Commit
·
0d1e324
1
Parent(s):
71a5d3a
add 4
Browse files- 4/paper.pdf +3 -0
- 4/replication_package/acs.RData +3 -0
- 4/replication_package/an_blacks.R +149 -0
- 4/replication_package/an_descriptives.R +78 -0
- 4/replication_package/an_main.R +150 -0
- 4/replication_package/an_non_racial.R +118 -0
- 4/replication_package/an_retired.R +152 -0
- 4/replication_package/an_robust.R +650 -0
- 4/replication_package/dta.RData +3 -0
- 4/replication_package/racial_flux.RData +3 -0
- 4/replication_package/readme.txt +3 -0
- 4/should_reproduce.txt +3 -0
4/paper.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:17d81e44bfd9a2a11d4566c6631e04fca53554344f9146321fd9e1d3858dbfab
|
3 |
+
size 1651200
|
4/replication_package/acs.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f5dc507fd2ad95a56dd05a9a0544cf1d9d0708fe3350fb5d568f36f2f2a0494
|
3 |
+
size 590945
|
4/replication_package/an_blacks.R
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Voting and racial attitudes (blacks only)
|
2 |
+
## Brian T. Hamel and Bryan Wilcox-Archuleta
|
3 |
+
## First: 24 September 2019
|
4 |
+
## Last: 19 March 2020
|
5 |
+
|
6 |
+
## Loading packages
|
7 |
+
## install.packages(c("estimatr", "tidyverse", "magrittr", "texreg", "gridExtra", "scales"))
|
8 |
+
library(estimatr)
|
9 |
+
library(tidyverse)
|
10 |
+
library(magrittr)
|
11 |
+
library(texreg)
|
12 |
+
library(gridExtra)
|
13 |
+
library(scales)
|
14 |
+
|
15 |
+
## Loading data
|
16 |
+
load("01_data/dta.RData")
|
17 |
+
|
18 |
+
## Create shell
|
19 |
+
shell = dta %>% filter(black == 1) %$%
|
20 |
+
expand.grid(racial_flux = seq(min(racial_flux, na.rm = TRUE), max(racial_flux, na.rm = TRUE), by = 1),
|
21 |
+
pid7 = round(mean(pid7, na.rm = TRUE), digits = 2),
|
22 |
+
ideo5 = round(mean(ideo5, na.rm = TRUE), digits = 2),
|
23 |
+
female = round(mean(female, na.rm = TRUE), digits = 2),
|
24 |
+
age = round(mean(age, na.rm = TRUE), digits = 2),
|
25 |
+
faminc = round(mean(faminc, na.rm = TRUE), digit = 2),
|
26 |
+
educ = round(mean(educ, na.rm = TRUE), digits = 2),
|
27 |
+
pct_white = round(mean(pct_white, na.rm = TRUE), digits = 2),
|
28 |
+
pct_black = round(mean(pct_black, na.rm = TRUE), digits = 2),
|
29 |
+
pct_unemployed = round(mean(pct_unemployed, na.rm = TRUE), digits = 2),
|
30 |
+
pct_college = round(mean(pct_college, na.rm = TRUE), digits = 2),
|
31 |
+
log_per_cap_inc = round(mean(log_per_cap_inc, na.rm = TRUE), digits = 2),
|
32 |
+
gini = round(mean(gini, na.rm = TRUE), digits = 2),
|
33 |
+
south = round(mean(south, na.rm = TRUE), digits = 2),
|
34 |
+
non_rural = round(mean(non_rural, na.rm = TRUE), digits = 2),
|
35 |
+
log_pop_density = round(mean(log_pop_density, na.rm = TRUE), digits = 2)) %>%
|
36 |
+
na.omit()
|
37 |
+
|
38 |
+
## Models and predicted probabilities
|
39 |
+
pres_dem = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
40 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
41 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
42 |
+
+ log_pop_density, data = dta %>% filter(black == 1),
|
43 |
+
clusters = zipcode, se_type = "stata")
|
44 |
+
|
45 |
+
pred_pres_dem = cbind(predict(pres_dem, shell,
|
46 |
+
se.fit = TRUE, type = "response"),
|
47 |
+
shell)
