==1,]
|
508 |
+
trust_church.control.right$num <- rowSums(trust_church.control.right==1)-1
|
509 |
+
prop.table(table(trust_church.control.right$num))
|
510 |
+
|
511 |
+
trust_church.control.left <- trust_church.df[trust_church.df$all.treat==0&trust_church.df$all.right==0,]
|
512 |
+
trust_church.control.left$num <- rowSums(trust_church.control.left==1)
|
513 |
+
trust_church.control.left$num <- factor(trust_church.control.left$num, levels = c(0:4))
|
514 |
+
prop.table(table(trust_church.control.left$num))
|
515 |
+
df <- data.frame(waveschosen=c(0:4),percent=NA)
|
516 |
+
|
517 |
+
df$percent <- prop.table(table(trust_church.control.left$num))
|
518 |
+
df$group <- "control left"
|
519 |
+
df2 <- data.frame(waveschosen=c(0:4),percent=NA)
|
520 |
+
trust_church.control.right$num <- factor(trust_church.control.right$num, levels = c(0:4))
|
521 |
+
|
522 |
+
df2$percent <- prop.table(table(trust_church.control.right$num))
|
523 |
+
df2$group <- "control right"
|
524 |
+
|
525 |
+
df3 <- data.frame(waveschosen=c(0:4),percent=NA)
|
526 |
+
trust_church.treat.right$num <- factor(trust_church.treat.right$num, levels = c(0:4))
|
527 |
+
|
528 |
+
df3$percent <- prop.table(table(trust_church.treat.right$num))
|
529 |
+
df3$group <- "treat right"
|
530 |
+
|
531 |
+
df4 <- data.frame(waveschosen=c(0:4),percent=NA)
|
532 |
+
trust_church.treat.left$num <- factor(trust_church.treat.left$num, levels = c(0:4))
|
533 |
+
|
534 |
+
df4$percent <- prop.table(table(trust_church.treat.left$num))
|
535 |
+
df4$group <- "treat left"
|
536 |
+
|
537 |
+
churchtrust.df <- rbind (df,df2,df3,df4)
|
538 |
+
|
539 |
+
## satisfaction with government
|
540 |
+
all$pre_inst_gov <- ifelse(all$pre_inst_gov==1|all$pre_inst_gov==0,0,1)
|
541 |
+
all$inst_gov <- ifelse(all$inst_gov==1|all$inst_gov==0,0,1)
|
542 |
+
all$inst_gov_f1 <- ifelse(all$inst_gov_f1==1|all$inst_gov_f1==0,0,1)
|
543 |
+
all$inst_gov_f2 <- ifelse(all$inst_gov_f2==1|all$inst_gov_f2==0,0,1)
|
544 |
+
all$inst_gov_f3 <- ifelse(all$inst_gov_f3==1|all$inst_gov_f3==0,0,1)
|
545 |
+
|
546 |
+
inst_gov.df <- data.frame(all$inst_gov, all$inst_gov_f1,all$inst_gov_f2,all$inst_gov_f3,all$treat,all$right)
|
547 |
+
inst_gov.treat.right <- inst_gov.df[inst_gov.df$all.treat==1&inst_gov.df$all.right==1,]
|
548 |
+
inst_gov.treat.right$num <- rowSums(inst_gov.treat.right==1)-2
|
549 |
+
prop.table(table(inst_gov.treat.right$num))
|
550 |
+
|
551 |
+
inst_gov.treat.left <- inst_gov.df[inst_gov.df$all.treat==1&inst_gov.df$all.right==0,]
|
552 |
+
inst_gov.treat.left$num <- rowSums(inst_gov.treat.left==1)-1
|
553 |
+
prop.table(table(inst_gov.treat.left$num))
|
554 |
+
|
555 |
+
inst_gov.control.right <- inst_gov.df[inst_gov.df$all.treat==0&inst_gov.df$all.right==1,]
|
556 |
+
inst_gov.control.right$num <- rowSums(inst_gov.control.right==1)-1
|
557 |
+
prop.table(table(inst_gov.control.right$num))
|
558 |
+
|
559 |
+
inst_gov.control.left <- inst_gov.df[inst_gov.df$all.treat==0&inst_gov.df$all.right==0,]
|
560 |
+
inst_gov.control.left$num <- rowSums(inst_gov.control.left==1)
|
561 |
+
inst_gov.control.left$num <- factor(inst_gov.control.left$num, levels = c(0:4))
|
562 |
+
prop.table(table(inst_gov.control.left$num))
|
563 |
+
df <- data.frame(waveschosen=c(0:4),percent=NA)
|
564 |
+
|
565 |
+
df$percent <- prop.table(table(inst_gov.control.left$num))
|
566 |
+
df$group <- "control left"
|
567 |
+
df2 <- data.frame(waveschosen=c(0:4),percent=NA)
|
568 |
+
inst_gov.control.right$num <- factor(inst_gov.control.right$num, levels = c(0:4))
|
569 |
+
|
570 |
+
df2$percent <- prop.table(table(inst_gov.control.right$num))
|
571 |
+
df2$group <- "control right"
|
572 |
+
|
573 |
+
df3 <- data.frame(waveschosen=c(0:4),percent=NA)
|
574 |
+
inst_gov.treat.right$num <- factor(inst_gov.treat.right$num, levels = c(0:4))
|
575 |
+
|
576 |
+
df3$percent <- prop.table(table(inst_gov.treat.right$num))
|
577 |
+
df3$group <- "treat right"
|
578 |
+
|
579 |
+
df4 <- data.frame(waveschosen=c(0:4),percent=NA)
|
580 |
+
inst_gov.treat.left$num <- factor(inst_gov.treat.left$num, levels = c(0:4))
|
581 |
+
|
582 |
+
df4$percent <- prop.table(table(inst_gov.treat.left$num))
|
583 |
+
df4$group <- "treat left"
|
584 |
+
|
585 |
+
govsat.df <- rbind (df,df2,df3,df4)
|
586 |
+
|
587 |
+
|
588 |
+
|
589 |
+
## satisfaction with democracy
|
590 |
+
|
591 |
+
all$pre_democracy <- ifelse(all$pre_democracy==1|all$pre_democracy==0,0,1)
|
592 |
+
all$democracy <- ifelse(all$democracy==1|all$democracy==0,0,1)
|
593 |
+
all$democracy_f1 <- ifelse(all$democracy_f1==1|all$democracy_f1==0,0,1)
|
594 |
+
all$democracy_f2 <- ifelse(all$democracy_f2==1|all$democracy_f2==0,0,1)
|
595 |
+
all$democracy_f3 <- ifelse(all$democracy_f3==1|all$democracy_f3==0,0,1)
|
596 |
+
|
597 |
+
|
598 |
+
democracy.df <- data.frame(all$democracy, all$democracy_f1,all$democracy_f2,all$democracy_f3,all$treat,all$right)
|
599 |
+
democracy.treat.right <- democracy.df[democracy.df$all.treat==1&democracy.df$all.right==1,]
|
600 |
+
democracy.treat.right$num <- rowSums(democracy.treat.right==1)-2
|
601 |
+
prop.table(table(democracy.treat.right$num))
|
602 |
+
|
603 |
+
democracy.treat.left <- democracy.df[democracy.df$all.treat==1&democracy.df$all.right==0,]
|
604 |
+
democracy.treat.left$num <- rowSums(democracy.treat.left==1)-1
|
605 |
+
prop.table(table(democracy.treat.left$num))
|
606 |
+
|
607 |
+
democracy.control.right <- democracy.df[democracy.df$all.treat==0&democracy.df$all.right==1,]
|
608 |
+
democracy.control.right$num <- rowSums(democracy.control.right==1)-1
|
609 |
+
prop.table(table(democracy.control.right$num))
|
610 |
+
|
611 |
+
democracy.control.left <- democracy.df[democracy.df$all.treat==0&democracy.df$all.right==0,]
|
612 |
+
democracy.control.left$num <- rowSums(democracy.control.left==1)
|
613 |
+
democracy.control.left$num <- factor(democracy.control.left$num, levels = c(0:4))
|
614 |
+
prop.table(table(democracy.control.left$num))
|
615 |
+
df <- data.frame(waveschosen=c(0:4),percent=NA)
|
616 |
+
|
617 |
+
df$percent <- prop.table(table(democracy.control.left$num))
|
618 |
+
df$group <- "control left"
|
619 |
+
df2 <- data.frame(waveschosen=c(0:4),percent=NA)
|
620 |
+
democracy.control.right$num <- factor(democracy.control.right$num, levels = c(0:4))
|
621 |
+
|
622 |
+
df2$percent <- prop.table(table(democracy.control.right$num))
|
623 |
+
df2$group <- "control right"
|
624 |
+
|
625 |
+
df3 <- data.frame(waveschosen=c(0:4),percent=NA)
|
626 |
+
democracy.treat.right$num <- factor(democracy.treat.right$num, levels = c(0:4))
|
627 |
+
|
628 |
+
df3$percent <- prop.table(table(democracy.treat.right$num))
|
629 |
+
df3$group <- "treat right"
|
630 |
+
|
631 |
+
df4 <- data.frame(waveschosen=c(0:4),percent=NA)
|
632 |
+
democracy.treat.left$num <- factor(democracy.treat.left$num, levels = c(0:4))
|
633 |
+
|
634 |
+
df4$percent <- prop.table(table(democracy.treat.left$num))
|
635 |
+
df4$group <- "treat left"
|
636 |
+
|
637 |
+
democracy.df <- rbind (df,df2,df3,df4)
|
638 |
+
|
639 |
+
## military government
|
640 |
+
|
641 |
+
military_gov.df <- data.frame(all$military_gov, all$military_gov_f1,all$military_gov_f2,all$military_gov_f3,all$treat,all$right)
|
642 |
+
military_gov.treat.right <- military_gov.df[military_gov.df$all.treat==1&military_gov.df$all.right==1,]
|
643 |
+
military_gov.treat.right$num <- rowSums(military_gov.treat.right==1)-2
|
644 |
+
prop.table(table(military_gov.treat.right$num))
|
645 |
+
|
646 |
+
military_gov.treat.left <- military_gov.df[military_gov.df$all.treat==1&military_gov.df$all.right==0,]
|
647 |
+
military_gov.treat.left$num <- rowSums(military_gov.treat.left==1)-1
|
648 |
+
prop.table(table(military_gov.treat.left$num))
|
649 |
+
|
650 |
+
military_gov.control.right <- military_gov.df[military_gov.df$all.treat==0&military_gov.df$all.right==1,]
|
651 |
+
military_gov.control.right$num <- rowSums(military_gov.control.right==1)-1
|
652 |
+
prop.table(table(military_gov.control.right$num))
|
653 |
+
|
654 |
+
military_gov.control.left <- military_gov.df[military_gov.df$all.treat==0&military_gov.df$all.right==0,]
|
655 |
+
military_gov.control.left$num <- rowSums(military_gov.control.left==1)
|
656 |
+
military_gov.control.left$num <- factor(military_gov.control.left$num, levels = c(0:4))
|
657 |
+
prop.table(table(military_gov.control.left$num))
|
658 |
+
df <- data.frame(waveschosen=c(0:4),percent=NA)
|
659 |
+
|
660 |
+
df$percent <- prop.table(table(military_gov.control.left$num))
|
661 |
+
df$group <- "control left"
|
662 |
+
df2 <- data.frame(waveschosen=c(0:4),percent=NA)
|
663 |
+
military_gov.control.right$num <- factor(military_gov.control.right$num, levels = c(0:4))
|
664 |
+
|
665 |
+
df2$percent <- prop.table(table(military_gov.control.right$num))
|
666 |
+
df2$group <- "control right"
|
667 |
+
|
668 |
+
df3 <- data.frame(waveschosen=c(0:4),percent=NA)
|
669 |
+
military_gov.treat.right$num <- factor(military_gov.treat.right$num, levels = c(0:4))
|
670 |
