anonymous-submission-acl2025 commited on
Commit
0d1e324
·
1 Parent(s): 71a5d3a
4/paper.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17d81e44bfd9a2a11d4566c6631e04fca53554344f9146321fd9e1d3858dbfab
3
+ size 1651200
4/replication_package/acs.RData ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f5dc507fd2ad95a56dd05a9a0544cf1d9d0708fe3350fb5d568f36f2f2a0494
3
+ size 590945
4/replication_package/an_blacks.R ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Voting and racial attitudes (blacks only)
2
+ ## Brian T. Hamel and Bryan Wilcox-Archuleta
3
+ ## First: 24 September 2019
4
+ ## Last: 19 March 2020
5
+
6
+ ## Loading packages
7
+ ## install.packages(c("estimatr", "tidyverse", "magrittr", "texreg", "gridExtra", "scales"))
8
+ library(estimatr)
9
+ library(tidyverse)
10
+ library(magrittr)
11
+ library(texreg)
12
+ library(gridExtra)
13
+ library(scales)
14
+
15
+ ## Loading data
16
+ load("01_data/dta.RData")
17
+
18
+ ## Create shell
19
+ shell = dta %>% filter(black == 1) %$%
20
+ expand.grid(racial_flux = seq(min(racial_flux, na.rm = TRUE), max(racial_flux, na.rm = TRUE), by = 1),
21
+ pid7 = round(mean(pid7, na.rm = TRUE), digits = 2),
22
+ ideo5 = round(mean(ideo5, na.rm = TRUE), digits = 2),
23
+ female = round(mean(female, na.rm = TRUE), digits = 2),
24
+ age = round(mean(age, na.rm = TRUE), digits = 2),
25
+ faminc = round(mean(faminc, na.rm = TRUE), digit = 2),
26
+ educ = round(mean(educ, na.rm = TRUE), digits = 2),
27
+ pct_white = round(mean(pct_white, na.rm = TRUE), digits = 2),
28
+ pct_black = round(mean(pct_black, na.rm = TRUE), digits = 2),
29
+ pct_unemployed = round(mean(pct_unemployed, na.rm = TRUE), digits = 2),
30
+ pct_college = round(mean(pct_college, na.rm = TRUE), digits = 2),
31
+ log_per_cap_inc = round(mean(log_per_cap_inc, na.rm = TRUE), digits = 2),
32
+ gini = round(mean(gini, na.rm = TRUE), digits = 2),
33
+ south = round(mean(south, na.rm = TRUE), digits = 2),
34
+ non_rural = round(mean(non_rural, na.rm = TRUE), digits = 2),
35
+ log_pop_density = round(mean(log_pop_density, na.rm = TRUE), digits = 2)) %>%
36
+ na.omit()
37
+
38
+ ## Models and predicted probabilities
39
+ pres_dem = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
40
+ + educ + pct_white + pct_black + pct_unemployed
41
+ + pct_college + log_per_cap_inc + gini + south + non_rural
42
+ + log_pop_density, data = dta %>% filter(black == 1),
43
+ clusters = zipcode, se_type = "stata")
44
+
45
+ pred_pres_dem = cbind(predict(pres_dem, shell,
46
+ se.fit = TRUE, type = "response"),
47
+ shell)
48
+
49
+ house_dem = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
50
+ + educ + pct_white + pct_black + pct_unemployed
51
+ + pct_college + log_per_cap_inc + gini + south + non_rural
52
+ + log_pop_density, data = dta %>% filter(black == 1),
53
+ clusters = zipcode, se_type = "stata")
54
+
55
+ pred_house_dem = cbind(predict(house_dem, shell,
56
+ se.fit = TRUE, type = "response"),
57
+ shell)
58
+
59
+ rr = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
60
+ + educ + pct_white + pct_black + pct_unemployed
61
+ + pct_college + log_per_cap_inc + gini + south + non_rural
62
+ + log_pop_density, data = dta %>% filter(black == 1),
63
+ clusters = zipcode, se_type = "stata")
64
+
65
+ pred_rr = cbind(predict(rr, shell,
66
+ se.fit = TRUE, type = "response"),
67
+ shell)
68
+
69
+ affirm = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
70
+ + educ + pct_white + pct_black + pct_unemployed
71
+ + pct_college + log_per_cap_inc + gini + south + non_rural
72
+ + log_pop_density, data = dta %>% filter(black == 1),
73
+ clusters = zipcode, se_type = "stata")
74
+
75
+ pred_affirm = cbind(predict(affirm, shell,
76
+ se.fit = TRUE, type = "response"),
77
+ shell)
78
+
79
+ ## Table of coefs., and save
80
+ ##############
81
+ ## TABLE A6 ##
82
+ ##############
83
+ texreg(list(pres_dem, house_dem, rr, affirm),
84
+ file = "03_output/blacks.tex",
85
+ label = "blacks",
86
+ caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Blacks)",
87
+ custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
88
+ "\\textit{Affirmative Action}"),
89
+ custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
90
+ "Ideology", "Female", "Age", "Family Income",
91
+ "Education", "% White", "% Black",
92
+ "% Unemployed", "% College",
93
+ "log(Per Capita Income)", "Gini Coef.", "South",
94
+ "Non-Rural", "log(Pop. Density)"),
95
+ reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
96
+ custom.gof.names = c(NA, NA, "Observations", NA, NA),
97
+ stars = c(0.05, 0.01, 0.001),
98
+ digits = 3,
99
+ center = TRUE,
100
+ include.ci = FALSE,
101
+ caption.above = TRUE)
102
+
103
+ ## Plot, and save
104
+ pred_pres_dem = cbind(pred_pres_dem, outcome = "President")
105
+ pred_house_dem = cbind(pred_house_dem, outcome = "U.S. House")
106
+ pred_vote = bind_rows(pred_pres_dem, pred_house_dem) %>%
107
+ mutate(upper = fit + 1.96 * se.fit,
108
+ lower = fit - 1.96 * se.fit)
109
+
110
+ vote_plot = ggplot(pred_vote, aes(x = racial_flux, y = fit, ymin = lower, ymax = upper)) +
111
+ geom_line(color = "red4") +
112
+ geom_ribbon(alpha = .2, fill = "red1") +
113
+ facet_wrap(~ outcome, nrow = 1, scales = "free") +
114
+ labs(y = "Pr(Vote Democrat)",
115
+ x = "") +
116
+ geom_rug(data = dta %>% filter(black == 1), aes(x = racial_flux), inherit.aes = FALSE, sides = "b") +
117
+ scale_y_continuous(labels = number_format(accuracy = 0.01)) +
118
+ theme(legend.title = element_blank(),
119
+ panel.spacing = unit(1, "lines"),
120
+ axis.line.y = element_blank())
121
+
122
+ pred_rr = cbind(pred_rr, outcome = "Racial Resentment")
123
+ pred_affirm = cbind(pred_affirm, outcome = "Affirmative Action")
124
+ pred_att = bind_rows(pred_rr, pred_affirm) %>%
125
+ mutate(upper = fit + 1.96 * se.fit,
126
+ lower = fit - 1.96 * se.fit)
127
+ pred_att$outcome = factor(pred_att$outcome, levels = c("Racial Resentment",
128
+ "Affirmative Action"))
129
+
130
+ ###############
131
+ ## FIGURE A2 ##
132
+ ###############
133
+ att_plot = ggplot(pred_att, aes(x = racial_flux, y = fit, ymin = lower, ymax = upper)) +
134
+ geom_line(color = "red4") +
135
+ geom_ribbon(alpha = .2, fill = "red1") +
136
+ facet_wrap(~ outcome, nrow = 1, scales = "free") +
137
+ labs(y = "Predicted Attitude",
138
+ x = "Racial Flux") +
139
+ geom_rug(data = dta %>% filter(black == 1), aes(x = racial_flux), inherit.aes = FALSE, sides = "b") +
140
+ scale_y_continuous(labels = number_format(accuracy = 0.01)) +
141
+ theme(legend.title = element_blank(),
142
+ panel.spacing = unit(1, "lines"),
143
+ axis.line.y = element_blank())
144
+
145
+ main = grid.arrange(vote_plot, att_plot, ncol = 1, nrow = 2)
146
+ ggsave(main, file = "03_output/blacks.png", height = 4, width = 4, units = "in", dpi = 600)
147
+
148
+ ## Clear R
149
+ rm(list = ls())
4/replication_package/an_descriptives.R ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Descriptive statistics
2
+ ## Brian T. Hamel and Bryan Wilcox-Archuleta
3
+ ## First: 28 April 2019
4
+ ## Last: 19 March 2020
5
+
6
+ ## Loading packages
7
+ ## install.packages(c("tidyverse", "estimatr", "ggpubr", "gridExtra", "texreg", "scales"))
8
+ library(tidyverse)
9
+ library(estimatr)
10
+ library(ggpubr)
11
+ library(gridExtra)
12