|
48 |
+
|
49 |
+
house_dem = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
50 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
51 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
52 |
+
+ log_pop_density, data = dta %>% filter(black == 1),
|
53 |
+
clusters = zipcode, se_type = "stata")
|
54 |
+
|
55 |
+
pred_house_dem = cbind(predict(house_dem, shell,
|
56 |
+
se.fit = TRUE, type = "response"),
|
57 |
+
shell)
|
58 |
+
|
59 |
+
rr = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
60 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
61 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
62 |
+
+ log_pop_density, data = dta %>% filter(black == 1),
|
63 |
+
clusters = zipcode, se_type = "stata")
|
64 |
+
|
65 |
+
pred_rr = cbind(predict(rr, shell,
|
66 |
+
se.fit = TRUE, type = "response"),
|
67 |
+
shell)
|
68 |
+
|
69 |
+
affirm = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
70 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
71 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
72 |
+
+ log_pop_density, data = dta %>% filter(black == 1),
|
73 |
+
clusters = zipcode, se_type = "stata")
|
74 |
+
|
75 |
+
pred_affirm = cbind(predict(affirm, shell,
|
76 |
+
se.fit = TRUE, type = "response"),
|
77 |
+
shell)
|
78 |
+
|
79 |
+
## Table of coefs., and save
|
80 |
+
##############
|
81 |
+
## TABLE A6 ##
|
82 |
+
##############
|
83 |
+
texreg(list(pres_dem, house_dem, rr, affirm),
|
84 |
+
file = "03_output/blacks.tex",
|
85 |
+
label = "blacks",
|
86 |
+
caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Blacks)",
|
87 |
+
custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
|
88 |
+
"\\textit{Affirmative Action}"),
|
89 |
+
custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
|
90 |
+
"Ideology", "Female", "Age", "Family Income",
|
91 |
+
"Education", "% White", "% Black",
|
92 |
+
"% Unemployed", "% College",
|
93 |
+
"log(Per Capita Income)", "Gini Coef.", "South",
|
94 |
+
"Non-Rural", "log(Pop. Density)"),
|
95 |
+
reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
|
96 |
+
custom.gof.names = c(NA, NA, "Observations", NA, NA),
|
97 |
+
stars = c(0.05, 0.01, 0.001),
|
98 |
+
digits = 3,
|
99 |
+
center = TRUE,
|
100 |
+
include.ci = FALSE,
|
101 |
+
caption.above = TRUE)
|
102 |
+
|
103 |
+
## Plot, and save
|
104 |
+
pred_pres_dem = cbind(pred_pres_dem, outcome = "President")
|
105 |
+
pred_house_dem = cbind(pred_house_dem, outcome = "U.S. House")
|
106 |
+
pred_vote = bind_rows(pred_pres_dem, pred_house_dem) %>%
|
107 |
+
mutate(upper = fit + 1.96 * se.fit,
|
108 |
+
lower = fit - 1.96 * se.fit)
|
109 |
+
|
110 |
+
vote_plot = ggplot(pred_vote, aes(x = racial_flux, y = fit, ymin = lower, ymax = upper)) +
|
111 |
+
geom_line(color = "red4") +
|
112 |
+
geom_ribbon(alpha = .2, fill = "red1") +
|
113 |
+
facet_wrap(~ outcome, nrow = 1, scales = "free") +
|
114 |
+
labs(y = "Pr(Vote Democrat)",
|
115 |
+
x = "") +
|
116 |
+
geom_rug(data = dta %>% filter(black == 1), aes(x = racial_flux), inherit.aes = FALSE, sides = "b") +
|
117 |
+
scale_y_continuous(labels = number_format(accuracy = 0.01)) +
|
118 |
+
theme(legend.title = element_blank(),
|
119 |
+
panel.spacing = unit(1, "lines"),