+
|
671 |
+
df3$percent <- prop.table(table(military_gov.treat.right$num))
|
672 |
+
df3$group <- "treat right"
|
673 |
+
|
674 |
+
df4 <- data.frame(waveschosen=c(0:4),percent=NA)
|
675 |
+
military_gov.treat.left$num <- factor(military_gov.treat.left$num, levels = c(0:4))
|
676 |
+
|
677 |
+
df4$percent <- prop.table(table(military_gov.treat.left$num))
|
678 |
+
df4$group <- "treat left"
|
679 |
+
|
680 |
+
milgov.df <- rbind (df,df2,df3,df4)
|
681 |
+
|
682 |
+
## satisfaction with police
|
683 |
+
|
684 |
+
all$pre_inst_police <- ifelse(all$pre_inst_police==1|all$pre_inst_police==0,0,1)
|
685 |
+
all$inst_police <- ifelse(all$inst_police==1|all$inst_police==0,0,1)
|
686 |
+
all$inst_police_f1 <- ifelse(all$inst_police_f1==1|all$inst_police_f1==0,0,1)
|
687 |
+
all$inst_police_f2 <- ifelse(all$inst_police_f2==1|all$inst_police_f2==0,0,1)
|
688 |
+
all$inst_police_f3 <- ifelse(all$inst_police_f3==1|all$inst_police_f3==0,0,1)
|
689 |
+
|
690 |
+
|
691 |
+
inst_police.df <- data.frame(all$inst_police, all$inst_police_f1,all$inst_police_f2,all$inst_police_f3,all$treat,all$right)
|
692 |
+
inst_police.treat.right <- inst_police.df[inst_police.df$all.treat==1&inst_police.df$all.right==1,]
|
693 |
+
inst_police.treat.right$num <- rowSums(inst_police.treat.right==1)-2
|
694 |
+
prop.table(table(inst_police.treat.right$num))
|
695 |
+
|
696 |
+
inst_police.treat.left <- inst_police.df[inst_police.df$all.treat==1&inst_police.df$all.right==0,]
|
697 |
+
inst_police.treat.left$num <- rowSums(inst_police.treat.left==1)-1
|
698 |
+
prop.table(table(inst_police.treat.left$num))
|
699 |
+
|
700 |
+
inst_police.control.right <- inst_police.df[inst_police.df$all.treat==0&inst_police.df$all.right==1,]
|
701 |
+
inst_police.control.right$num <- rowSums(inst_police.control.right==1)-1
|
702 |
+
prop.table(table(inst_police.control.right$num))
|
703 |
+
|
704 |
+
inst_police.control.left <- inst_police.df[inst_police.df$all.treat==0&inst_police.df$all.right==0,]
|
705 |
+
inst_police.control.left$num <- rowSums(inst_police.control.left==1)
|
706 |
+
inst_police.control.left$num <- factor(inst_police.control.left$num, levels = c(0:4))
|
707 |
+
prop.table(table(inst_police.control.left$num))
|
708 |
+
df <- data.frame(waveschosen=c(0:4),percent=NA)
|
709 |
+
|
710 |
+
df$percent <- prop.table(table(inst_police.control.left$num))
|
711 |
+
df$group <- "control left"
|
712 |
+
df2 <- data.frame(waveschosen=c(0:4),percent=NA)
|
713 |
+
inst_police.control.right$num <- factor(inst_police.control.right$num, levels = c(0:4))
|
714 |
+
|
715 |
+
df2$percent <- prop.table(table(inst_police.control.right$num))
|
716 |
+
df2$group <- "control right"
|
717 |
+
|
718 |
+
df3 <- data.frame(waveschosen=c(0:4),percent=NA)
|
719 |
+
inst_police.treat.right$num <- factor(inst_police.treat.right$num, levels = c(0:4))
|
720 |
+
|
721 |
+
df3$percent <- prop.table(table(inst_police.treat.right$num))
|
722 |
+
df3$group <- "treat right"
|
723 |
+
|
724 |
+
df4 <- data.frame(waveschosen=c(0:4),percent=NA)
|
725 |
+
inst_police.treat.left$num <- factor(inst_police.treat.left$num, levels = c(0:4))
|
726 |
+
|
727 |
+
df4$percent <- prop.table(table(inst_police.treat.left$num))
|
728 |
+
df4$group <- "treat left"
|
729 |
+
police.df <- rbind (df,df2,df3,df4)
|
730 |
+
|
731 |
+
p1 <- ggplot(data=pardon.df, aes(x=waveschosen, y=percent)) +
|
732 |
+
geom_bar(stat="identity", width=0.5,colour="black") +
|
733 |
+
facet_grid(. ~ group) +
|
734 |
+
geom_text(data=pardon.df, aes(x = waveschosen, y = (percent + .05), label = paste0(round(percent*100,1),"%")), colour="black", size = 2.5) +
|
735 |
+
theme_bw() + theme(axis.text.y=element_blank(),
|
736 |
+
axis.ticks.y=element_blank(),strip.background =element_rect(fill="white")) +
|
737 |
+
ggtitle("Support pardoning perpetrators") +
|
738 |
+
xlab("Waves chosen") + ylab(NULL)
|
739 |
+
p2<-ggplot(data=churchtrust.df, aes(x=waveschosen, y=percent)) +
|
740 |
+
geom_bar(stat="identity", width=0.5,colour="black") +
|
741 |
+
facet_grid(. ~ group) +
|
742 |
+
geom_text(data=churchtrust.df, aes(x = waveschosen, y = (percent + .05), label = paste0(round(percent*100,1),"%")), colour="black", size = 2.5) +
|
743 |
+
theme_bw() + theme(axis.text.y=element_blank(),
|
744 |
+
axis.ticks.y=element_blank(),strip.background =element_rect(fill="white")) +
|
745 |
+
ggtitle("Trust in church") +
|
746 |
+
xlab("Waves chosen") + ylab(NULL)
|
747 |
+
p3<-ggplot(data=govsat.df, aes(x=waveschosen, y=percent)) +
|
748 |
+
geom_bar(stat="identity", width=0.5,colour="black") +
|
749 |
+
facet_grid(. ~ group) +
|
750 |
+
geom_text(data=govsat.df, aes(x = waveschosen, y = (percent + .05), label = paste0(round(percent*100,1),"%")), colour="black", size = 2.5) +
|
751 |
+
theme_bw() + theme(axis.text.y=element_blank(),
|
752 |
+
axis.ticks.y=element_blank(),strip.background =element_rect(fill="white")) +
|
753 |
+
ggtitle("Satisfaction with government") +
|
754 |
+
xlab("Waves chosen") + ylab(NULL)
|
755 |
+
p4<-ggplot(data=democracy.df, aes(x=waveschosen, y=percent)) +
|
756 |
+
geom_bar(stat="identity", width=0.5,colour="black") +
|
757 |
+
facet_grid(. ~ group) +
|
758 |
+
geom_text(data=democracy.df, aes(x = waveschosen, y = (percent + .05), label = paste0(round(percent*100,1),"%")), colour="black", size = 2.5) +
|
759 |
+
theme_bw() + theme(axis.text.y=element_blank(),
|
760 |
+
axis.ticks.y=element_blank(),strip.background =element_rect(fill="white")) +
|
761 |
+
ggtitle("Satisfaction with Democracy") +
|
762 |
+
xlab("Waves chosen") + ylab(NULL)
|
763 |
+
p5<-ggplot(data=milgov.df, aes(x=waveschosen, y=percent)) +
|
764 |
+
geom_bar(stat="identity", width=0.5,colour="black") +
|
765 |
+
facet_grid(. ~ group) +
|
766 |
+
geom_text(data=milgov.df, aes(x = waveschosen, y = (percent + .05), label = paste0(round(percent*100,1),"%")), colour="black", size = 2.5) +
|
767 |
+
theme_bw() + theme(axis.text.y=element_blank(),
|
768 |
+
axis.ticks.y=element_blank(),strip.background =element_rect(fill="white")) +
|
769 |
+
ggtitle("Support for military government") +
|
770 |
+
xlab("Waves chosen") + ylab(NULL)
|
771 |
+
p6<-ggplot(data=police.df, aes(x=waveschosen, y=percent)) +
|
772 |
+
geom_bar(stat="identity", width=0.5,colour="black") +
|
773 |
+
facet_grid(. ~ group) +
|
774 |
+
geom_text(data=police.df, aes(x = waveschosen, y = (percent + .05), label = paste0(round(percent*100,1),"%")), colour="black", size = 2.5) +
|
775 |
+
theme_bw() + theme(axis.text.y=element_blank(),
|
776 |
+
axis.ticks.y=element_blank(),strip.background =element_rect(fill="white")) +
|
777 |
+
ggtitle("Satisfaction with Police") +
|
778 |
+
xlab("Waves chosen") + ylab(NULL)
|
779 |
+
|
780 |
+
grid.arrange(p1, p2,p3,p4,p5,p6, nrow = 3)
|
781 |
+
#g <- arrangeGrob(p1, p2, p3,p4,p5,p6, nrow=3) #generates g
|
782 |
+
|
783 |
+
|
784 |
+
##############################################################
|
785 |
+
######Table A20. Political insitutions - dropping missing observations
|
786 |
+
##############################################################
|
787 |
+
|
788 |
+
load(file = "all.Rdata")
|
789 |
+
est.ate<-function(dv, predv, df){
|
790 |
+
summary(fit.1 <- lm(dv~df$treat + df$pre_ideology_1 +
|
791 |
+
+ predv*df$date_diff + df$base_gender +df$age + df$v))
|
792 |
+
vcv <- vcovHC(fit.1)
|
793 |
+
n <- nobs(fit.1)
|
794 |
+
result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
|
795 |
+
result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
|
796 |
+
return(result)
|
797 |
+
}
|
798 |
+
|
799 |
+
# This estimates ATE when we don't have a pre-treatment measurement
|
800 |
+
est.ate.np<-function(dv, df){
|
801 |
+
summary(fit.1 <- lm(dv~df$treat + df$pre_ideology_1 + df$base_gender +df$age+df$v))
|
802 |
+
vcv <- vcovHC(fit.1)
|
803 |
+
n <- nobs(fit.1)
|
804 |
+
result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
|
805 |
+
result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
|
806 |
+
return(result)
|
807 |
+
}
|
808 |
+
|
809 |
+
# pol inst DVs
|
810 |
+
dem <- est.ate(all$democracy, all$pre_democracy, all)
|
811 |
+
mil <- est.ate(all$military_gov, all$pre_military_gov, all)
|
812 |
+
gov_sat <- est.ate(all$inst_gov, all$pre_inst_gov, all)
|
813 |
+
mil_sat <- est.ate(all$inst_mil, all$pre_inst_mil, all)
|
814 |
+
pol_sat <- est.ate(all$inst_police, all$pre_inst_police, all)
|
815 |
+
gov_trust <- est.ate(all$conf_gov, all$pre_conf_gov, all)
|
816 |
+
mil_trust <- est.ate(all$conf_mil, all$pre_conf_mil, all)
|
817 |
+
pol_trust <- est.ate(all$conf_police, all$pre_conf_police, all)
|
818 |
+
church_trust <- est.ate(all$conf_church, all$pre_conf_church, all)
|
819 |
+
|
820 |
+
##############################################################
|
821 |
+
######Table A21. Transitional justice - dropping missing observations
|
822 |
+
##############################################################
|
823 |
+
|
824 |
+
# TJ DVs
|
825 |
+
advance <- est.ate.np(all$justice_advance, all)
|
826 |
+