+ library(texreg)
13
+ library(scales)
14
+
15
+ ## Loading Racial Flux data
16
+ load("01_data/lodes/racial_flux.RData")
17
+
18
+ ## Loading ACS data
19
+ load("01_data/acs/acs.RData")
20
+
21
+ ## Merging Racial Flux and ACS data
22
+ dta = racial_flux %>%
23
+ left_join(., acs, by = c("zcta" = "zip"))
24
+
25
+ ## Plotting Racial Flux vs. % white and % black
26
+ ###############
27
+ ## FIGURE 1 ##
28
+ ###############
29
+ pct_white = ggplot(dta, aes(x = pct_white, y = racial_flux)) +
30
+ geom_point(color = "black", shape = 1, alpha = .25) +
31
+ stat_smooth(method = "lm_robust", se = FALSE, lty = 2, color = "blue", show.legend = TRUE) +
32
+ stat_smooth(method = "loess", se = FALSE, color = "red", show.legend = TRUE) +
33
+ labs(x = "% White", y = "Racial Flux") +
34
+ scale_y_continuous(labels = number_format(accuracy = 0.01)) +
35
+ theme(legend.title = element_blank()) +
36
+ stat_cor(method = "pearson", label.x = 2, label.y = 85, size = 2)
37
+
38
+ pct_black = ggplot(dta, aes(x = pct_black, y = racial_flux)) +
39
+ geom_point(color = "black", shape = 1, alpha = .25) +
40
+ stat_smooth(method = "lm_robust", se = FALSE, lty = 2, color = "blue", show.legend = TRUE) +
41
+ stat_smooth(method = "loess", se = FALSE, color = "red", show.legend = TRUE) +
42
+ labs(x = "% Black", y = "") +
43
+ scale_y_continuous(labels = number_format(accuracy = 0.01)) +
44
+ theme(legend.title = element_blank()) +
45
+ stat_cor(method = "pearson", label.x = 2, label.y = 85, size = 2)
46
+
47
+ ## Combine plots, and save
48
+ flux_res = grid.arrange(pct_white, pct_black, ncol = 2, nrow = 1)
49
+ ggsave(flux_res, file = "03_output/flux_res.png", height = 2, width = 4, units = "in", dpi = 600)
50
+
51
+ ## Correlates of Racial Flux
52
+ correlates = lm_robust(racial_flux ~ pct_white + pct_black
53
+ + pct_unemployed + pct_college + log_per_cap_inc + gini + south
54
+ + non_rural + log_pop_density, data = dta, se_type = "stata")
55
+
56
+ ## Save table of coefficients
57
+ ##############
58
+ ## TABLE A2 ##
59
+ ##############
60
+ texreg(correlates,
61
+ file = "03_output/correlates.tex",
62
+ label = "correlates",
63
+ caption = "Multivariate Correlates of Racial Flux",
64
+ custom.model.names = c("(1)"),
65
+ custom.coef.names = c("Intercept", "% White", "% Black",
66
+ "% Unemployed", "% College",
67
+ "log(Per Capita Income)", "Gini Coef.", "South",
68
+ "Non-Rural", "log(Pop. Density)"),
69
+ reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 1),
70
+ custom.gof.names = c(NA, NA, "Observations", NA, NA),
71
+ stars = c(0.05, 0.01, 0.001),
72
+ digits = 3,
73
+ center = TRUE,
74
+ include.ci = FALSE,
75
+ caption.above = TRUE)
76
+
77
+ ## Clear R
78
+ rm(list = ls())
4/replication_package/an_main.R ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Voting and racial attitudes (whites only)
2
+ ## Brian T. Hamel and Bryan Wilcox-Archuleta
3
+ ## First: 5 May 2019
4
+ ## Last: 19 March 2019
5
+
6
+ ## Loading packages
7
+ ## install.packages(c("estimatr", "tidyverse", "magrittr", "texreg", "gridExtra", "scales"))
8
+ library(estimatr)
9
+ library(tidyverse)
10
+ library(magrittr)
11
+ library(texreg)
12
+ library(gridExtra)
13
+ library(scales)
14
+
15
+ ## Loading data
16
+ load("01_data/dta.RData")
17
+
18
+ ## Create shell
19
+ shell = dta %>% filter(white == 1) %$%
20
+ expand.grid(racial_flux = seq(min(racial_flux, na.rm = TRUE), max(racial_flux, na.rm = TRUE), by = 1),
21
+ pid7 = round(mean(pid7, na.rm = TRUE), digits = 2),
22
+ ideo5 = round(mean(ideo5, na.rm = TRUE), digits = 2),
23
+ female = round(mean(female, na.rm = TRUE), digits = 2),
24
+ age = round(mean(age, na.rm = TRUE), digits = 2),
25
+ faminc = round(mean(faminc, na.rm = TRUE), digit = 2),
26
+ educ = round(mean(educ, na.rm = TRUE), digits = 2),
27
+ pct_white = round(mean(pct_white, na.rm = TRUE), digits = 2),
28
+ pct_black = round(mean(pct_black, na.rm = TRUE), digits = 2),
29
+ pct_unemployed = round(mean(pct_unemployed, na.rm = TRUE), digits = 2),
30
+ pct_college = round(mean(pct_college, na.rm = TRUE), digits = 2),
31
+ log_per_cap_inc = round(mean(log_per_cap_inc, na.rm = TRUE), digits = 2),
32
+ gini = round(mean(gini, na.rm = TRUE), digits = 2),
33
+ south = round(mean(south, na.rm = TRUE), digits = 2),
34
+ non_rural = round(mean(non_rural, na.rm = TRUE), digits = 2),
35
+ log_pop_density = round(mean(log_pop_density, na.rm = TRUE), digits = 2)) %>%
36
+ na.omit()
37
+
38
+ ## Models and predicted probabilities
39
+ pres_dem = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
40
+ + educ + pct_white + pct_black + pct_unemployed
41
+ + pct_college + log_per_cap_inc + gini + south + non_rural
42
+ + log_pop_density, data = dta %>% filter(white == 1),
43
+ clusters = zipcode, se_type = "stata")
44
+
45
+ pred_pres_dem = cbind(predict(pres_dem, shell,
46
+ se.fit = TRUE, type = "response"),
47
+ shell)
48
+
49
+ house_dem = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
50
+ + educ + pct_white + pct_black + pct_unemployed
51
+ + pct_college + log_per_cap_inc + gini + south + non_rural
52
+ + log_pop_density, data = dta %>% filter(white == 1),
53
+ clusters = zipcode, se_type = "stata")
54
+
55
+ pred_house_dem = cbind(predict(house_dem, shell,
56
+ se.fit = TRUE, type = "response"),
57
+ shell)
58
+
59
+ rr = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
60
+ + educ + pct_white + pct_black + pct_unemployed
61
+ + pct_college + log_per_cap_inc + gini + south + non_rural
62
+ + log_pop_density, data = dta %>% filter(white == 1),
63
+ clusters = zipcode, se_type = "stata")
64
+
65
+ pred_rr = cbind(predict(rr, shell,
66
+ se.fit = TRUE, type = "response"),
67
+ shell)
68
+
69
+ affirm = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
70
+ + educ + pct_white + pct_black + pct_unemployed
71
+ + pct_college + log_per_cap_inc + gini + south + non_rural
72
+ + log_pop_density, data = dta %>% filter(white == 1),
73
+ clusters = zipcode, se_type = "stata")
74
+
75
+ pred_affirm = cbind(predict(affirm, shell,
76
+ se.fit = TRUE, type = "response"),
77
+ shell)
78
+
79
+ ## Table of coefs., and save
80
+ ############################
81
+ ## TABLE 1 AND TABLE A3 ###
82
+ ############################
83
+ texreg(list(pres_dem, house_dem, rr, affirm),
84
+ file = "03_output/main.tex",
85
+ label = "main",
86
+ caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites)",
87
+ custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
88
+ "\\textit{Affirmative Action}"),
89
+ custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
90
+ "Ideology", "Female", "Age", "Family Income",
91
+ "Education", "% White", "% Black",
92
+ "% Unemployed", "% College",
93
+ "log(Per Capita Income)", "Gini Coef.", "South",
94
+ "Non-Rural", "log(Pop. Density)"),
95
+ reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
96
+ custom.gof.names = c(NA, NA, "Observations", NA, NA),
97
+ stars = c(0.05, 0.01, 0.001),
98
+ digits = 3,
99
+ center = TRUE,
100
+ include.ci = FALSE,
101
+ caption.above = TRUE,
102
+ scalebox = 0.7)
103
+
104
+ ## Plot, and save
105
+ pred_pres_dem = cbind(pred_pres_dem, outcome = "President")
106
+ pred_house_dem = cbind(pred_house_dem, outcome = "U.S. House")
107
+ pred_vote = bind_rows(pred_pres_dem, pred_house_dem) %>%