|
120 |
+
axis.line.y = element_blank())
|
121 |
+
|
122 |
+
pred_rr = cbind(pred_rr, outcome = "Racial Resentment")
|
123 |
+
pred_affirm = cbind(pred_affirm, outcome = "Affirmative Action")
|
124 |
+
pred_att = bind_rows(pred_rr, pred_affirm) %>%
|
125 |
+
mutate(upper = fit + 1.96 * se.fit,
|
126 |
+
lower = fit - 1.96 * se.fit)
|
127 |
+
pred_att$outcome = factor(pred_att$outcome, levels = c("Racial Resentment",
|
128 |
+
"Affirmative Action"))
|
129 |
+
|
130 |
+
###############
|
131 |
+
## FIGURE A2 ##
|
132 |
+
###############
|
133 |
+
att_plot = ggplot(pred_att, aes(x = racial_flux, y = fit, ymin = lower, ymax = upper)) +
|
134 |
+
geom_line(color = "red4") +
|
135 |
+
geom_ribbon(alpha = .2, fill = "red1") +
|
136 |
+
facet_wrap(~ outcome, nrow = 1, scales = "free") +
|
137 |
+
labs(y = "Predicted Attitude",
|
138 |
+
x = "Racial Flux") +
|
139 |
+
geom_rug(data = dta %>% filter(black == 1), aes(x = racial_flux), inherit.aes = FALSE, sides = "b") +
|
140 |
+
scale_y_continuous(labels = number_format(accuracy = 0.01)) +
|
141 |
+
theme(legend.title = element_blank(),
|
142 |
+
panel.spacing = unit(1, "lines"),
|
143 |
+
axis.line.y = element_blank())
|
144 |
+
|
145 |
+
main = grid.arrange(vote_plot, att_plot, ncol = 1, nrow = 2)
|
146 |
+
ggsave(main, file = "03_output/blacks.png", height = 4, width = 4, units = "in", dpi = 600)
|
147 |
+
|
148 |
+
## Clear R
|
149 |
+
rm(list = ls())
|
4/replication_package/an_descriptives.R
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Descriptive statistics
|
2 |
+
## Brian T. Hamel and Bryan Wilcox-Archuleta
|
3 |
+
## First: 28 April 2019
|
4 |
+
## Last: 19 March 2020
|
5 |
+
|
6 |
+
## Loading packages
|
7 |
+
## install.packages(c("tidyverse", "estimatr", "ggpubr", "gridExtra", "texreg", "scales"))
|
8 |
+
library(tidyverse)
|
9 |
+
library(estimatr)
|
10 |
+
library(ggpubr)
|
11 |
+
library(gridExtra)
|
12 |
+
library(texreg)
|
13 |
+
library(scales)
|
14 |
+
|
15 |
+
## Loading Racial Flux data
|
16 |
+
load("01_data/lodes/racial_flux.RData")
|
17 |
+
|
18 |
+
## Loading ACS data
|
19 |
+
load("01_data/acs/acs.RData")
|
20 |
+
|
21 |
+
## Merging Racial Flux and ACS data
|
22 |
+
dta = racial_flux %>%
|
23 |
+
left_join(., acs, by = c("zcta" = "zip"))
|
24 |
+
|
25 |
+
## Plotting Racial Flux vs. % white and % black
|
26 |
+
###############
|
27 |
+
## FIGURE 1 ##
|
28 |
+
###############
|
29 |
+
pct_white = ggplot(dta, aes(x = pct_white, y = racial_flux)) +
|
30 |
+
geom_point(color = "black", shape = 1, alpha = .25) +
|
31 |
+
stat_smooth(method = "lm_robust", se = FALSE, lty = 2, color = "blue", show.legend = TRUE) +
|
32 |
+
stat_smooth(method = "loess", se = FALSE, color = "red", show.legend = TRUE) +
|
33 |
+
labs(x = "% White", y = "Racial Flux") +
|
34 |
+
scale_y_continuous(labels = number_format(accuracy = 0.01)) +
|
35 |
+
theme(legend.title = element_blank()) +
|
36 |
+
stat_cor(method = "pearson", label.x = 2, label.y = 85, size = 2)
|
37 |
+
|
38 |
+
pct_black = ggplot(dta, aes(x = pct_black, y = racial_flux)) +
|
39 |
+
geom_point(color = "black", shape = 1, alpha = .25) +
|
40 |
+
stat_smooth(method = "lm_robust", se = FALSE, lty = 2, color = "blue", show.legend = TRUE) +