justice_account <- est.ate.np(all$justice_account, all)
|
827 |
+
compensation <- est.ate(all$current_recomp, all$pre_current_recomp, all)
|
828 |
+
judicial <- est.ate.np(all$tj_judicial, all)
|
829 |
+
inst_apology <- est.ate.np(all$tj_apology, all)
|
830 |
+
apologize <- est.ate.np(all$policies_apologize, all)
|
831 |
+
compensate <- est.ate.np(all$policies_compensate, all)
|
832 |
+
pardoned <- est.ate.np(all$policies_pardon, all)
|
833 |
+
|
834 |
+
##############################################################
|
835 |
+
######Table A22. Balance on measurements collected at baseline among
|
836 |
+
# nonparticipants and participants
|
837 |
+
##############################################################
|
838 |
+
|
839 |
+
# Note that not all subjects who eventually participated in our experiment completed the baseline - nonetheless, many did
|
840 |
+
load(file = "baseline.Rdata")
|
841 |
+
nonparticipants <- baseline[!(baseline$ID %in% all$ID),]
|
842 |
+
participants <- baseline[(baseline$ID %in% all$ID),]
|
843 |
+
|
844 |
+
t.test(participants$female, nonparticipants$female)
|
845 |
+
t.test(participants$ideology, nonparticipants$ideology)
|
846 |
+
t.test(participants$pinochet, nonparticipants$pinochet)
|
847 |
+
t.test(participants$pinochet_london, nonparticipants$pinochet_london)
|
848 |
+
t.test(participants$prosecution, nonparticipants$prosecution)
|
19/replication_package/BPV_museums_maintext.R
ADDED
@@ -0,0 +1,829 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##############################################################
|
2 |
+
##############################################################
|
3 |
+
####### Replication code for "Do museums promote reconciliation? Evidence from a field experiment," Journal of Politics
|
4 |
+
####### This file includes code for all analyses and figures in the main text
|
5 |
+
####### Plots based on those used by Broockman and Kalla (2016)
|
6 |
+
##############################################################
|
7 |
+
##############################################################
|
8 |
+
|
9 |
+
require("sandwich")
|
10 |
+
require("plyr")
|
11 |
+
require("lmtest")
|
12 |
+
require(dplyr)
|
13 |
+
require(gridExtra)
|
14 |
+
require("RColorBrewer")
|
15 |
+
require(ggplot2)
|
16 |
+
|
17 |
+
##############################################################
|
18 |
+
###### Read in data
|
19 |
+
##############################################################
|
20 |
+
load(file = "all.Rdata")
|
21 |
+
##############################################################
|
22 |
+
###### Establish main functions
|
23 |
+
##############################################################
|
24 |
+
|
25 |
+
### ATE FUNCTIONS ##
|
26 |
+
# This estimates ATE when we have a pre-treatment measurement
|
27 |
+
est.ate<-function(dv, predv, df){
|
28 |
+
predv <- f(predv)
|
29 |
+
dv <- f(dv)
|
30 |
+
summary(fit.1 <- lm(dv~df$treat + df$pre_ideology_1 +
|
31 |
+
+ predv*df$date_diff + df$base_gender +df$age + df$v))
|
32 |
+
vcv <- vcovHC(fit.1)
|
33 |
+
n <- nobs(fit.1)
|
34 |
+
result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
|
35 |
+
result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
|
36 |
+
return(result)
|
37 |
+
}
|
38 |
+
# This estimates ATE when we don't have a pre-treatment measurement
|
39 |
+
est.ate.np<-function(dv, df){
|
40 |
+
dv <- f(dv)
|
41 |
+
summary(fit.1 <- lm(dv~df$treat + df$pre_ideology_1 + df$base_gender +df$age+df$v))
|
42 |
+
vcv <- vcovHC(fit.1)
|
43 |
+
n <- nobs(fit.1)
|
44 |
+
result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
|
45 |
+
result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
|
46 |
+
return(result)
|
47 |
+
}
|
48 |
+
|
49 |
+
# this function recodes NAs to the mean, per our PAP
|
50 |
+
f <- function(x){
|
51 |
+
m <- mean(x, na.rm = TRUE)
|
52 |
+
x[is.na(x)] <- m
|
53 |
+
x
|
54 |
+
}
|
55 |
+
## recode covariates to means
|
56 |
+
all$age <- f(all$age)
|
57 |
+
all$pre_ideology_1 <- f(all$pre_ideology_1)
|
58 |
+
all$base_gender <- f(all$base_gender)
|
59 |
+
all$date_diff <- f(all$date_diff)
|
60 |
+
# split dataset into left, right, and related to victim for heterogeneous analyses
|
61 |
+
left <- all[all$right == 0,]
|
62 |
+
right <- all[all$right == 1,]
|
63 |
+
itt.d <- all$itt.d
|
64 |
+
##############################################################
|
65 |
+
###### Figure 1: Political institutions treatment effects
|
66 |
+
##############################################################
|
67 |
+
|
68 |
+
# Overall
|
69 |
+
dem <- est.ate(all$democracy, all$pre_democracy, all)
|
70 |
+
mil <- est.ate(all$military_gov, all$pre_military_gov, all)
|
71 |
+
gov_sat <- est.ate(all$inst_gov, all$pre_inst_gov, all)
|
72 |
+
mil_sat <- est.ate(all$inst_mil, all$pre_inst_mil, all)
|
73 |
+
pol_sat <- est.ate(all$inst_police, all$pre_inst_police, all)
|
74 |
+
gov_trust <- est.ate(all$conf_gov, all$pre_conf_gov, all)
|
75 |
+
mil_trust <- est.ate(all$conf_mil, all$pre_conf_mil, all)
|
76 |
+
pol_trust <- est.ate(all$conf_police, all$pre_conf_police, all)
|
77 |
+
church_trust <- est.ate(all$conf_church, all$pre_conf_church, all)
|
78 |
+
|
79 |
+
# right and left
|
80 |
+
dem.right <- est.ate(right$democracy, right$pre_democracy, right)
|
81 |
+
mil.right <- est.ate(right$military_gov, right$pre_military_gov, right)
|
82 |
+
gov_sat.right <- est.ate(right$inst_gov, right$pre_inst_gov, right)
|
83 |
+
mil_sat.right <- est.ate(right$inst_mil, right$pre_inst_mil, right)
|
84 |
+
pol_sat.right <- est.ate(right$inst_police, right$pre_inst_police, right)
|
85 |
+
gov_trust.right <- est.ate(right$conf_gov, right$pre_conf_gov, right)
|
86 |
+
mil_trust.right <- est.ate(right$conf_mil, right$pre_conf_mil, right)
|
87 |
+
pol_trust.right <- est.ate(right$conf_police, right$pre_conf_police, right)
|
88 |
+
church_trust.right <- est.ate(right$conf_church, right$pre_conf_church, right)
|
89 |
+
|
90 |
+
dem.left <- est.ate(left$democracy, left$pre_democracy, left)
|
91 |
+
mil.left <- est.ate(left$military_gov, left$pre_military_gov, left)
|
92 |
+
gov_sat.left <- est.ate(left$inst_gov, left$pre_inst_gov, left)
|
93 |
+
mil_sat.left <- est.ate(left$inst_mil, left$pre_inst_mil, left)
|
94 |
+
pol_sat.left <- est.ate(left$inst_police, left$pre_inst_police, left)
|
95 |
+
gov_trust.left <- est.ate(left$conf_gov, left$pre_conf_gov, left)
|
96 |
+
mil_trust.left <- est.ate(left$conf_mil, left$pre_conf_mil, left)
|
97 |
+
pol_trust.left <- est.ate(left$conf_police, left$pre_conf_police, left)
|
98 |
+
church_trust.left <- est.ate(left$conf_church, left$pre_conf_church, left)
|
99 |
+
|
100 |
+
# make figure
|
101 |
+
results.df <- as.data.frame(rbind(dem[1], dem.left[1], dem.right[1],
|
102 |
+
mil[1], mil.left[1], mil.right[1],
|
103 |
+
gov_sat[1], gov_sat.left[1], gov_sat.right[1],
|
104 |
+
mil_sat[1], mil_sat.left[1], mil_sat.right[1],
|
105 |
+
pol_sat[1], pol_sat.left[1], pol_sat.right[1],
|
106 |
+
gov_trust[1], gov_trust.left[1],gov_trust.right[1],
|
107 |
+
mil_trust[1], mil_trust.left[1], mil_trust.right[1],
|
108 |
+
pol_trust[1], pol_trust.left[1], pol_trust.right[1],
|
109 |
+
church_trust[1], church_trust.left[1], church_trust.right[1]
|
110 |
+
))
|
111 |
+
results.df$se <- c(dem[2], dem.left[2], dem.right[2],
|
112 |
+
mil[2], mil.left[2], mil.right[2],
|
113 |
+
gov_sat[2], gov_sat.left[2], gov_sat.right[2],
|
114 |
+
mil_sat[2], mil_sat.left[2], mil_sat.right[2],
|
115 |
+
pol_sat[2], pol_sat.left[2], pol_sat.right[2],
|
116 |
+
gov_trust[2], gov_trust.left[2],gov_trust.right[2],
|
117 |
+
mil_trust[2], mil_trust.left[2], mil_trust.right[2],
|
118 |
+
pol_trust[2], pol_trust.left[2], pol_trust.right[2],
|
119 |
+
church_trust[2], church_trust.left[2], church_trust.right[2])
|
120 |
+
results.df$se <- unlist(results.df$se)
|
121 |
+
results.df$point.estimate <- unlist(results.df$point.estimate)
|
122 |
+
results.df$Variable <- NA
|
123 |
+
results.df$xpos <- NA
|
124 |
+
for (i in 1:3){results.df$Variable[i] <- "democracy"}
|
125 |
+
for (i in 4:6){results.df$Variable[i] <- "military govt"}
|
126 |
+
for (i in 7:9){results.df$Variable[i] <- "govt satisfaction"}
|
127 |
+
for (i in 10:12){results.df$Variable[i] <- "military satisfaction"}
|
128 |
+
for (i in 13:25){results.df$Variable[i] <- "police satisfaction"}
|
129 |
+
for (i in 16:18){results.df$Variable[i] <- "govt trust"}
|
130 |
+
for (i in 19:21){results.df$Variable[i] <- "military trust"}
|
131 |
+
for (i in 22:24){results.df$Variable[i] <- "police trust"}
|
132 |
+
for (i in 25:27){results.df$Variable[i] <- "church trust"}
|
133 |
+
|
134 |
+
results.df$varnum<- with(results.df, paste0(as.numeric(factor(Variable))))
|
135 |
+
results.df$varnum <- as.numeric(results.df$varnum)
|
136 |
+
results.df$sample <- rep(1:3, 9)
|
137 |
+
results.df$Population <- mapvalues(results.df$sample, c(1,2,3), c("All", "Left", "Right"), warn_missing = TRUE)
|
138 |
+
results.df$xpos<- as.numeric(paste(results.df$varnum, results.df$sample, sep = "."))