108
+ mutate(upper = fit + 1.96 * se.fit,
109
+ lower = fit - 1.96 * se.fit)
110
+
111
+ vote_plot = ggplot(pred_vote, aes(x = racial_flux, y = fit, ymin = lower, ymax = upper)) +
112
+ geom_line(color = "red4") +
113
+ geom_ribbon(alpha = .2, fill = "red1") +
114
+ facet_wrap(~ outcome, nrow = 1, scales = "free") +
115
+ labs(y = "Pr(Vote Democrat)",
116
+ x = "") +
117
+ geom_rug(data = dta %>% filter(white == 1), aes(x = racial_flux), inherit.aes = FALSE, sides = "b") +
118
+ scale_y_continuous(labels = number_format(accuracy = 0.01)) +
119
+ theme(legend.title = element_blank(),
120
+ panel.spacing = unit(1, "lines"),
121
+ axis.line.y = element_blank())
122
+
123
+ pred_rr = cbind(pred_rr, outcome = "Racial Resentment")
124
+ pred_affirm = cbind(pred_affirm, outcome = "Affirmative Action")
125
+ pred_att = bind_rows(pred_rr, pred_affirm) %>%
126
+ mutate(upper = fit + 1.96 * se.fit,
127
+ lower = fit - 1.96 * se.fit)
128
+ pred_att$outcome = factor(pred_att$outcome, levels = c("Racial Resentment",
129
+ "Affirmative Action"))
130
+
131
+ ##############
132
+ ## FIGURE 2 ##
133
+ ##############
134
+ att_plot = ggplot(pred_att, aes(x = racial_flux, y = fit, ymin = lower, ymax = upper)) +
135
+ geom_line(color = "red4") +
136
+ geom_ribbon(alpha = .2, fill = "red1") +
137
+ facet_wrap(~ outcome, nrow = 1, scales = "free") +
138
+ labs(y = "Predicted Attitude",
139
+ x = "Racial Flux") +
140
+ geom_rug(data = dta %>% filter(white == 1), aes(x = racial_flux), inherit.aes = FALSE, sides = "b") +
141
+ scale_y_continuous(labels = number_format(accuracy = 0.01)) +
142
+ theme(legend.title = element_blank(),
143
+ panel.spacing = unit(1, "lines"),
144
+ axis.line.y = element_blank())
145
+
146
+ main = grid.arrange(vote_plot, att_plot, ncol = 1, nrow = 2)
147
+ ggsave(main, file = "03_output/main.png", height = 4, width = 4, units = "in", dpi = 600)
148
+
149
+ ## Clear R
150
+ rm(list = ls())
4/replication_package/an_non_racial.R ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Non-racial attitudes (whites only)
2
+ ## Brian T. Hamel and Bryan Wilcox-Archuleta
3
+ ## First: 24 September 2019
4
+ ## Last: 19 March 2020
5
+
6
+ ## Loading packages
7
+ ## install.packages(c("estimatr", "tidyverse", "magrittr", "texreg", "gridExtra", "scales"))
8
+ library(estimatr)
9
+ library(tidyverse)
10
+ library(magrittr)
11
+ library(texreg)
12
+ library(gridExtra)
13
+ library(scales)
14
+
15
+ ## Loading data
16
+ load("01_data/dta.RData")
17
+
18
+ ## Create shell
19
+ shell = dta %>% filter(white == 1) %$%
20
+ expand.grid(racial_flux = seq(min(racial_flux, na.rm = TRUE), max(racial_flux, na.rm = TRUE), by = 1),
21
+ pid7 = round(mean(pid7, na.rm = TRUE), digits = 2),
22
+ ideo5 = round(mean(ideo5, na.rm = TRUE), digits = 2),
23
+ female = round(mean(female, na.rm = TRUE), digits = 2),
24
+ age = round(mean(age, na.rm = TRUE), digits = 2),
25
+ faminc = round(mean(faminc, na.rm = TRUE), digit = 2),
26
+ educ = round(mean(educ, na.rm = TRUE), digits = 2),
27
+ pct_white = round(mean(pct_white, na.rm = TRUE), digits = 2),
28
+ pct_black = round(mean(pct_black, na.rm = TRUE), digits = 2),
29
+ pct_unemployed = round(mean(pct_unemployed, na.rm = TRUE), digits = 2),
30
+ pct_college = round(mean(pct_college, na.rm = TRUE), digits = 2),
31
+ log_per_cap_inc = round(mean(log_per_cap_inc, na.rm = TRUE), digits = 2),
32
+ gini = round(mean(gini, na.rm = TRUE), digits = 2),
33
+ south = round(mean(south, na.rm = TRUE), digits = 2),
34
+ non_rural = round(mean(non_rural, na.rm = TRUE), digits = 2),
35
+ log_pop_density = round(mean(log_pop_density, na.rm = TRUE), digits = 2)) %>%
36
+ na.omit()
37
+
38
+ ## Models and predicted probabilities
39
+ abortion = lm_robust(abortion ~ racial_flux + pid7 + ideo5 + female + age + faminc
40
+ + educ + pct_white + pct_black + pct_unemployed
41
+ + pct_college + log_per_cap_inc + gini + south + non_rural
42
+ + log_pop_density, data = dta %>% filter(white == 1),
43
+ clusters = zipcode, se_type = "stata")
44
+
45
+ pred_abortion = cbind(predict(abortion, shell,
46
+ se.fit = TRUE, type = "response"),
47
+ shell)
48
+
49
+ climate = lm_robust(climate ~ racial_flux + pid7 + ideo5 + female + age + faminc
50
+ + educ + pct_white + pct_black + pct_unemployed
51
+ + pct_college + log_per_cap_inc + gini + south + non_rural
52
+ + log_pop_density, data = dta %>% filter(white == 1),
53
+ clusters = zipcode, se_type = "stata")
54
+
55
+ pred_climate = cbind(predict(climate, shell,
56
+ se.fit = TRUE, type = "response"),
57
+ shell)
58
+
59
+ guns = lm_robust(guns ~ racial_flux + pid7 + ideo5 + female + age + faminc
60
+ + educ + pct_white + pct_black + pct_unemployed
61
+ + pct_college + log_per_cap_inc + gini + south + non_rural
62
+ + log_pop_density, data = dta %>% filter(white == 1),
63
+ clusters = zipcode, se_type = "stata")
64
+
65
+ pred_guns = cbind(predict(guns, shell,
66
+ se.fit = TRUE, type = "response"),
67
+ shell)
68
+
69
+ ## Table of coefs., and save
70
+ ##############
71
+ ## TABLE A5 ##
72
+ ##############
73
+ texreg(list(abortion, climate, guns),
74
+ file = "03_output/non_racial.tex",
75
+ label = "non_racial",
76
+ caption = "Racial Flux and Non-Racial Attitudes (Whites)",
77
+ custom.model.names = c("\\textit{Abortion}", "\\textit{Climate Change}",
78
+ "\\textit{Gun Control}"),
79
+ custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
80
+ "Ideology", "Female", "Age", "Family Income",
81
+ "Education", "% White", "% Black",
82
+ "% Unemployed", "% College",
83
+ "log(Per Capita Income)", "Gini Coef.", "South",
84
+ "Non-Rural", "log(Pop. Density)"),
85
+ reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
86
+ custom.gof.names = c(NA, NA, "Observations", NA, NA),
87
+ stars = c(0.05, 0.01, 0.001),
88
+ digits = 3,
89
+ center = TRUE,
90
+ include.ci = FALSE,
91
+ caption.above = TRUE)
92
+
93
+ ## Plot, and save
94
+ pred_abortion = cbind(pred_abortion, outcome = "Abortion")
95
+ pred_climate = cbind(pred_climate, outcome = "Climate Change")
96
+ pred_guns = cbind(pred_guns, outcome = "Gun Control")
97
+ pred_att = bind_rows(pred_abortion, pred_climate, pred_guns) %>%
98
+ mutate(upper = fit + 1.96 * se.fit,
99
+ lower = fit - 1.96 * se.fit)
100
+
101
+ ###############
102
+ ## FIGURE A1 ##
103
+ ###############
104
+ att_plot = ggplot(pred_att, aes(x = racial_flux, y = fit, ymin = lower, ymax = upper)) +
105
+ geom_line(color = "red4") +
106
+ geom_ribbon(alpha = .2, fill = "red1") +
107
+ facet_wrap(~ outcome, nrow = 2, ncol = 2, scales = "free") +
108
+ labs(y = "Predicted Attitude",
109
+ x = "Racial Flux") +
110
+ geom_rug(data = dta %>% filter(white == 1), aes(x = racial_flux), inherit.aes = FALSE, sides = "b") +
111
+ scale_y_continuous(labels = number_format(accuracy = 0.01)) +
112
+ theme(legend.title = element_blank(),
113
+ panel.spacing = unit(1, "lines"),
114
+ axis.line.y = element_blank()) +
115
+ ggsave(file = "03_output/non_racial.png", height = 4, width = 4, units = "in", dpi = 600)
116
+
117
+ ## Clear R
118
+ rm(list = ls())
4/replication_package/an_retired.R ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Voting and racial attitudes (retired whites only)
2
+ ## Brian T. Hamel and Bryan Wilcox-Archuleta
3
+ ## First: 5 May 2019
4
+ ## Last: 19 March 2020