|
41 |
+
stat_smooth(method = "loess", se = FALSE, color = "red", show.legend = TRUE) +
|
42 |
+
labs(x = "% Black", y = "") +
|
43 |
+
scale_y_continuous(labels = number_format(accuracy = 0.01)) +
|
44 |
+
theme(legend.title = element_blank()) +
|
45 |
+
stat_cor(method = "pearson", label.x = 2, label.y = 85, size = 2)
|
46 |
+
|
47 |
+
## Combine plots, and save
|
48 |
+
flux_res = grid.arrange(pct_white, pct_black, ncol = 2, nrow = 1)
|
49 |
+
ggsave(flux_res, file = "03_output/flux_res.png", height = 2, width = 4, units = "in", dpi = 600)
|
50 |
+
|
51 |
+
## Correlates of Racial Flux
|
52 |
+
correlates = lm_robust(racial_flux ~ pct_white + pct_black
|
53 |
+
+ pct_unemployed + pct_college + log_per_cap_inc + gini + south
|
54 |
+
+ non_rural + log_pop_density, data = dta, se_type = "stata")
|
55 |
+
|
56 |
+
## Save table of coefficients
|
57 |
+
##############
|
58 |
+
## TABLE A2 ##
|
59 |
+
##############
|
60 |
+
texreg(correlates,
|
61 |
+
file = "03_output/correlates.tex",
|
62 |
+
label = "correlates",
|
63 |
+
caption = "Multivariate Correlates of Racial Flux",
|
64 |
+
custom.model.names = c("(1)"),
|
65 |
+
custom.coef.names = c("Intercept", "% White", "% Black",
|
66 |
+
"% Unemployed", "% College",
|
67 |
+
"log(Per Capita Income)", "Gini Coef.", "South",
|
68 |
+
"Non-Rural", "log(Pop. Density)"),
|
69 |
+
reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 1),
|
70 |
+
custom.gof.names = c(NA, NA, "Observations", NA, NA),
|
71 |
+
stars = c(0.05, 0.01, 0.001),
|
72 |
+
digits = 3,
|
73 |
+
center = TRUE,
|
74 |
+
include.ci = FALSE,
|
75 |
+
caption.above = TRUE)
|
76 |
+
|
77 |
+
## Clear R
|
78 |
+
rm(list = ls())
|
4/replication_package/an_main.R
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Voting and racial attitudes (whites only)
|
2 |
+
## Brian T. Hamel and Bryan Wilcox-Archuleta
|
3 |
+
## First: 5 May 2019
|
4 |
+
## Last: 19 March 2019
|
5 |
+
|
6 |
+
## Loading packages
|
7 |
+
## install.packages(c("estimatr", "tidyverse", "magrittr", "texreg", "gridExtra", "scales"))
|
8 |
+
library(estimatr)
|
9 |
+
library(tidyverse)
|
10 |
+
library(magrittr)
|
11 |
+
library(texreg)
|
12 |
+
library(gridExtra)
|
13 |
+
library(scales)
|
14 |
+
|
15 |
+
## Loading data
|
16 |
+
load("01_data/dta.RData")
|
17 |
+
|
18 |
+
## Create shell
|
19 |
+
shell = dta %>% filter(white == 1) %$%
|
20 |
+
expand.grid(racial_flux = seq(min(racial_flux, na.rm = TRUE), max(racial_flux, na.rm = TRUE), by = 1),
|
21 |
+
pid7 = round(mean(pid7, na.rm = TRUE), digits = 2),
|
22 |
+
ideo5 = round(mean(ideo5, na.rm = TRUE), digits = 2),
|
23 |
+
female = round(mean(female, na.rm = TRUE), digits = 2),
|
24 |
+
age = round(mean(age, na.rm = TRUE), digits = 2),
|
25 |
+
faminc = round(mean(faminc, na.rm = TRUE), digit = 2),
|
26 |
+
educ = round(mean(educ, na.rm = TRUE), digits = 2),
|
27 |
+
pct_white = round(mean(pct_white, na.rm = TRUE), digits = 2),
|
28 |
+
pct_black = round(mean(pct_black, na.rm = TRUE), digits = 2),
|
29 |
+
pct_unemployed = round(mean(pct_unemployed, na.rm = TRUE), digits = 2),
|
30 |
+
pct_college = round(mean(pct_college, na.rm = TRUE), digits = 2),
|
31 |
+
log_per_cap_inc = round(mean(log_per_cap_inc, na.rm = TRUE), digits = 2),