|
139 |
+
results.df$ci.hi <- unlist(results.df$point.estimate) + unlist(results.df$se) * 1.96
|
140 |
+
results.df$ci.low <- unlist(results.df$point.estimate) - unlist(results.df$se) * 1.96
|
141 |
+
results.df$se.hi <- unlist(results.df$point.estimate) + unlist(results.df$se)
|
142 |
+
results.df$se.low <- unlist(results.df$point.estimate) - unlist(results.df$se)
|
143 |
+
labels <- unique(results.df$Variable)
|
144 |
+
g <- ggplot(results.df,
|
145 |
+
aes(x=xpos, y=point.estimate,
|
146 |
+
group=Variable, color=Population)) +
|
147 |
+
theme(axis.text.x=element_blank(),
|
148 |
+
axis.ticks.x=element_blank()) +
|
149 |
+
geom_linerange(aes(ymin=ci.low, ymax=ci.hi)) +
|
150 |
+
geom_linerange(aes(ymin=se.low, ymax=se.hi),lwd=1) +
|
151 |
+
geom_point(color="black") +
|
152 |
+
geom_hline(yintercept = 0, linetype = "dashed") +
|
153 |
+
ylab("Coefficient") +
|
154 |
+
xlab("Variable") +
|
155 |
+
ggtitle("Political Institutions")
|
156 |
+
g + scale_color_grey() +
|
157 |
+
ggplot2::annotate("text",
|
158 |
+
label = c("church trust \n ctrl mean=1.15", "dem satisfaction \n ctrl mean=1.16", "govt satisfaction \n ctrl mean=0.80",
|
159 |
+
"govt trust \n ctrl mean=0.98", "mil govt (0-1) \n ctrl mean=0.28", "mil satisfaction \n ctrl mean=1.18",
|
160 |
+
"mil trust \n ctrl mean=1.17", "pol satisfaction \n ctrl mean=1.56", "pol trust \n ctrl mean=1.67"),
|
161 |
+
x = c(1:9)+.2, y = -.5,
|
162 |
+
colour = "black", size = 2.8) + theme_bw()
|
163 |
+
ggsave("polinst.pdf", width = 10, height = 6)
|
164 |
+
|
165 |
+
##############################################################
|
166 |
+
###### Figure 2: Transitional justice treatment effects
|
167 |
+
##############################################################
|
168 |
+
|
169 |
+
advance <- est.ate.np(all$justice_advance, all)
|
170 |
+
justice_account <- est.ate.np(all$justice_account, all)
|
171 |
+
compensation <- est.ate(all$current_recomp, all$pre_current_recomp, all)
|
172 |
+
judicial <- est.ate.np(all$tj_judicial, all)
|
173 |
+
inst_apology <- est.ate.np(all$tj_apology, all)
|
174 |
+
apologize <- est.ate.np(all$policies_apologize, all)
|
175 |
+
compensate <- est.ate.np(all$policies_compensate, all)
|
176 |
+
pardoned <- est.ate.np(all$policies_pardon, all)
|
177 |
+
|
178 |
+
advance.right <- est.ate.np(right$justice_advance, right)
|
179 |
+
justice_account.right <- est.ate.np(right$justice_account, right)
|
180 |
+
compensation.right <- est.ate(right$current_recomp, right$pre_current_recomp, right)
|
181 |
+
judicial.right <- est.ate.np(right$tj_judicial, right)
|
182 |
+
inst_apology.right <- est.ate.np(right$tj_apology, right)
|
183 |
+
apologize.right <- est.ate.np(right$policies_apologize, right)
|
184 |
+
compensate.right <- est.ate.np(right$policies_compensate, right)
|
185 |
+
pardoned.right <- est.ate.np(right$policies_pardon, right)
|
186 |
+
|
187 |
+
advance.left <- est.ate.np(left$justice_advance, left)
|
188 |
+
justice_account.left <- est.ate.np(left$justice_account, left)
|
189 |
+
compensation.left <- est.ate(left$current_recomp, left$pre_current_recomp, left)
|
190 |
+
judicial.left <- est.ate.np(left$tj_judicial, left)
|
191 |
+
inst_apology.left <- est.ate.np(left$tj_apology, left)
|
192 |
+
apologize.left <- est.ate.np(left$policies_apologize, left)
|
193 |
+
compensate.left <- est.ate.np(left$policies_compensate, left)
|
194 |
+
pardoned.left <- est.ate.np(left$policies_pardon, left)
|
195 |
+
|
196 |
+
results.df.tj <- as.data.frame(rbind(advance[1], advance.left[1],advance.right[1],
|
197 |
+
justice_account[1], justice_account.left[1], justice_account.right[1],
|
198 |
+
compensation[1], compensation.left[1], compensation.right[1],
|
199 |
+
judicial[1],judicial.left[1], judicial.right[1],
|
200 |
+
inst_apology[1], inst_apology.left[1], inst_apology.right[1],
|
201 |
+
apologize[1], apologize.left[1], apologize.right[1],
|
202 |
+
compensate[1], compensate.left[1], compensate.right[1],
|
203 |
+
pardoned[1], pardoned.left[1],pardoned.right[1]))
|
204 |
+
|
205 |
+
results.df.tj$se <- as.data.frame(rbind(advance[2], advance.left[2],advance.right[2],
|
206 |
+
justice_account[2], justice_account.left[2], justice_account.right[2],
|
207 |
+
compensation[2], compensation.left[2], compensation.right[2],
|
208 |
+
judicial[2],judicial.left[2], judicial.right[2],
|
209 |
+
inst_apology[2], inst_apology.left[2], inst_apology.right[2],
|
210 |
+
apologize[2], apologize.left[2], apologize.right[2],
|
211 |
+
compensate[2], compensate.left[2], compensate.right[2],
|
212 |
+
pardoned[2], pardoned.left[2],pardoned.right[2]))
|
213 |
+
results.df.tj$se <- unlist(results.df.tj$se)
|
214 |
+
results.df.tj$point.estimate <- unlist(results.df.tj$point.estimate)
|
215 |
+
results.df.tj$Variable <- NA
|
216 |
+
results.df.tj$xpos <- NA
|
217 |
+
for (i in 1:3){results.df.tj$Variable[i] <- "advance"}
|
218 |
+
for (i in 4:6){results.df.tj$Variable[i] <- "accountable"}
|
219 |
+
for (i in 7:9){results.df.tj$Variable[i] <- "compensation"}
|
220 |
+
for (i in 10:12){results.df.tj$Variable[i] <- "punish"}
|
221 |
+
for (i in 13:15){results.df.tj$Variable[i] <- "public apology"}
|
222 |
+
for (i in 16:18){results.df.tj$Variable[i] <- "forced apology"}
|
223 |
+
for (i in 19:21){results.df.tj$Variable[i] <- "forced compensation"}
|
224 |
+
for (i in 22:34){results.df.tj$Variable[i] <- "pardoned"}
|
225 |
+
|
226 |
+
# X position of different canvasser groups
|
227 |
+
results.df.tj$varnum<- with(results.df.tj, paste0(as.numeric(factor(Variable))))
|
228 |
+
results.df.tj$varnum <- as.numeric(results.df.tj$varnum)
|
229 |
+
results.df.tj$sample <- rep(1:3, 8)
|
230 |
+
results.df.tj$Population <- mapvalues(results.df.tj$sample, c(1,2,3), c("All", "Left", "Right"), warn_missing = TRUE)
|
231 |
+
results.df.tj$xpos<- as.numeric(paste(results.df.tj$varnum, results.df.tj$sample, sep = "."))