5
+
6
+ ## Loading packages
7
+ ## install.packages(c("estimatr", "tidyverse", "magrittr", "texreg", "gridExtra", "scales"))
8
+ library(estimatr)
9
+ library(tidyverse)
10
+ library(magrittr)
11
+ library(texreg)
12
+ library(gridExtra)
13
+ library(scales)
14
+
15
+ ## Loading data
16
+ load("01_data/dta.RData")
17
+
18
+ ## Create shell
19
+ shell = dta %>% filter(white == 1 & retired == 1) %$%
20
+ expand.grid(racial_flux = seq(min(racial_flux, na.rm = TRUE), max(racial_flux, na.rm = TRUE), by = 1),
21
+ pid7 = round(mean(pid7, na.rm = TRUE), digits = 2),
22
+ ideo5 = round(mean(ideo5, na.rm = TRUE), digits = 2),
23
+ female = round(mean(female, na.rm = TRUE), digits = 2),
24
+ age = round(mean(age, na.rm = TRUE), digits = 2),
25
+ faminc = round(mean(faminc, na.rm = TRUE), digit = 2),
26
+ educ = round(mean(educ, na.rm = TRUE), digits = 2),
27
+ pct_white = round(mean(pct_white, na.rm = TRUE), digits = 2),
28
+ pct_black = round(mean(pct_black, na.rm = TRUE), digits = 2),
29
+ pct_unemployed = round(mean(pct_unemployed, na.rm = TRUE), digits = 2),
30
+ pct_college = round(mean(pct_college, na.rm = TRUE), digits = 2),
31
+ log_per_cap_inc = round(mean(log_per_cap_inc, na.rm = TRUE), digits = 2),
32
+ gini = round(mean(gini, na.rm = TRUE), digits = 2),
33
+ south = round(mean(south, na.rm = TRUE), digits = 2),
34
+ non_rural = round(mean(non_rural, na.rm = TRUE), digits = 2),
35
+ log_pop_density = round(mean(log_pop_density, na.rm = TRUE), digits = 2)) %>%
36
+ na.omit()
37
+
38
+ ## Models and predicted probabilities
39
+ pres_dem = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
40
+ + educ + pct_white + pct_black + pct_unemployed
41
+ + pct_college + log_per_cap_inc + gini + south + non_rural
42
+ + log_pop_density, data = dta %>% filter(white == 1 & retired == 1),
43
+ clusters = zipcode, se_type = "stata")
44
+
45
+ pred_pres_dem = cbind(predict(pres_dem, shell,
46
+ se.fit = TRUE, type = "response"),
47
+ shell)
48
+
49
+ house_dem = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
50
+ + educ + pct_white + pct_black + pct_unemployed
51
+ + pct_college + log_per_cap_inc + gini + south + non_rural
52
+ + log_pop_density, data = dta %>% filter(white == 1 & retired == 1),
53
+ clusters = zipcode, se_type = "stata")
54
+
55
+ pred_house_dem = cbind(predict(house_dem, shell,
56
+ se.fit = TRUE, type = "response"),
57
+ shell)
58
+
59
+ rr = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
60
+ + educ + pct_white + pct_black + pct_unemployed
61
+ + pct_college + log_per_cap_inc + gini + south + non_rural
62
+ + log_pop_density, data = dta %>% filter(white == 1 & retired == 1),
63
+ clusters = zipcode, se_type = "stata")
64
+
65
+ pred_rr = cbind(predict(rr, shell,
66
+ se.fit = TRUE, type = "response"),
67
+ shell)
68
+
69
+ affirm = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
70
+ + educ + pct_white + pct_black + pct_unemployed
71
+ + pct_college + log_per_cap_inc + gini + south + non_rural
72
+ + log_pop_density, data = dta %>% filter(white == 1 & retired == 1),
73
+ clusters = zipcode, se_type = "stata")
74
+
75
+ pred_affirm = cbind(predict(affirm, shell,
76
+ se.fit = TRUE, type = "response"),
77
+ shell)
78
+
79
+ ## Table of coefs., and save
80
+ ##############
81
+ ## TABLE A7 ##
82
+ ##############
83
+ texreg(list(pres_dem, house_dem, rr, affirm),
84
+ file = "03_output/retired.tex",
85
+ label = "retired",
86
+ caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Retired Whites)",
87
+ custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
88
+ "\\textit{Affirmative Action}"),
89
+ custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
90
+ "Ideology", "Female", "Age", "Family Income",
91
+ "Education", "% White", "% Black",
92
+ "% Unemployed", "% College",
93
+ "log(Per Capita Income)", "Gini Coef.", "South",
94
+ "Non-Rural", "log(Pop. Density)"),
95
+ reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
96
+ custom.gof.names = c(NA, NA, "Observations", NA, NA),
97
+ stars = c(0.05, 0.01, 0.001),
98
+ digits = 3,
99
+ center = TRUE,
100
+ include.ci = FALSE,
101
+ caption.above = TRUE,
102
+ scalebox = 0.7)
103
+
104
+ ## Plot, and save
105
+ pred_pres_dem = cbind(pred_pres_dem, outcome = "President")
106
+ pred_house_dem = cbind(pred_house_dem, outcome = "U.S. House")
107
+ pred_vote = bind_rows(pred_pres_dem, pred_house_dem) %>%
108
+ mutate(upper = fit + 1.96 * se.fit,
109
+ lower = fit - 1.96 * se.fit)
110
+
111
+ vote_plot = ggplot(pred_vote, aes(x = racial_flux, y = fit, ymin = lower, ymax = upper)) +
112
+ geom_line(color = "red4") +
113
+ geom_ribbon(alpha = .2, fill = "red1") +
114
+ facet_wrap(~ outcome, nrow = 1, scales = "free") +
115
+ labs(y = "Pr(Vote Democrat)",
116
+ x = "") +
117
+ geom_rug(data = dta %>% filter(white == 1 & retired == 1),
118
+ aes(x = racial_flux), inherit.aes = FALSE, sides = "b") +
119
+ scale_y_continuous(labels = number_format(accuracy = 0.01)) +
120
+ theme(legend.title = element_blank(),
121
+ panel.spacing = unit(1, "lines"),
122
+ axis.line.y = element_blank())
123
+
124
+ pred_rr = cbind(pred_rr, outcome = "Racial Resentment")
125
+ pred_affirm = cbind(pred_affirm, outcome = "Affirmative Action")
126
+ pred_att = bind_rows(pred_rr, pred_affirm) %>%
127
+ mutate(upper = fit + 1.96 * se.fit,
128
+ lower = fit - 1.96 * se.fit)
129
+ pred_att$outcome = factor(pred_att$outcome, levels = c("Racial Resentment",
130
+ "Affirmative Action"))
131
+
132
+ ###############
133
+ ## FIGURE A3 ##
134
+ ###############
135
+ att_plot = ggplot(pred_att, aes(x = racial_flux, y = fit, ymin = lower, ymax = upper)) +
136
+ geom_line(color = "red4") +
137
+ geom_ribbon(alpha = .2, fill = "red1") +
138
+ facet_wrap(~ outcome, nrow = 1, scales = "free") +
139
+ labs(y = "Predicted Attitude",
140
+ x = "Racial Flux") +
141
+ geom_rug(data = dta %>% filter(white == 1 & retired == 1),
142
+ aes(x = racial_flux), inherit.aes = FALSE, sides = "b") +
143
+ scale_y_continuous(labels = number_format(accuracy = 0.01)) +
144
+ theme(legend.title = element_blank(),
145
+ panel.spacing = unit(1, "lines"),
146
+ axis.line.y = element_blank())
147
+
148
+ main = grid.arrange(vote_plot, att_plot, ncol = 1, nrow = 2)
149
+ ggsave(main, file = "03_output/retired.png", height = 4, width = 4, units = "in", dpi = 600)
150
+
151
+ ## Clear R
152
+ rm(list = ls())
4/replication_package/an_robust.R ADDED
@@ -0,0 +1,650 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Voting and racial attitudes (whites only) -- robustness checks for JOP
2
+ ## Brian T. Hamel and Bryan Wilcox-Archuleta
3
+ ## First: 11 March 2020
4
+ ## Last: 16 March 2020
5
+
6
+ ## Loading packages
7
+ ## install.packages(c("estimatr", "tidyverse", "magrittr", "texreg", "gridExtra", "scales"))
8
+ library(estimatr)
9
+ library(tidyverse)
10
+ library(magrittr)
11
+ library(texreg)
12
+ library(gridExtra)
13
+ library(scales)
14
+ library(lme4)
15
+
16
+ ## Loading data
17
+ load("01_data/dta.RData")
18
+
19
+ ## Number of people per zipcode
20
+ people_per_zip = dta %>%
21
+ group_by(zipcode) %>%
22
+ mutate(n = 1) %>%
23
+ summarise(tot_people = sum(n, na.rm = TRUE))
24
+
25
+ mean(people_per_zip$tot_people)
26
+ sd(people_per_zip$tot_people)
27
+
28
+ people_per_zip %>%
29