|
232 |
+
results.df.tj$se.high <- results.df.tj$point.estimate + results.df.tj$se
|
233 |
+
results.df.tj$se.low <- results.df.tj$point.estimate - results.df.tj$se
|
234 |
+
results.df.tj$ci.high <- results.df.tj$point.estimate + results.df.tj$se * 1.96
|
235 |
+
results.df.tj$ci.low <- results.df.tj$point.estimate - results.df.tj$se * 1.96
|
236 |
+
labels <- unique(results.df.tj$Variable)
|
237 |
+
|
238 |
+
q <- ggplot(results.df.tj,
|
239 |
+
aes(x=xpos, y=point.estimate,
|
240 |
+
group=Variable, color=Population)) +
|
241 |
+
theme(axis.text.x=element_blank(),
|
242 |
+
axis.ticks.x=element_blank()) +
|
243 |
+
# CIs
|
244 |
+
geom_linerange(aes(ymin=se.low, ymax=se.high), lwd=1) +
|
245 |
+
geom_linerange(aes(ymin=ci.low, ymax=ci.high)) +
|
246 |
+
# Point estimate points
|
247 |
+
geom_point(color="black") +
|
248 |
+
geom_hline(yintercept = 0, linetype = "dashed") +
|
249 |
+
ggplot2::annotate("text",
|
250 |
+
label = c("accountable (0-4) \n ctrl mean=2.79", "advance (0-4) \n ctrl mean=1.94", "compensation (0-3) \n ctrl mean=1.93 ",
|
251 |
+
"force apology (0-3) \n ctrl mean=1.83", "force compensation (0-3) \n ctrl mean = 1.51", "pardoned (0-3) \n ctrl mean=0.56",
|
252 |
+
"public apology (0-3) \n ctrl mean=1.99", "punish (0-3) \n ctrl mean=2.19"),
|
253 |
+
x = c(1:8)+.28, y = -1.5,
|
254 |
+
colour = "black", size = 2.6) +
|
255 |
+
xlab("Variable") + ylab("Coefficient") +
|
256 |
+
ggtitle("Transitional Justice")
|
257 |
+
q + scale_color_grey()+theme_bw()
|
258 |
+
ggsave("tj.pdf", width = 10, height = 6)
|
259 |
+
|
260 |
+
##############################################################
|
261 |
+
###### Figure 3: Positive (a) and negative (b) emotions treatment effects
|
262 |
+
##############################################################
|
263 |
+
|
264 |
+
##### Part (a) - Positive emotions
|
265 |
+
## all positive
|
266 |
+
positive <- est.ate(all$positive, all$pre_positive, all)
|
267 |
+
interested <- est.ate(all$interested, all$pre_interested, all)
|
268 |
+
stimulated <- est.ate(all$stimulated, all$pre_stimulated, all)
|
269 |
+
enthusiastic <- est.ate(all$enthusiastic, all$pre_enthusiastic, all)
|
270 |
+
energetic <- est.ate(all$energetic, all$pre_energetic, all)
|
271 |
+
proud <- est.ate(all$proud, all$pre_proud, all)
|
272 |
+
alert <- est.ate(all$alert, all$pre_alert, all)
|
273 |
+
inspired <- est.ate(all$inspired, all$pre_inspired, all)
|
274 |
+
decided <- est.ate(all$decided, all$pre_decided, all)
|
275 |
+
attentive <- est.ate(all$attentive, all$pre_attentive, all)
|
276 |
+
active <- est.ate(all$active, all$pre_active, all)
|
277 |
+
|
278 |
+
## right positive
|
279 |
+
positive.right <- est.ate(right$positive, right$pre_positive, right)
|
280 |
+
interested.right <- est.ate(right$interested, right$pre_interested, right)
|
281 |
+
stimulated.right <- est.ate(right$stimulated, right$pre_stimulated, right)
|
282 |
+
enthusiastic.right <- est.ate(right$enthusiastic, right$pre_enthusiastic, right)
|
283 |
+
energetic.right <- est.ate(right$energetic, right$pre_energetic, right)
|
284 |
+
proud.right <- est.ate(right$proud, right$pre_proud, right)
|
285 |
+
alert.right <- est.ate(right$alert, right$pre_alert, right)
|
286 |
+
inspired.right <- est.ate(right$inspired, right$pre_inspired, right)
|
287 |
+
decided.right <- est.ate(right$decided, right$pre_decided, right)
|
288 |
+
attentive.right <- est.ate(right$attentive, right$pre_attentive, right)
|
289 |
+
active.right <- est.ate(right$active, right$pre_active, right)
|
290 |
+
|
291 |
+
## left positive
|
292 |
+
positive.left <- est.ate(left$positive, left$pre_positive, left)
|
293 |
+
interested.left <- est.ate(left$interested, left$pre_interested, left)
|
294 |
+
stimulated.left <- est.ate(left$stimulated, left$pre_stimulated, left)
|
295 |
+
enthusiastic.left <- est.ate(left$enthusiastic, left$pre_enthusiastic, left)
|
296 |
+
energetic.left <- est.ate(left$energetic, left$pre_energetic, left)
|
297 |
+
proud.left <- est.ate(left$proud, left$pre_proud, left)
|
298 |
+
alert.left <- est.ate(left$alert, left$pre_alert, left)
|
299 |
+
inspired.left <- est.ate(left$inspired, left$pre_inspired, left)
|
300 |
+
decided.left <- est.ate(left$decided, left$pre_decided, left)
|
301 |
+
attentive.left <- est.ate(left$attentive, left$pre_attentive, left)
|
302 |
+
active.left <- est.ate(left$active, left$pre_active, left)
|
303 |
+
|
304 |
+
results.df.pos <- as.data.frame(rbind(positive[1], positive.left[1], positive.right[1],
|
305 |
+
interested[1],interested.left[1], interested.right[1],
|
306 |
+
stimulated[1], stimulated.left[1], stimulated.right[1],
|
307 |
+
enthusiastic[1], enthusiastic.left[1], enthusiastic.right[1],
|
308 |
+
energetic[1], energetic.left[1], energetic.right[1],
|
309 |
+
proud[1], proud.left[1], proud.right[1],
|
310 |
+
alert[1], alert.left[1], alert.right[1],
|
311 |
+
inspired[1], inspired.left[1], inspired.right[1],
|
312 |
+
decided[1], decided.left[1],decided.right[1],
|
313 |
+
attentive[1], attentive.left[1],attentive.right[1],
|
314 |
+
active[1], active.left[1],active.right[1]))
|
315 |
+
results.df.pos$se <- c(positive[2], positive.left[2], positive.right[2],
|
316 |
+
interested[2],interested.left[2], interested.right[2],
|
317 |
+
stimulated[2], stimulated.left[2], stimulated.right[2],
|
318 |
+
enthusiastic[2], enthusiastic.left[2], enthusiastic.right[2],
|
319 |
+
energetic[2], energetic.left[2], energetic.right[2],
|
320 |
+
proud[2], proud.left[2], proud.right[2],
|
321 |
+
alert[2], alert.left[2], alert.right[2],
|
322 |
+
inspired[2], inspired.left[2], inspired.right[2],
|
323 |
+
decided[2], decided.left[2],decided.right[2],
|
324 |
+
attentive[2], attentive.left[2],attentive.right[2],
|
325 |
+
active[2], active.left[2],active.right[2])
|
326 |
+
|
327 |
+
results.df.pos$se <- unlist(results.df.pos$se)
|
328 |
+
results.df.pos$point.estimate <- unlist(results.df.pos$point.estimate)
|
329 |
+
results.df.pos$Variable <- NA
|
330 |
+
results.df.pos$xpos <- NA
|
331 |
+
for (i in 1:3){results.df.pos$Variable[i] <- "positive"}
|
332 |
+
for (i in 4:6){results.df.pos$Variable[i] <- "interested"}
|
333 |
+
for (i in 7:9){results.df.pos$Variable[i] <- "stimulated"}
|
334 |
+
for (i in 10:12){results.df.pos$Variable[i] <- "enthusiastic"}
|
335 |
+
for (i in 13:15){results.df.pos$Variable[i] <- "energetic"}
|
336 |
+
for (i in 16:18){results.df.pos$Variable[i] <- "proud"}
|
337 |
+
for (i in 19:21){results.df.pos$Variable[i] <- "alert"}
|
338 |
+
for (i in 22:24){results.df.pos$Variable[i] <- "inspired"}
|
339 |
+
for (i in 25:27){results.df.pos$Variable[i] <- "decided"}
|
340 |
+
for (i in 28:30){results.df.pos$Variable[i] <- "attentive"}
|
341 |
+
for (i in 31:33){results.df.pos$Variable[i] <- "active"}
|
342 |
+
|
343 |
+
# X position of different canvasser groups
|
344 |
+
results.df.pos$varnum<- with(results.df.pos, paste0(as.numeric(factor(Variable))))
|
345 |
+
results.df.pos$varnum <- as.numeric(results.df.pos$varnum)
|
346 |
+
results.df.pos$sample <- rep(1:3, 11)
|
347 |
+
results.df.pos$Population <- mapvalues(results.df.pos$sample, c(1,2,3), c("All", "Left", "Right"), warn_missing = TRUE)
|
348 |
+
results.df.pos$xpos<- as.numeric(paste(results.df.pos$varnum, results.df.pos$sample, sep = "."))
|
349 |
+
results.df.pos$se.high <- results.df.pos$point.estimate + results.df.pos$se
|
350 |
+
results.df.pos$se.low <- results.df.pos$point.estimate - results.df.pos$se
|
351 |
+
results.df.pos$ci.high <- results.df.pos$point.estimate + results.df.pos$se * 1.96
|
352 |
+
results.df.pos$ci.low <- results.df.pos$point.estimate - results.df.pos$se * 1.96
|
353 |
+
labels <- unique(results.df.pos$Variable)
|
354 |
+
results.df.pos[1:3, 4] = results.df.pos$xpos[1:3] - 8
|
355 |
+
results.df.pos[31:33, 4] = results.df.pos$xpos[31:33] + 8
|
356 |
+
|
357 |
+
pos <- ggplot(results.df.pos,
|
358 |
+
aes(x=xpos, y=point.estimate,
|
359 |
+
group=Variable, color=Population)) +
|
360 |
+
theme(axis.text.x=element_blank(),
|
361 |
+
axis.ticks.x=element_blank(),
|
362 |
+
plot.title=element_blank()) +
|
363 |
+
# CIs
|
364 |
+
geom_linerange(aes(ymin=se.low, ymax=se.high), lwd=1) +
|
365 |
+
geom_linerange(aes(ymin=ci.low, ymax=ci.high)) +
|
366 |
+
# Point estimate points
|
367 |
+
geom_point(color="black") +
|
368 |
+
geom_hline(yintercept = 0, linetype = "dashed") +
|
369 |
+
ggplot2::annotate("text",
|
370 |
+
label = c("positive (aggregated) \n ctrl mean=18.76", "alert \n ctrl mean=1.26", "attentive \n ctrl mean=2.41",
|
371 |
+
"decided \n ctrl mean=2.14", "energetic \n ctrl mean=1.81","enthusiastic \n ctrl mean=2.01",
|
372 |
+
"inspired \n ctrl mean=1.52", "interested \n ctrl mean=2.53",
|
373 |
+
"active \n ctrl mean=2.07","proud \n ctrl mean=1.24", "stimulated \n ctrl mean=1.70"),
|
374 |
+
x = c(1:11)+.28, y = -5.8,
|
375 |
+
colour = "black", size = 2.6) +
|
376 |
+
xlab("Variable") + ylab("Coefficient") +ggtitle("Positive Emotions")+scale_color_grey()+theme_bw()
|
377 |
+
pos <- pos + labs(title="Positive Emotions")
|
378 |
+
ggsave("pos.pdf", width = 10, height = 6)
|
379 |
+
|
380 |
+
##### Part (b) - Negative emotions
|
381 |
+
|
382 |
+
negative <- est.ate(all$negative, all$pre_negative, all)
|
383 |
+
tense <- est.ate(all$tense, all$pre_tense, all)
|
384 |
+
scared <- est.ate(all$scared, all$pre_scared, all)
|
385 |
+
guilty <- est.ate(all$guilty, all$pre_guilty, all)
|
386 |
+
hostile <- est.ate(all$hostile, all$pre_hostile, all)
|
387 |
+
irritable <- est.ate(all$irritable, all$pre_irritable, all)
|
388 |
+
nervous <- est.ate(all$nervous, all$pre_nervous, all)
|
389 |
+
fearful <- est.ate(all$fearful, all$pre_fearful, all)
|
390 |
+
disgusted <- est.ate(all$disgusted, all$pre_disgusted, all)
|
391 |
+
afraid <- est.ate(all$afraid, all$pre_afraid, all)
|
392 |
+
embarrassed <- est.ate(all$embarrassed, all$pre_embarrassed, all)
|
393 |
+
|
394 |
+
## right negative
|
395 |
+
negative.right <- est.ate(right$negative, right$pre_negative, right)
|
396 |
+
tense.right <- est.ate(right$tense, right$pre_tense, right)
|
397 |
+
scared.right <- est.ate(right$scared, right$pre_scared, right)
|
398 |
+
guilty.right <- est.ate(right$guilty, right$pre_guilty, right)
|
399 |
+
hostile.right <- est.ate(right$hostile, right$pre_hostile, right)
|
400 |
+
irritable.right <- est.ate(right$irritable, right$pre_irritable, right)
|
401 |
+
nervous.right <- est.ate(right$nervous, right$pre_nervous, right)
|
402 |
+
fearful.right <- est.ate(right$fearful, right$pre_fearful, right)
|
403 |
+
disgusted.right <- est.ate(right$disgusted, right$pre_disgusted, right)
|
404 |
+
afraid.right <- est.ate(right$afraid, right$pre_afraid, right)
|
405 |
+
embarrassed.right <- est.ate(right$embarrassed, right$pre_embarrassed, right)
|
406 |
+
|
407 |
+
## left negative
|
408 |
+
negative.left <- est.ate(left$negative, left$pre_negative, left)
|
409 |
+
tense.left <- est.ate(left$tense, left$pre_tense, left)
|
410 |
+
scared.left <- est.ate(left$scared, left$pre_scared, left)
|
411 |
+
guilty.left <- est.ate(left$guilty, left$pre_guilty, left)
|
412 |
+
hostile.left <- est.ate(left$hostile, left$pre_hostile, left)
|
413 |
+
irritable.left <- est.ate(left$irritable, left$pre_irritable, left)
|
414 |
+
nervous.left <- est.ate(left$nervous, left$pre_nervous, left)
|
415 |
+
fearful.left <- est.ate(left$fearful, left$pre_fearful, left)
|
416 |
+
disgusted.left <- est.ate(left$disgusted, left$pre_disgusted, left)
|
417 |
+
afraid.left <- est.ate(left$afraid, left$pre_afraid, left)
|
418 |
+
embarrassed.left <- est.ate(left$embarrassed, left$pre_embarrassed, left)
|
419 |
+
|
420 |
+
# Make DF of summary stats
|
421 |
+
results.df.neg <- as.data.frame(rbind(negative[1], negative.left[1], negative.right[1],
|
422 |
+
tense[1], tense.left[1], tense.right[1],
|
423 |
+
scared[1],scared.left[1], scared.right[1],
|
424 |
+
guilty[1], guilty.left[1], guilty.right[1],
|
425 |
+
hostile[1], hostile.left[1], hostile.right[1],
|
426 |
+
irritable[1], irritable.left[1], irritable.right[1],
|
427 |
+
nervous[1], nervous.left[1], nervous.right[1],
|
428 |
+
fearful[1], fearful.left[1], fearful.right[1],
|
429 |
+
disgusted[1], disgusted.left[1],disgusted.right[1],
|
430 |
+
afraid[1], afraid.left[1],afraid.right[1],
|
431 |
+
embarrassed[1], embarrassed.left[1], embarrassed.right[1]))
|
432 |
+
results.df.neg$se <- c(negative[2], negative.left[2], negative.right[2],
|
433 |
+
tense[2], tense.left[2], tense.right[2],
|
434 |
+
scared[2],scared.left[2], scared.right[2],
|
435 |
+
guilty[2], guilty.left[2], guilty.right[2],
|
436 |
+
hostile[2], hostile.left[2], hostile.right[2],
|
437 |
+
irritable[2], irritable.left[2], irritable.right[2],
|
438 |
+
nervous[2], nervous.left[2], nervous.right[2],
|
439 |
+
fearful[2], fearful.left[2], fearful.right[2],
|
440 |
+
disgusted[2], disgusted.left[2],disgusted.right[2],
|
441 |
+
afraid[2], afraid.left[2],afraid.right[2],
|
442 |
+
embarrassed[2], embarrassed.left[2], embarrassed.right[2])
|
443 |
+
|
444 |
+
results.df.neg$point.estimate <- unlist(results.df.neg$point.estimate)
|
445 |
+
results.df.neg$se <- unlist(results.df.neg$se)
|
446 |
+
results.df.neg$Variable <- NA
|
447 |
+
results.df.neg$xneg <- NA
|
448 |
+
for (i in 1:3){results.df.neg$Variable[i] <- "negative"}
|
449 |
+
for (i in 4:6){results.df.neg$Variable[i] <- "tense"}
|
450 |
+
for (i in 7:9){results.df.neg$Variable[i] <- "scared"}
|
451 |
+
for (i in 10:12){results.df.neg$Variable[i] <- "guilty"}
|
452 |
+
for (i in 13:15){results.df.neg$Variable[i] <- "hostile"}
|
453 |
+
for (i in 16:18){results.df.neg$Variable[i] <- "irritable"}
|
454 |
+
for (i in 19:21){results.df.neg$Variable[i] <- "nervous"}
|
455 |
+
for (i in 22:24){results.df.neg$Variable[i] <- "fearful"}
|
456 |
+
for (i in 25:27){results.df.neg$Variable[i] <- "disgusted"}
|
457 |
+
for (i in 28:30){results.df.neg$Variable[i] <- "afraid"}
|
458 |
+
for (i in 31:33){results.df.neg$Variable[i] <- "embarrassed"}
|
459 |
+
|
460 |
+
results.df.neg$varnum<- with(results.df.neg, paste0(as.numeric(factor(Variable))))
|
461 |
+
results.df.neg$varnum <- as.numeric(results.df.neg$varnum)
|
462 |
+
results.df.neg$sample <- rep(1:3, 11)
|
463 |
+
results.df.neg$Population <- mapvalues(results.df.neg$sample, c(1,2,3), c("All", "Left", "Right"), warn_missing = TRUE)
|
464 |
+
results.df.neg$xneg<- as.numeric(paste(results.df.neg$varnum, results.df.neg$sample, sep = "."))
|
465 |
+
results.df.neg$se.high <- results.df.neg$point.estimate + results.df.neg$se
|
466 |
+
results.df.neg$se.low <- results.df.neg$point.estimate - results.df.neg$se
|
467 |
+
results.df.neg$ci.high <- results.df.neg$point.estimate + results.df.neg$se * 1.96
|
468 |
+
results.df.neg$ci.low <- results.df.neg$point.estimate - results.df.neg$se * 1.96
|
469 |
+
labels <- unique(results.df.neg$Variable)
|
470 |
+
results.df.neg[1:3, 4] = results.df.neg$xneg[1:3] - 7
|
471 |
+
results.df.neg[28:30, 4] = results.df.neg$xneg[28:30] + 7
|
472 |
+
|
473 |
+
neg <- ggplot(results.df.neg,
|
474 |
+
aes(x=xneg, y=point.estimate,
|
475 |
+
group=Variable, color=Population)) +
|
476 |
+
theme(axis.text.x=element_blank(),
|
477 |
+
axis.ticks.x=element_blank()) +
|
478 |
+
# CIs
|
479 |
+
geom_linerange(aes(ymin=se.low, ymax=se.high), lwd=1) +
|
480 |
+
geom_linerange(aes(ymin=ci.low, ymax=ci.high)) +
|
481 |
+
# Point estimate points
|
482 |
+
geom_point(color="black") +
|
483 |
+
geom_hline(yintercept = 0, linetype = "dashed") +
|
484 |
+
ggplot2::annotate("text",
|
485 |
+
label = c("negative \n ctrl mean=3.44","disgusted \n ctrl mean=0.29", "embarrassed \n ctrl mean=0.26",
|
486 |
+
"fearful \n ctrl mean=0.22","guilty \n ctrl mean=0.24","hostile \n ctrl mean=0.33",
|
487 |
+
"irritable \n ctrl mean=0.54","afraid \n ctrl mean=0.16", "nervous \n ctrl mean=0.56",
|
488 |
+
"scared \n ctrl mean = 0.16","tense \n ctrl mean = 0.68"),
|
489 |
+
x = c(1:11)+.28, y = -1.5,
|
490 |
+
colour = "black", size = 2.6) +
|
491 |
+
xlab("Variable") + ylab("Coefficient")
|
492 |
+
neg + scale_color_grey()+theme_bw()
|
493 |
+
ggsave("neg.pdf", width = 10, height = 6)
|
494 |
+
|
495 |
+
|
496 |
+
##############################################################
|
497 |
+
###### Figure 4: Durability of treatment effects
|
498 |
+
##############################################################
|
499 |
+
|
500 |
+
### this estimates ATE for follow up variables
|
501 |
+
est.ate.f <-function(dv, predv){
|
502 |
+
predv <- f(predv)
|
503 |
+
summary(fit.1 <- lm(dv~all$treat + all$pre_ideology_1 +
|
504 |
+
+ predv*all$date_diff + all$base_gender +all$age + all$v))
|
505 |
+
vcv <- vcovHC(fit.1)
|
506 |
+
n <- nobs(fit.1)
|
507 |
+
result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
|
508 |
+
result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
|
509 |
+
return(result)
|
510 |
+
}
|
511 |
+
|
512 |
+
# estimates ATE for follow up when we don't have a pre-treatment measurement
|
513 |
+
est.ate.np.f<-function(dv){
|
514 |
+
summary(fit.1 <- lm(dv~all$treat + all$pre_ideology_1 + all$base_gender +all$age+all$v))
|
515 |
+
vcv <- vcovHC(fit.1)
|
516 |
+
n <- nobs(fit.1)
|
517 |
+
result <- coeftest(fit.1, vcv)[2, 1:4] / itt.d
|
518 |
+
result <- list("point.estimate" = result[1],"se"=result[2],"pvalue"=result[4], "obs" = n)
|
519 |
+
return(result)
|
520 |
+
}
|
521 |
+
|
522 |
+
par(mfrow=c(4, 2))
|
523 |
+
par(oma = c(2.9, 3, 1, 0)) # make room (i.e. the 4's) for the overall x and y axis titles
|
524 |
+
par(mar = c(2.5, 2, 1.5, 1)) # make the plots be closer together
|
525 |
+
par(cex.main = 0.8)
|
526 |
+
|
527 |
+
##### GRAPH 1 - CHURCH TRUST ######
|
528 |
+
|
529 |
+
church_trust_pre <- est.ate.np(all$pre_conf_church, all)
|
530 |
+
church_trust <- est.ate(all$conf_church, all$pre_conf_church,all)
|
531 |
+
church_trust_f1 <- est.ate.f(all$conf_church_f1, all$pre_conf_church)
|
532 |
+
church_trust_f2 <- est.ate.f(all$conf_church_f2, all$pre_conf_church)
|
533 |
+