+ filter(tot_people >= 30)
30
+
31
+ ## Re-estimating the main models with random slope and intercept
32
+ pres_dem = lmer(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
33
+ + educ + pct_white + pct_black + pct_unemployed
34
+ + pct_college + log_per_cap_inc + gini + south + non_rural
35
+ + log_pop_density + (1 | zipcode),
36
+ data = dta %>% filter(white == 1))
37
+
38
+ house_dem = lmer(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
39
+ + educ + pct_white + pct_black + pct_unemployed
40
+ + pct_college + log_per_cap_inc + gini + south + non_rural
41
+ + log_pop_density + (1 | zipcode),
42
+ data = dta %>% filter(white == 1))
43
+
44
+ rr = lmer(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
45
+ + educ + pct_white + pct_black + pct_unemployed
46
+ + pct_college + log_per_cap_inc + gini + south + non_rural
47
+ + log_pop_density + (1 | zipcode),
48
+ data = dta %>% filter(white == 1))
49
+
50
+ affirm = lmer(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
51
+ + educ + pct_white + pct_black + pct_unemployed
52
+ + pct_college + log_per_cap_inc + gini + south + non_rural
53
+ + log_pop_density + (1 | zipcode),
54
+ data = dta %>% filter(white == 1))
55
+
56
+ ## Table of coefs., and save
57
+ ##############
58
+ ## TABLE A4 ##
59
+ ##############
60
+ texreg(list(pres_dem, house_dem, rr, affirm),
61
+ file = "03_output/mlm.tex",
62
+ label = "mlm",
63
+ caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- Models with Random Intercept for Zip Code",
64
+ custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
65
+ "\\textit{Affirmative Action}"),
66
+ custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
67
+ "Ideology", "Female", "Age", "Family Income",
68
+ "Education", "% White", "% Black",
69
+ "% Unemployed", "% College",
70
+ "log(Per Capita Income)", "Gini Coef.", "South",
71
+ "Non-Rural", "log(Pop. Density)"),
72
+ reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
73
+ include.loglik = FALSE,
74
+ custom.gof.names = c(NA, NA, "\\# of Individuals", "\\# of Zip Codes", NA, NA),
75
+ stars = c(0.05, 0.01, 0.001),
76
+ digits = 3,
77
+ center = TRUE,
78
+ include.ci = FALSE,
79
+ caption.above = TRUE,
80
+ scalebox = 0.9)
81
+
82
+
83
+ ## Adding past racial segregation -- 90
84
+ pres_dem_zseg90 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
85
+ + educ + pct_white + pct_black + pct_unemployed
86
+ + pct_college + log_per_cap_inc + gini + south + non_rural
87
+ + log_pop_density + zipcode_dissim_90,
88
+ data = dta %>% filter(white == 1),
89
+ clusters = zipcode, se_type = "stata")
90
+
91
+ pres_dem_cseg90 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
92
+ + educ + pct_white + pct_black + pct_unemployed
93
+ + pct_college + log_per_cap_inc + gini + south + non_rural
94
+ + log_pop_density + county_dissim_90,
95
+ data = dta %>% filter(white == 1),
96
+ clusters = zipcode, se_type = "stata")
97
+
98
+ house_dem_zseg90 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
99
+ + educ + pct_white + pct_black + pct_unemployed
100
+ + pct_college + log_per_cap_inc + gini + south + non_rural
101
+ + log_pop_density + zipcode_dissim_90,
102
+ data = dta %>% filter(white == 1),
103
+ clusters = zipcode, se_type = "stata")
104
+
105
+ house_dem_cseg90 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
106
+ + educ + pct_white + pct_black + pct_unemployed
107
+ + pct_college + log_per_cap_inc + gini + south + non_rural
108
+ + log_pop_density + county_dissim_90,
109
+ data = dta %>% filter(white == 1),
110
+ clusters = zipcode, se_type = "stata")
111
+
112
+ rr_zseg90 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
113
+ + educ + pct_white + pct_black + pct_unemployed
114
+ + pct_college + log_per_cap_inc + gini + south + non_rural
115
+ + log_pop_density + zipcode_dissim_90,
116
+ data = dta %>% filter(white == 1),
117
+ clusters = zipcode, se_type = "stata")
118
+
119
+ rr_cseg90 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
120
+ + educ + pct_white + pct_black + pct_unemployed
121
+ + pct_college + log_per_cap_inc + gini + south + non_rural
122
+ + log_pop_density + county_dissim_90,
123
+ data = dta %>% filter(white == 1),
124
+ clusters = zipcode, se_type = "stata")
125
+
126
+ affirm_zseg90 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
127
+ + educ + pct_white + pct_black + pct_unemployed
128
+ + pct_college + log_per_cap_inc + gini + south + non_rural
129
+ + log_pop_density + zipcode_dissim_90,
130
+ data = dta %>% filter(white == 1),
131
+ clusters = zipcode, se_type = "stata")
132
+
133
+ affirm_cseg90 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
134
+ + educ + pct_white + pct_black + pct_unemployed
135
+ + pct_college + log_per_cap_inc + gini + south + non_rural
136
+ + log_pop_density + county_dissim_90,
137
+ data = dta %>% filter(white == 1),
138
+ clusters = zipcode, se_type = "stata")
139
+
140
+ ## Table of coefs., and save
141
+ ##############
142
+ ## TABLE A8 ##
143
+ ##############
144
+ texreg(list(pres_dem_zseg90, pres_dem_cseg90,
145
+ house_dem_zseg90, house_dem_cseg90,
146
+ rr_zseg90, rr_cseg90,
147
+ affirm_zseg90, affirm_cseg90),
148
+ file = "03_output/seg90.tex",
149
+ label = "seg90",
150
+ caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- Controlling for Racial Segregation in 1990",
151
+ custom.model.names = c("\\textit{President}", "\\textit{President}",
152
+ "\\textit{U.S. House}", "\\textit{U.S. House}",
153
+ "\\textit{Racial Resentment}", "\\textit{Racial Resentment}",
154
+ "\\textit{Affirmative Action}", "\\textit{Affirmative Action}"),
155
+ custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
156
+ "Ideology", "Female", "Age", "Family Income",
157
+ "Education", "% White", "% Black",
158
+ "% Unemployed", "% College",
159
+ "log(Per Capita Income)", "Gini Coef.", "South",
160
+ "Non-Rural", "log(Pop. Density)",
161
+ "Zipcode Dissimilarity", "County Dissimilarity"),
162
+ reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1),
163
+ custom.gof.names = c(NA, NA, "Observations", NA, NA),
164
+ stars = c(0.05, 0.01, 0.001),
165
+ digits = 3,
166
+ center = TRUE,
167
+ include.ci = FALSE,
168
+ caption.above = TRUE,
169
+ scalebox = 0.7)
170
+
171
+ ## Adding past racial segregation -- 00
172
+ pres_dem_zseg00 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
173
+ + educ + pct_white + pct_black + pct_unemployed
174
+ + pct_college + log_per_cap_inc + gini + south + non_rural
175
+ + log_pop_density + zipcode_dissim_00,
176
+ data = dta %>% filter(white == 1),
177
+ clusters = zipcode, se_type = "stata")
178
+
179
+ pres_dem_cseg00 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
180
+ + educ + pct_white + pct_black + pct_unemployed
181
+ + pct_college + log_per_cap_inc + gini + south + non_rural
182
+ + log_pop_density + county_dissim_00,
183
+ data = dta %>% filter(white == 1),
184
+ clusters = zipcode, se_type = "stata")
185
+
186
+ house_dem_zseg00 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
187
+ + educ + pct_white + pct_black + pct_unemployed
188
+ + pct_college + log_per_cap_inc + gini + south + non_rural
189
+ + log_pop_density + zipcode_dissim_00,
190
+ data = dta %>% filter(white == 1),
191
+ clusters = zipcode, se_type = "stata")
192
+
193