church_trust_f3 <- est.ate.f(all$conf_church_f3, all$pre_conf_church)
|
534 |
+
|
535 |
+
coefs <- unlist(c(church_trust_pre[1], church_trust[1], church_trust_f1[1],
|
536 |
+
church_trust_f2[1], church_trust_f3[1]))
|
537 |
+
|
538 |
+
ses <- unlist(c(church_trust_pre[2], church_trust[2], church_trust_f1[2],
|
539 |
+
church_trust_f2[2], church_trust_f3[2]))
|
540 |
+
|
541 |
+
|
542 |
+
plot(NA, xlim = c(-2, 25), ylim = c(-.5, .5),xlab = '', ylab = '')
|
543 |
+
title("Trust in church (0-3)")
|
544 |
+
abline(v = -1, col = "gray")
|
545 |
+
abline(v = 0, col = "gray")
|
546 |
+
abline(v = 1, col = "gray")
|
547 |
+
abline(v = 8, col = "gray")
|
548 |
+
abline(v = 24, col = "gray")
|
549 |
+
abline(h = 0, col = "red")
|
550 |
+
|
551 |
+
points(-1, coefs[1], pch = 23, col = "black", bg = "black")
|
552 |
+
points(0, coefs[2], pch = 23, col = "black", bg = "black")
|
553 |
+
points(1, coefs[3], pch = 23, col = "black", bg = "black")
|
554 |
+
points(8, coefs[4], pch = 23, col = "black", bg = "black")
|
555 |
+
points(24, coefs[5], pch = 23, col = "black", bg = "black")
|
556 |
+
|
557 |
+
segments(-1, (coefs - ses)[1], -1, (coefs + ses)[1], col = "black", lwd = 2)
|
558 |
+
segments(0, (coefs - ses)[2], 0, (coefs + ses)[2], col = "black", lwd = 2)
|
559 |
+
segments(1, (coefs - ses)[3], 1, (coefs + ses)[3], col = "black", lwd = 2)
|
560 |
+
segments(8.0, (coefs - ses)[4], 8, (coefs + ses)[4], col = "black", lwd = 2)
|
561 |
+
segments(24.0, (coefs - ses)[5], 24, (coefs + ses)[5], col = "black", lwd = 2)
|
562 |
+
segments(-1, (coefs - 1.96*ses)[1], -1, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
|
563 |
+
segments(0, (coefs - 1.96*ses)[2], 0, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
|
564 |
+
segments(1, (coefs - 1.96*ses)[3], 1, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
|
565 |
+
segments(8.0, (coefs - 1.96*ses)[4], 8, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
|
566 |
+
segments(24.0, (coefs - 1.96*ses)[5], 24, (coefs + 1.96*ses)[5], col = "black", lwd = 1)
|
567 |
+
|
568 |
+
text(-2, -.2, "pre", cex = .6)
|
569 |
+
text(-1, -.25, "treatment", cex = .6)
|
570 |
+
text(.2, .3, "treatment", cex = .6)
|
571 |
+
text(3, .07, "follow up", cex = .6)
|
572 |
+
text(10, .07, "follow up", cex = .6)
|
573 |
+
text(22, .13, "follow up", cex = .6)
|
574 |
+
|
575 |
+
##### GRAPH 2 - PARDONING ######
|
576 |
+
|
577 |
+
pardoned <- est.ate.np(all$policies_pardon,all)
|
578 |
+
pardoned_f1<- est.ate.np.f(all$policies_pardon_f1)
|
579 |
+
pardoned_f2 <- est.ate.np.f(all$policies_pardon_f2)
|
580 |
+
pardoned_f3 <- est.ate.np.f(all$policies_pardon_f3)
|
581 |
+
|
582 |
+
coefs <- unlist(c(pardoned[1], pardoned_f1[1],
|
583 |
+
pardoned_f2[1], pardoned_f3[1]))
|
584 |
+
|
585 |
+
ses <- unlist(c(pardoned[2], pardoned_f1[2],
|
586 |
+
pardoned_f2[2], pardoned_f3[2]))
|
587 |
+
|
588 |
+
plot(NA, xlim = c(-.5, 25), ylim = c(-.2, .5), xlab = '', ylab = '')
|
589 |
+
title("Support for pardoning perpetrators (0-4)")
|
590 |
+
abline(v = 0, col = "gray")
|
591 |
+
abline(v = 1, col = "gray")
|
592 |
+
abline(v = 8, col = "gray")
|
593 |
+
abline(v = 24, col = "gray")
|
594 |
+
abline(h = 0, col = "red")
|
595 |
+
|
596 |
+
points(0, coefs[1], pch = 23, col = "black", bg = "black")
|
597 |
+
points(1, coefs[2], pch = 23, col = "black", bg = "black")
|
598 |
+
points(8, coefs[3], pch = 23, col = "black", bg = "black")
|
599 |
+
points(24, coefs[4], pch = 23, col = "black", bg = "black")
|
600 |
+
|
601 |
+
segments(0, (coefs - ses)[1], 0, (coefs + ses)[1], col = "black", lwd = 2)
|
602 |
+
segments(1, (coefs - ses)[2], 1, (coefs + ses)[2], col = "black", lwd = 2)
|
603 |
+
segments(8.0, (coefs - ses)[3], 8, (coefs + ses)[3], col = "black", lwd = 2)
|
604 |
+
segments(24.0, (coefs - ses)[4], 24, (coefs + ses)[4], col = "black", lwd = 2)
|
605 |
+
|
606 |
+
segments(0, (coefs - 1.96*ses)[1], 0, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
|
607 |
+
segments(1, (coefs - 1.96*ses)[2], 1, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
|
608 |
+
segments(8.0, (coefs - 1.96*ses)[3], 8, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
|
609 |
+
segments(24.0, (coefs - 1.96*ses)[4], 24, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
|
610 |
+
|
611 |
+
##### GRAPH 3 - GOVT SATISFACTION ######
|
612 |
+
gov_sat_pre <- est.ate.np(all$pre_inst_gov,all)
|
613 |
+
gov_sat <- est.ate(all$inst_gov, all$pre_inst_gov,all)
|
614 |
+
gov_sat_f1 <- est.ate.f(all$inst_gov_f1, all$pre_inst_gov)
|
615 |
+
gov_sat_f2 <- est.ate.f(all$inst_gov_f2, all$pre_inst_gov)
|
616 |
+
gov_sat_f3 <- est.ate.f(all$inst_gov_f3, all$pre_inst_gov)
|
617 |
+
|
618 |
+
coefs <- unlist(c(gov_sat_pre[1], gov_sat[1], gov_sat_f1[1],
|
619 |
+
gov_sat_f2[1], gov_sat_f3[1]))
|
620 |
+
|
621 |
+
ses <- unlist(c(gov_sat_pre[2], gov_sat[2], gov_sat_f1[2],
|
622 |
+
gov_sat_f2[2], gov_sat_f3[2]))
|
623 |
+
|
624 |
+
|
625 |
+
plot(NA, xlim = c(-2, 25), ylim = c(-.4, .5), xlab = '', ylab = '')
|
626 |
+
title("Satisfaction with government (0-3)")
|
627 |
+
abline(v = -1, col = "gray")
|
628 |
+
abline(v = 0, col = "gray")
|
629 |
+
abline(v = 1, col = "gray")
|
630 |
+
abline(v = 8, col = "gray")
|
631 |
+
abline(v = 24, col = "gray")
|
632 |
+
abline(h = 0, col = "red")
|
633 |
+
|
634 |
+
points(-1, coefs[1], pch = 23, col = "black", bg = "black")
|
635 |
+
points(0, coefs[2], pch = 23, col = "black", bg = "black")
|
636 |
+
points(1, coefs[3], pch = 23, col = "black", bg = "black")
|
637 |
+
points(8, coefs[4], pch = 23, col = "black", bg = "black")
|
638 |
+
points(24, coefs[5], pch = 23, col = "black", bg = "black")
|
639 |
+
|
640 |
+
segments(-1, (coefs - ses)[1], -1, (coefs + ses)[1], col = "black", lwd = 2)
|
641 |
+
segments(0, (coefs - ses)[2], 0, (coefs + ses)[2], col = "black", lwd = 2)
|
642 |
+
segments(1, (coefs - ses)[3], 1, (coefs + ses)[3], col = "black", lwd = 2)
|
643 |
+
segments(8.0, (coefs - ses)[4], 8, (coefs + ses)[4], col = "black", lwd = 2)
|
644 |
+
segments(24.0, (coefs - ses)[5], 24, (coefs + ses)[5], col = "black", lwd = 2)
|
645 |
+
segments(-1, (coefs - 1.96*ses)[1], -1, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
|
646 |
+
segments(0, (coefs - 1.96*ses)[2], 0, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
|
647 |
+
segments(1, (coefs - 1.96*ses)[3], 1, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
|
648 |
+
segments(8.0, (coefs - 1.96*ses)[4], 8, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
|
649 |
+
segments(24.0, (coefs - 1.96*ses)[5], 24, (coefs + 1.96*ses)[5], col = "black", lwd = 1)
|
650 |
+
|
651 |
+
##### GRAPH 4 - DEMOCRACY ######
|
652 |
+
dem_pre <- est.ate.np(all$pre_democracy,all)
|
653 |
+
dem <- est.ate(all$democracy, all$pre_democracy,all)
|
654 |
+
dem_f1 <- est.ate.f(all$democracy_f1, all$pre_democracy)
|
655 |
+
dem_f2 <- est.ate.f(all$democracy_f2, all$pre_democracy)
|
656 |
+
dem_f3 <- est.ate.f(all$democracy_f3, all$pre_democracy)
|
657 |
+
|
658 |
+
coefs <- unlist(c(dem_pre[1], dem[1], dem_f1[1],dem_f2[1], dem_f3[1]))
|
659 |
+
|
660 |
+
ses <- unlist(c(dem_pre[2], dem[2], dem_f1[2],dem_f2[2], dem_f3[2]))
|
661 |
+
|
662 |
+
plot(NA, xlim = c(-2, 25), ylim = c(-.4, .3), xlab = '', ylab = '')
|
663 |
+
title("Satisfaction with democracy (0-3)")
|
664 |
+
abline(v = -1, col = "gray")
|
665 |
+
abline(v = 0, col = "gray")
|
666 |
+
abline(v = 1, col = "gray")
|
667 |
+
abline(v = 8, col = "gray")
|
668 |
+
abline(v = 24, col = "gray")
|
669 |
+
abline(h = 0, col = "red")
|
670 |
+
|
671 |
+
points(-1, coefs[1], pch = 23, col = "black", bg = "black")
|
672 |
+
points(0, coefs[2], pch = 23, col = "black", bg = "black")
|
673 |
+
points(1, coefs[3], pch = 23, col = "black", bg = "black")
|
674 |
+
points(8, coefs[4], pch = 23, col = "black", bg = "black")
|
675 |
+
points(24, coefs[5], pch = 23, col = "black", bg = "black")
|
676 |
+
|
677 |
+
segments(-1, (coefs - ses)[1], -1, (coefs + ses)[1], col = "black", lwd = 2)
|
678 |
+
segments(0, (coefs - ses)[2], 0, (coefs + ses)[2], col = "black", lwd = 2)
|
679 |
+
segments(1, (coefs - ses)[3], 1, (coefs + ses)[3], col = "black", lwd = 2)
|
680 |
+
segments(8.0, (coefs - ses)[4], 8, (coefs + ses)[4], col = "black", lwd = 2)
|
681 |
+
segments(24.0, (coefs - ses)[5], 24, (coefs + ses)[5], col = "black", lwd = 2)
|
682 |
+
segments(-1, (coefs - 1.96*ses)[1], -1, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
|
683 |
+
segments(0, (coefs - 1.96*ses)[2], 0, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
|
684 |
+
segments(1, (coefs - 1.96*ses)[3], 1, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
|
685 |
+
segments(8.0, (coefs - 1.96*ses)[4], 8, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
|
686 |
+
segments(24.0, (coefs - 1.96*ses)[5], 24, (coefs + 1.96*ses)[5], col = "black", lwd = 1)
|
687 |
+
|
688 |
+
##### GRAPH 5 - MIL GOV ######
|
689 |
+
mil_pre <- est.ate.np(all$pre_military_gov,all)
|
690 |
+
mil <- est.ate(all$military_gov, all$pre_military_gov,all)