+ house_dem_cseg00 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
194
+ + educ + pct_white + pct_black + pct_unemployed
195
+ + pct_college + log_per_cap_inc + gini + south + non_rural
196
+ + log_pop_density + county_dissim_00,
197
+ data = dta %>% filter(white == 1),
198
+ clusters = zipcode, se_type = "stata")
199
+
200
+ rr_zseg00 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
201
+ + educ + pct_white + pct_black + pct_unemployed
202
+ + pct_college + log_per_cap_inc + gini + south + non_rural
203
+ + log_pop_density + zipcode_dissim_00,
204
+ data = dta %>% filter(white == 1),
205
+ clusters = zipcode, se_type = "stata")
206
+
207
+ rr_cseg00 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
208
+ + educ + pct_white + pct_black + pct_unemployed
209
+ + pct_college + log_per_cap_inc + gini + south + non_rural
210
+ + log_pop_density + county_dissim_00,
211
+ data = dta %>% filter(white == 1),
212
+ clusters = zipcode, se_type = "stata")
213
+
214
+ affirm_zseg00 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
215
+ + educ + pct_white + pct_black + pct_unemployed
216
+ + pct_college + log_per_cap_inc + gini + south + non_rural
217
+ + log_pop_density + zipcode_dissim_00,
218
+ data = dta %>% filter(white == 1),
219
+ clusters = zipcode, se_type = "stata")
220
+
221
+ affirm_cseg00 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
222
+ + educ + pct_white + pct_black + pct_unemployed
223
+ + pct_college + log_per_cap_inc + gini + south + non_rural
224
+ + log_pop_density + county_dissim_00,
225
+ data = dta %>% filter(white == 1),
226
+ clusters = zipcode, se_type = "stata")
227
+
228
+ ## Table of coefs., and save
229
+ ##############
230
+ ## TABLE A9 ##
231
+ ##############
232
+ texreg(list(pres_dem_zseg00, pres_dem_cseg00,
233
+ house_dem_zseg00, house_dem_cseg00,
234
+ rr_zseg00, rr_cseg00,
235
+ affirm_zseg00, affirm_cseg00),
236
+ file = "03_output/seg00.tex",
237
+ label = "seg00",
238
+ caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- Controlling for Racial Segregation in 2000",
239
+ custom.model.names = c("\\textit{President}", "\\textit{President}",
240
+ "\\textit{U.S. House}", "\\textit{U.S. House}",
241
+ "\\textit{Racial Resentment}", "\\textit{Racial Resentment}",
242
+ "\\textit{Affirmative Action}", "\\textit{Affirmative Action}"),
243
+ custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
244
+ "Ideology", "Female", "Age", "Family Income",
245
+ "Education", "% White", "% Black",
246
+ "% Unemployed", "% College",
247
+ "log(Per Capita Income)", "Gini Coef.", "South",
248
+ "Non-Rural", "log(Pop. Density)",
249
+ "Zipcode Dissimilarity", "County Dissimilarity"),
250
+ reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1),
251
+ custom.gof.names = c(NA, NA, "Observations", NA, NA),
252
+ stars = c(0.05, 0.01, 0.001),
253
+ digits = 3,
254
+ center = TRUE,
255
+ include.ci = FALSE,
256
+ caption.above = TRUE,
257
+ scalebox = 0.7)
258
+
259
+ ## Adding past racial conflict
260
+ pres_dem_conflict = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
261
+ + educ + pct_white + pct_black + pct_unemployed
262
+ + pct_college + log_per_cap_inc + gini + south + non_rural
263
+ + log_pop_density + goldwater + protest,
264
+ data = dta %>% filter(white == 1),
265
+ clusters = zipcode, se_type = "stata")
266
+
267
+ house_dem_conflict = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
268
+ + educ + pct_white + pct_black + pct_unemployed
269
+ + pct_college + log_per_cap_inc + gini + south + non_rural
270
+ + log_pop_density + goldwater + protest,
271
+ data = dta %>% filter(white == 1),
272
+ clusters = zipcode, se_type = "stata")
273
+
274
+ rr_conflict = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
275
+ + educ + pct_white + pct_black + pct_unemployed
276
+ + pct_college + log_per_cap_inc + gini + south + non_rural
277
+ + log_pop_density + goldwater + protest,
278
+ data = dta %>% filter(white == 1),
279
+ clusters = zipcode, se_type = "stata")
280
+
281
+ affirm_conflict = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
282
+ + educ + pct_white + pct_black + pct_unemployed
283
+ + pct_college + log_per_cap_inc + gini + south + non_rural
284
+ + log_pop_density + goldwater + protest,
285
+ data = dta %>% filter(white == 1),
286
+ clusters = zipcode, se_type = "stata")
287
+
288
+ ## Table of coefs., and save
289
+ ##############
290
+ ## TABLE A10 ##
291
+ ##############
292
+ texreg(list(pres_dem_conflict, house_dem_conflict, rr_conflict, affirm_conflict),
293
+ file = "03_output/conflict.tex",
294
+ label = "conflict",
295
+ caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- Controlling for Past Racial and Political Conflict",
296
+ custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
297
+ "\\textit{Affirmative Action}"),
298
+ custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
299
+ "Ideology", "Female", "Age", "Family Income",
300
+ "Education", "% White", "% Black",
301
+ "% Unemployed", "% College",
302
+ "log(Per Capita Income)", "Gini Coef.", "South",
303
+ "Non-Rural", "log(Pop. Density)",
304
+ "Support for Goldwater", "Civil Rights Protest"),
305
+ reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1),
306
+ custom.gof.names = c(NA, NA, "Observations", NA, NA),
307
+ stars = c(0.05, 0.01, 0.001),
308
+ digits = 3,
309
+ center = TRUE,
310
+ include.ci = FALSE,
311
+ caption.above = TRUE,
312
+ scalebox = 0.7)
313
+
314
+ ## Adding past racial income gap -- 90
315
+ pres_dem_zinc90 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
316
+ + educ + pct_white + pct_black + pct_unemployed
317
+ + pct_college + log_per_cap_inc + gini + south + non_rural
318
+ + log_pop_density + zipcode_inc_gap_90,
319
+ data = dta %>% filter(white == 1),
320
+ clusters = zipcode, se_type = "stata")
321
+
322
+ pres_dem_cinc90 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
323
+ + educ + pct_white + pct_black + pct_unemployed
324
+ + pct_college + log_per_cap_inc + gini + south + non_rural
325
+ + log_pop_density + county_inc_gap_90,
326
+ data = dta %>% filter(white == 1),
327
+ clusters = zipcode, se_type = "stata")
328
+
329
+ house_dem_zinc90 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
330
+ + educ + pct_white + pct_black + pct_unemployed
331
+ + pct_college + log_per_cap_inc + gini + south + non_rural
332
+ + log_pop_density + zipcode_inc_gap_90,
333
+ data = dta %>% filter(white == 1),
334
+ clusters = zipcode, se_type = "stata")
335
+
336
+ house_dem_cinc90 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
337
+ + educ + pct_white + pct_black + pct_unemployed
338
+ + pct_college + log_per_cap_inc + gini + south + non_rural
339
+ + log_pop_density + county_inc_gap_90,
340
+ data = dta %>% filter(white == 1),
341
+ clusters = zipcode, se_type = "stata")
342
+
343
+ rr_zinc90 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
344
+ + educ + pct_white + pct_black + pct_unemployed
345
+ + pct_college + log_per_cap_inc + gini + south + non_rural
346
+ + log_pop_density + zipcode_inc_gap_90,
347
+ data = dta %>% filter(white == 1),
348
+ clusters = zipcode, se_type = "stata")
349
+
350
+ rr_cinc90 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
351
+ + educ + pct_white + pct_black + pct_unemployed
352
+ + pct_college + log_per_cap_inc + gini + south + non_rural
353
+ + log_pop_density + county_inc_gap_90,
354
+ data = dta %>% filter(white == 1),
355
+ clusters = zipcode, se_type = "stata")
356
+
357
+ affirm_zinc90 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
358
+ + educ + pct_white + pct_black + pct_unemployed
359
+ + pct_college + log_per_cap_inc + gini + south + non_rural
360
+ + log_pop_density + zipcode_inc_gap_90,
361
+ data = dta %>% filter(white == 1),
362
+ clusters = zipcode, se_type = "stata")
363
+
364
+ affirm_cinc90 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
365
+ + educ + pct_white + pct_black + pct_unemployed
366
+ + pct_college + log_per_cap_inc + gini + south + non_rural
367
+ + log_pop_density + county_inc_gap_90,
368
+ data = dta %>% filter(white == 1),
369
+ clusters = zipcode, se_type = "stata")
370
+
371
+ ## Table of coefs., and save
372
+ ###############
373
+ ## TABLE A11 ##
374
+ ###############
375
+ texreg(list(pres_dem_zinc90, pres_dem_cinc90,
376
+ house_dem_zinc90, house_dem_cinc90,
377
+ rr_zinc90, rr_cinc90,
378
+ affirm_zinc90, affirm_cinc90),
379
+ file = "03_output/inc90.tex",
380
+ label = "inc90",
381
+ caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- Controlling for the Racial Income Gap in 1990",
382
+ custom.model.names = c("\\textit{President}", "\\textit{President}",
383
+ "\\textit{U.S. House}", "\\textit{U.S. House}",
384
+ "\\textit{Racial Resentment}", "\\textit{Racial Resentment}",
385
+ "\\textit{Affirmative Action}", "\\textit{Affirmative Action}"),
386
+ custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
387
+ "Ideology", "Female", "Age", "Family Income",
388
+ "Education", "% White", "% Black",
389
+ "% Unemployed", "% College",
390
+ "log(Per Capita Income)", "Gini Coef.", "South",
391
+ "Non-Rural", "log(Pop. Density)",
392
+ "Zipcode White-Black Income Gap", "County White-Black Income Gap"),
393
+ reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1),
394
+ custom.gof.names = c(NA, NA, "Observations", NA, NA),
395
+ stars = c(0.05, 0.01, 0.001),
396
+ digits = 3,
397
+ center = TRUE,
398
+ include.ci = FALSE,
399
+ caption.above = TRUE,
400
+ scalebox = 0.7)
401
+
402
+ ## Adding past racial income gap -- 00
403
+ pres_dem_zinc00 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
404
+ + educ + pct_white + pct_black + pct_unemployed
405
+ + pct_college + log_per_cap_inc + gini + south + non_rural
406
+ + log_pop_density + zipcode_inc_gap_00,
407
+ data = dta %>% filter(white == 1),
408
+ clusters = zipcode, se_type = "stata")
409
+
410
+ pres_dem_cinc00 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
411
+ + educ + pct_white + pct_black + pct_unemployed
412
+ + pct_college + log_per_cap_inc + gini + south + non_rural
413
+ + log_pop_density + county_inc_gap_00,
414
+ data = dta %>% filter(white == 1),
415
+ clusters = zipcode, se_type = "stata")
416
+
417
+ house_dem_zinc00 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
418
+ + educ + pct_white + pct_black + pct_unemployed
419
+ + pct_college + log_per_cap_inc + gini + south + non_rural
420
+ + log_pop_density + zipcode_inc_gap_00,
421
+ data = dta %>% filter(white == 1),
422
+ clusters = zipcode, se_type = "stata")
423
+
424
+ house_dem_cinc00 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
425
+ + educ + pct_white + pct_black + pct_unemployed
426
+ + pct_college + log_per_cap_inc + gini + south + non_rural
427
+ + log_pop_density + county_inc_gap_00,
428
+ data = dta %>% filter(white == 1),
429
+ clusters = zipcode, se_type = "stata")
430
+
431
+ rr_zinc00 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
432
+ + educ + pct_white + pct_black + pct_unemployed
433
+ + pct_college + log_per_cap_inc + gini + south + non_rural
434
+ + log_pop_density + zipcode_inc_gap_00,
435
+ data = dta %>% filter(white == 1),
436
+ clusters = zipcode, se_type = "stata")
437
+
438
+ rr_cinc00 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
439
+ + educ + pct_white + pct_black + pct_unemployed
440
+ + pct_college + log_per_cap_inc + gini + south + non_rural
441
+ + log_pop_density + county_inc_gap_00,
442
+ data = dta %>% filter(white == 1),
443
+ clusters = zipcode, se_type = "stata")
444
+
445
+ affirm_zinc00 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
446
+ + educ + pct_white + pct_black + pct_unemployed
447
+ + pct_college + log_per_cap_inc + gini + south + non_rural
448
+ + log_pop_density + zipcode_inc_gap_00,
449
+ data = dta %>% filter(white == 1),
450
+ clusters = zipcode, se_type = "stata")
451
+
452
+ affirm_cinc00 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
453
+ + educ + pct_white + pct_black + pct_unemployed
454
+ + pct_college + log_per_cap_inc + gini + south + non_rural
455
+ + log_pop_density + county_inc_gap_00,
456
+ data = dta %>% filter(white == 1),
457
+ clusters = zipcode, se_type = "stata")
458
+
459
+ ## Table of coefs., and save
460
+ ###############
461
+ ## TABLE A12 ##
462
+ ###############
463
+ texreg(list(pres_dem_zinc00, pres_dem_cinc00,
464
+ house_dem_zinc00, house_dem_cinc00,
465
+ rr_zinc00, rr_cinc00,
466
+ affirm_zinc00, affirm_cinc00),
467
+ file = "03_output/inc00.tex",
468
+ label = "inc00",
469
+ caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- Controlling for the Racial Income Gap in 2000",
470
+ custom.model.names = c("\\textit{President}", "\\textit{President}",
471
+ "\\textit{U.S. House}", "\\textit{U.S. House}",
472
+ "\\textit{Racial Resentment}", "\\textit{Racial Resentment}",
473
+ "\\textit{Affirmative Action}", "\\textit{Affirmative Action}"),
474
+ custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
475
+ "Ideology", "Female", "Age", "Family Income",
476
+ "Education", "% White", "% Black",
477
+ "% Unemployed", "% College",
478
+ "log(Per Capita Income)", "Gini Coef.", "South",
479
+ "Non-Rural", "log(Pop. Density)",
480
+ "Zipcode White-Black Income Gap", "County White-Black Income Gap"),
481
+ reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1),
482
+ custom.gof.names = c(NA, NA, "Observations", NA, NA),
483
+ stars = c(0.05, 0.01, 0.001),
484
+ digits = 3,
485
+ center = TRUE,
486
+ include.ci = FALSE,
487
+ caption.above = TRUE,
488
+ scalebox = 0.7)
489
+
490
+ ## Subsetting to above median % white
491
+ pres_dem_median = lm_robust(pres_dem ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
492
+ + educ + pct_white + pct_black + pct_unemployed
493
+ + pct_college + log_per_cap_inc + gini + south + non_rural
494
+ + log_pop_density,
495
+ data = dta %>% filter(white == 1 & pct_white >= median(dta$pct_white, na.rm = TRUE)),
496
+ clusters = zipcode, se_type = "stata")
497
+
498
+ house_dem_median = lm_robust(house_dem ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
499
+ + educ + pct_white + pct_black + pct_unemployed
500
+ + pct_college + log_per_cap_inc + gini + south + non_rural
501
+ + log_pop_density,
502
+ data = dta %>% filter(white == 1 & pct_white >= median(dta$pct_white, na.rm = TRUE)),
503
+ clusters = zipcode, se_type = "stata")
504
+
505
+ rr_median = lm_robust(mean_rr ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
506
+ + educ + pct_white + pct_black + pct_unemployed
507
+ + pct_college + log_per_cap_inc + gini + south + non_rural