|
691 |
+
mil_f1 <- est.ate.f(all$military_gov_f1, all$pre_military_gov)
|
692 |
+
mil_f2 <- est.ate.f(all$military_gov_f2, all$pre_military_gov)
|
693 |
+
mil_f3 <- est.ate.f(all$military_gov_f3, all$pre_military_gov)
|
694 |
+
|
695 |
+
coefs <- unlist(c(mil_pre[1], mil[1], mil_f1[1],mil_f2[1], mil_f3[1]))
|
696 |
+
ses <- unlist(c(mil_pre[2], mil[2], mil_f1[2],mil_f2[2], mil_f3[2]))
|
697 |
+
|
698 |
+
plot(NA, xlim = c(-2, 25), ylim = c(-.2, .3), xlab = '', ylab = '')
|
699 |
+
title("Support for military gov (0-1)")
|
700 |
+
abline(v = -1, col = "gray")
|
701 |
+
abline(v = 0, col = "gray")
|
702 |
+
abline(v = 1, col = "gray")
|
703 |
+
abline(v = 8, col = "gray")
|
704 |
+
abline(v = 24, col = "gray")
|
705 |
+
abline(h = 0, col = "red")
|
706 |
+
|
707 |
+
points(-1, coefs[1], pch = 23, col = "black", bg = "black")
|
708 |
+
points(0, coefs[2], pch = 23, col = "black", bg = "black")
|
709 |
+
points(1, coefs[3], pch = 23, col = "black", bg = "black")
|
710 |
+
points(8, coefs[4], pch = 23, col = "black", bg = "black")
|
711 |
+
points(24, coefs[5], pch = 23, col = "black", bg = "black")
|
712 |
+
|
713 |
+
segments(-1, (coefs - ses)[1], -1, (coefs + ses)[1], col = "black", lwd = 2)
|
714 |
+
segments(0, (coefs - ses)[2], 0, (coefs + ses)[2], col = "black", lwd = 2)
|
715 |
+
segments(1, (coefs - ses)[3], 1, (coefs + ses)[3], col = "black", lwd = 2)
|
716 |
+
segments(8.0, (coefs - ses)[4], 8, (coefs + ses)[4], col = "black", lwd = 2)
|
717 |
+
segments(24.0, (coefs - ses)[5], 24, (coefs + ses)[5], col = "black", lwd = 2)
|
718 |
+
|
719 |
+
segments(-1, (coefs - 1.96*ses)[1], -1, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
|
720 |
+
segments(0, (coefs - 1.96*ses)[2], 0, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
|
721 |
+
segments(1, (coefs - 1.96*ses)[3], 1, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
|
722 |
+
segments(8.0, (coefs - 1.96*ses)[4], 8, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
|
723 |
+
segments(24.0, (coefs - 1.96*ses)[5], 24, (coefs + 1.96*ses)[5], col = "black", lwd = 1)
|
724 |
+
|
725 |
+
##### GRAPH 6 - ADVANCE ######
|
726 |
+
advance <- est.ate.np(all$justice_advance,all)
|
727 |
+
advance_f1 <- est.ate.np.f(all$justice_advance_f1)
|
728 |
+
advance_f2 <- est.ate.np.f(all$justice_advance_f2)
|
729 |
+
advance_f3 <- est.ate.np.f(all$justice_advance_f3)
|
730 |
+
|
731 |
+
coefs <- unlist(c(advance[1], advance_f1[1], advance_f2[1], advance_f3[1]))
|
732 |
+
|
733 |
+
ses <- unlist(c(advance[2], advance_f1[2], advance_f2[2], advance_f3[2]))
|
734 |
+
|
735 |
+
plot(NA, xlim = c(-.5, 25), ylim = c(-.8, .2), xlab = '', ylab = '')
|
736 |
+
title("Obsession with the past \n makes it hard to advance (0-4)")
|
737 |
+
abline(v = 0, col = "gray")
|
738 |
+
abline(v = 1, col = "gray")
|
739 |
+
abline(v = 8, col = "gray")
|
740 |
+
abline(v = 24, col = "gray")
|
741 |
+
abline(h = 0, col = "red")
|
742 |
+
|
743 |
+
points(0, coefs[1], pch = 23, col = "black", bg = "black")
|
744 |
+
points(1, coefs[2], pch = 23, col = "black", bg = "black")
|
745 |
+
points(8, coefs[3], pch = 23, col = "black", bg = "black")
|
746 |
+
points(24, coefs[4], pch = 23, col = "black", bg = "black")
|
747 |
+
|
748 |
+
segments(0, (coefs - ses)[1], 0, (coefs + ses)[1], col = "black", lwd = 2)
|
749 |
+
segments(1, (coefs - ses)[2], 1, (coefs + ses)[2], col = "black", lwd = 2)
|
750 |
+
segments(8.0, (coefs - ses)[3], 8, (coefs + ses)[3], col = "black", lwd = 2)
|
751 |
+
segments(24, (coefs - ses)[4], 24, (coefs + ses)[4], col = "black", lwd = 2)
|
752 |
+
segments(0, (coefs - 1.96*ses)[1], 0, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
|
753 |
+
segments(1, (coefs - 1.96*ses)[2], 1, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
|
754 |
+
segments(8.0, (coefs - 1.96*ses)[3], 8, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
|
755 |
+
segments(24.0, (coefs - 1.96*ses)[4], 24, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
|
756 |
+
|
757 |
+
## GRAPH 7 - COMPENSATION ##
|
758 |
+
comp_pre <- est.ate.np(all$pre_current_recomp,all)
|
759 |
+
comp <- est.ate(all$current_recomp, all$pre_current_recomp,all)
|
760 |
+
comp_f1 <- est.ate.f(all$current_recomp_f1, all$pre_current_recomp)
|
761 |
+
comp_f2 <- est.ate.f(all$current_recomp_f2, all$pre_current_recomp)
|
762 |
+
comp_f3 <- est.ate.f(all$current_recomp_f3, all$pre_current_recomp)
|
763 |
+
|
764 |
+
coefs <- unlist(c(comp_pre[1], comp[1], comp_f1[1],comp_f2[1], comp_f3[1]))
|
765 |
+
|
766 |
+
ses <- unlist(c(comp_pre[2], comp[2], comp_f1[2], comp_f2[2], comp_f3[2]))
|
767 |
+
|
768 |
+
plot(NA, xlim = c(-2, 25), ylim = c(-.4, .4), xlab = '', ylab = '')
|
769 |
+
title("Support for victim compensation (0-3)")
|
770 |
+
abline(v = -1, col = "gray")
|
771 |
+
abline(v = 0, col = "gray")
|
772 |
+
abline(v = 1, col = "gray")
|
773 |
+
abline(v = 8, col = "gray")
|
774 |
+
abline(v = 24, col = "gray")
|
775 |
+
abline(h = 0, col = "red")
|
776 |
+
|
777 |
+
points(-1, coefs[1], pch = 23, col = "black", bg = "black")
|
778 |
+
points(0, coefs[2], pch = 23, col = "black", bg = "black")
|
779 |
+
points(1, coefs[3], pch = 23, col = "black", bg = "black")
|
780 |
+
points(8, coefs[4], pch = 23, col = "black", bg = "black")
|
781 |
+
points(24, coefs[5], pch = 23, col = "black", bg = "black")
|
782 |
+
|
783 |
+
segments(-1, (coefs - ses)[1], -1, (coefs + ses)[1], col = "black", lwd = 2)
|
784 |
+
segments(0, (coefs - ses)[2], 0, (coefs + ses)[2], col = "black", lwd = 1)
|
785 |
+
segments(1, (coefs - ses)[3], 1, (coefs + ses)[3], col = "black", lwd = 2)
|
786 |
+
segments(8.0, (coefs - ses)[4], 8, (coefs + ses)[4], col = "black", lwd = 2)
|
787 |
+
segments(24.0, (coefs - ses)[5], 24, (coefs + ses)[5], col = "black", lwd = 2)
|
788 |
+
segments(-1, (coefs - 1.96*ses)[1], -1, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
|
789 |
+
segments(0, (coefs - 1.96*ses)[2], 0, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
|
790 |
+
segments(1, (coefs - 1.96*ses)[3], 1, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
|
791 |
+
segments(8.0, (coefs - 1.96*ses)[4], 8, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
|
792 |
+
segments(24.0, (coefs - 1.96*ses)[5], 24, (coefs + 1.96*ses)[5], col = "black", lwd = 1)
|
793 |
+
|
794 |
+
## GRAPH 8 - PUBLIC APOLOGY ##
|
795 |
+
|
796 |
+
tj_apology <- est.ate.np(all$tj_apology,all)
|
797 |
+
tj_apology_f1 <- est.ate.np.f(all$tj_apology_f1)
|
798 |
+
tj_apology_f2 <- est.ate.np.f(all$tj_apology_f2)
|
799 |
+
tj_apology_f3 <- est.ate.np.f(all$tj_apology_f3)
|
800 |
+
|
801 |
+
coefs <- unlist(c(tj_apology[1], tj_apology_f1[1], tj_apology_f2[1], tj_apology_f3[1]))
|
802 |
+
|
803 |
+
ses <- unlist(c(tj_apology[2], tj_apology_f1[2], tj_apology_f2[2], tj_apology_f3[2]))
|
804 |
+
|
805 |
+
plot(NA, xlim = c(-.5, 25), ylim = c(-.2, .5), xlab = '', ylab = '')
|
806 |
+
title("Military should apologize (0-4)")
|
807 |
+
abline(v = 0, col = "gray")
|
808 |
+
abline(v = 1, col = "gray")
|
809 |
+
abline(v = 8, col = "gray")
|
810 |
+
abline(v = 24, col = "gray")
|
811 |
+
abline(h = 0, col = "red")
|
812 |
+
|
813 |
+
points(0, coefs[1], pch = 23, col = "black", bg = "black")
|
814 |
+
points(1, coefs[2], pch = 23, col = "black", bg = "black")
|
815 |
+
points(8, coefs[3], pch = 23, col = "black", bg = "black")
|
816 |
+
points(24, coefs[4], pch = 23, col = "black", bg = "black")
|
817 |
+
|
818 |
+
segments(0, (coefs - ses)[1], 0, (coefs + ses)[1], col = "black", lwd = 2)
|
819 |
+
segments(1, (coefs - ses)[2], 1, (coefs + ses)[2], col = "black", lwd = 2)
|
820 |
+
segments(8.0, (coefs - ses)[3], 8, (coefs + ses)[3], col = "black", lwd = 2)
|
821 |
+
|
822 |
+
segments(24.0, (coefs - ses)[4], 24, (coefs + ses)[4], col = "black", lwd = 2)
|
823 |
+
segments(0, (coefs - 1.96*ses)[1], 0, (coefs + 1.96*ses)[1], col = "black", lwd = 1)
|
824 |
+
segments(1, (coefs - 1.96*ses)[2], 1, (coefs + 1.96*ses)[2], col = "black", lwd = 1)
|
825 |
+
segments(8.0, (coefs - 1.96*ses)[3], 8, (coefs + 1.96*ses)[3], col = "black", lwd = 1)
|
826 |
+
segments(24.0, (coefs - 1.96*ses)[4], 24, (coefs + 1.96*ses)[4], col = "black", lwd = 1)
|
827 |
+
|
828 |
+
mtext('Weeks from Treatment', side = 1, outer = TRUE, line = 2)
|
829 |
+
mtext('Coefficient', side = 2, outer = TRUE, line = 2)
|
19/replication_package/Codebook.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c98532969543a114a9880334a7e30c521ddca3deaa6c76318bc118de8c43d071
|
3 |
+
size 97238
|
19/replication_package/all.Rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4ed1b5544caed6a1166d7ac4a49d59721a52648441bb5083e715be78c30bb6c
|
3 |
+
size 29977
|
19/replication_package/baseline.Rdata
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76030af9231de2450b8f8d32bd8450665c31022ee2f285cc7ded08ba3d406d9e
|
3 |
+
size 14901
|
19/should_reproduce.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03563f78eb08f88bc1de997026a9b93fecabe84916dd65a05defe0b06dccf9f2
|
3 |
+
size 35
|