508
+ + log_pop_density,
509
+ data = dta %>% filter(white == 1 & pct_white >= median(dta$pct_white, na.rm = TRUE)),
510
+ clusters = zipcode, se_type = "stata")
511
+
512
+ affirm_median = lm_robust(affirm ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
513
+ + educ + pct_white + pct_black + pct_unemployed
514
+ + pct_college + log_per_cap_inc + gini + south + non_rural
515
+ + log_pop_density,
516
+ data = dta %>% filter(white == 1 & pct_white >= median(dta$pct_white, na.rm = TRUE)),
517
+ clusters = zipcode, se_type = "stata")
518
+
519
+ ## Table of coefs., and save
520
+ ###############
521
+ ## TABLE A13 ##
522
+ ###############
523
+ texreg(list(pres_dem_median, house_dem_median, rr_median, affirm_median),
524
+ file = "03_output/median.tex",
525
+ label = "median",
526
+ caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- % White > Median",
527
+ custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
528
+ "\\textit{Affirmative Action}"),
529
+ custom.coef.names = c("Intercept", "% Black Workers", "Party ID",
530
+ "Ideology", "Female", "Age", "Family Income",
531
+ "Education", "% White", "% Black",
532
+ "% Unemployed", "% College",
533
+ "log(Per Capita Income)", "Gini Coef.", "South",
534
+ "Non-Rural", "log(Pop. Density)"),
535
+ reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
536
+ custom.gof.names = c(NA, NA, "Observations", NA, NA),
537
+ stars = c(0.05, 0.01, 0.001),
538
+ digits = 3,
539
+ center = TRUE,
540
+ include.ci = FALSE,
541
+ caption.above = TRUE,
542
+ scalebox = 0.7)
543
+
544
+ ## Subsetting to above 75th percentile % white
545
+ pres_dem_75 = lm_robust(pres_dem ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
546
+ + educ + pct_white + pct_black + pct_unemployed
547
+ + pct_college + log_per_cap_inc + gini + south + non_rural
548
+ + log_pop_density,
549
+ data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.75, na.rm = TRUE)),
550
+ clusters = zipcode, se_type = "stata")
551
+
552
+ house_dem_75 = lm_robust(house_dem ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
553
+ + educ + pct_white + pct_black + pct_unemployed
554
+ + pct_college + log_per_cap_inc + gini + south + non_rural
555
+ + log_pop_density,
556
+ data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.75, na.rm = TRUE)),
557
+ clusters = zipcode, se_type = "stata")
558
+
559
+ rr_75 = lm_robust(mean_rr ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
560
+ + educ + pct_white + pct_black + pct_unemployed
561
+ + pct_college + log_per_cap_inc + gini + south + non_rural
562
+ + log_pop_density,
563
+ data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.75, na.rm = TRUE)),
564
+ clusters = zipcode, se_type = "stata")
565
+
566
+ affirm_75 = lm_robust(affirm ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
567
+ + educ + pct_white + pct_black + pct_unemployed
568
+ + pct_college + log_per_cap_inc + gini + south + non_rural
569
+ + log_pop_density,
570
+ data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.75, na.rm = TRUE)),
571
+ clusters = zipcode, se_type = "stata")
572
+
573
+ ## Table of coefs., and save
574
+ ###############
575
+ ## TABLE A14 ##
576
+ ###############
577
+ texreg(list(pres_dem_75, house_dem_75, rr_75, affirm_75),
578
+ file = "03_output/p75.tex",
579
+ label = "p75",
580
+ caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- % White > 75th Percentile",
581
+ custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
582
+ "\\textit{Affirmative Action}"),
583
+ custom.coef.names = c("Intercept", "% Black Workers", "Party ID",
584
+ "Ideology", "Female", "Age", "Family Income",
585
+ "Education", "% White", "% Black",
586
+ "% Unemployed", "% College",
587
+ "log(Per Capita Income)", "Gini Coef.", "South",
588
+ "Non-Rural", "log(Pop. Density)"),
589
+ reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
590
+ custom.gof.names = c(NA, NA, "Observations", NA, NA),
591
+ stars = c(0.05, 0.01, 0.001),
592
+ digits = 3,
593
+ center = TRUE,
594
+ include.ci = FALSE,
595
+ caption.above = TRUE,
596
+ scalebox = 0.7)
597
+
598
+ ## Subsetting to above 90th percentile % white
599
+ pres_dem_90 = lm_robust(pres_dem ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
600
+ + educ + pct_white + pct_black + pct_unemployed
601
+ + pct_college + log_per_cap_inc + gini + south + non_rural
602
+ + log_pop_density,
603
+ data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.9, na.rm = TRUE)),
604
+ clusters = zipcode, se_type = "stata")
605
+
606
+ house_dem_90 = lm_robust(pres_dem ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
607
+ + educ + pct_white + pct_black + pct_unemployed
608
+ + pct_college + log_per_cap_inc + gini + south + non_rural
609
+ + log_pop_density,
610
+ data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.9, na.rm = TRUE)),
611
+ clusters = zipcode, se_type = "stata")
612
+
613
+ rr_90 = lm_robust(mean_rr ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
614
+ + educ + pct_white + pct_black + pct_unemployed
615
+ + pct_college + log_per_cap_inc + gini + south + non_rural
616
+ + log_pop_density,
617
+ data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.9, na.rm = TRUE)),
618
+ clusters = zipcode, se_type = "stata")
619
+
620
+ affirm_90 = lm_robust(affirm ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
621
+ + educ + pct_white + pct_black + pct_unemployed
622
+ + pct_college + log_per_cap_inc + gini + south + non_rural
623
+ + log_pop_density,
624
+ data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.9, na.rm = TRUE)),
625
+ clusters = zipcode, se_type = "stata")
626
+
627
+ ## Table of coefs., and save
628
+ ###############
629
+ ## TABLE A15 ##
630
+ ###############
631
+ texreg(list(pres_dem_90, house_dem_90, rr_90, affirm_90),
632
+ file = "03_output/p90.tex",
633
+ label = "p90",
634
+ caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- % White > 90th Percentile",
635
+ custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
636
+ "\\textit{Affirmative Action}"),
637
+ custom.coef.names = c("Intercept", "% Black Workers", "Party ID",
638
+ "Ideology", "Female", "Age", "Family Income",
639
+ "Education", "% White", "% Black",
640
+ "% Unemployed", "% College",
641
+ "log(Per Capita Income)", "Gini Coef.", "South",
642
+ "Non-Rural", "log(Pop. Density)"),
643
+ reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
644
+ custom.gof.names = c(NA, NA, "Observations", NA, NA),
645
+ stars = c(0.05, 0.01, 0.001),
646
+ digits = 3,
647
+ center = TRUE,
648
+ include.ci = FALSE,
649
+ caption.above = TRUE,
650
+ scalebox = 0.7)
4/replication_package/dta.RData ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e0162578ffce79c472e8f599bcbead101397fa93248c82b433b2124087ac8fe
3
+ size 9079006
4/replication_package/racial_flux.RData ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:948c3dce81ba842ba3cd7292a8fb992391025a9a6861aab344c7bb4abfb7e707
3
+ size 303333
4/replication_package/readme.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:033cfb988cc7fd12f856475cc26669e5e7315bad4cf983b005ac13bffcd4eee0
3
+ size 670
4/should_reproduce.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:355986b3de113d57f142f3c12760e0adfec4f983e34aa6535d850a9315dc6d9c
3
+ size 17