|
32 |
+
gini = round(mean(gini, na.rm = TRUE), digits = 2),
|
33 |
+
south = round(mean(south, na.rm = TRUE), digits = 2),
|
34 |
+
non_rural = round(mean(non_rural, na.rm = TRUE), digits = 2),
|
35 |
+
log_pop_density = round(mean(log_pop_density, na.rm = TRUE), digits = 2)) %>%
|
36 |
+
na.omit()
|
37 |
+
|
38 |
+
## Models and predicted probabilities
|
39 |
+
pres_dem = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
40 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
41 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
42 |
+
+ log_pop_density, data = dta %>% filter(white == 1),
|
43 |
+
clusters = zipcode, se_type = "stata")
|
44 |
+
|
45 |
+
pred_pres_dem = cbind(predict(pres_dem, shell,
|
46 |
+
se.fit = TRUE, type = "response"),
|
47 |
+
shell)
|
48 |
+
|
49 |
+
house_dem = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
50 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
51 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
52 |
+
+ log_pop_density, data = dta %>% filter(white == 1),
|
53 |
+
clusters = zipcode, se_type = "stata")
|
54 |
+
|
55 |
+
pred_house_dem = cbind(predict(house_dem, shell,
|
56 |
+
se.fit = TRUE, type = "response"),
|
57 |
+
shell)
|
58 |
+
|
59 |
+
rr = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
60 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
61 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
62 |
+
+ log_pop_density, data = dta %>% filter(white == 1),
|
63 |
+
clusters = zipcode, se_type = "stata")
|
64 |
+
|
65 |
+
pred_rr = cbind(predict(rr, shell,
|
66 |
+
se.fit = TRUE, type = "response"),
|
67 |
+
shell)
|
68 |
+
|
69 |
+
affirm = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
70 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
71 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
72 |
+
+ log_pop_density, data = dta %>% filter(white == 1),
|
73 |
+
clusters = zipcode, se_type = "stata")
|
74 |
+
|
75 |
+
pred_affirm = cbind(predict(affirm, shell,
|
76 |
+
se.fit = TRUE, type = "response"),
|
77 |
+
shell)
|
78 |
+
|
79 |
+
## Table of coefs., and save
|
80 |
+
############################
|
81 |
+
## TABLE 1 AND TABLE A3 ###
|
82 |
+
############################
|
83 |
+
texreg(list(pres_dem, house_dem, rr, affirm),
|
84 |
+
file = "03_output/main.tex",
|
85 |
+
label = "main",
|
86 |
+
caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites)",
|
87 |
+
custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
|
88 |
+
"\\textit{Affirmative Action}"),
|
89 |
+
custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
|
90 |
+
"Ideology", "Female", "Age", "Family Income",
|
91 |
+
"Education", "% White", "% Black",
|
92 |
+
"% Unemployed", "% College",
|
93 |
+
"log(Per Capita Income)", "Gini Coef.", "South",
|
94 |
+
"Non-Rural", "log(Pop. Density)"),
|
95 |
+
reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
|
96 |
+
custom.gof.names = c(NA, NA, "Observations", NA, NA),
|
97 |
+
stars = c(0.05, 0.01, 0.001),
|
98 |
+
digits = 3,
|
99 |
+
center = TRUE,
|
100 |
+
include.ci = FALSE,
|
101 |
+
caption.above = TRUE,
|
102 |
+
scalebox = 0.7)
|
103 |
+
|
104 |
+
## Plot, and save
|
105 |
+
pred_pres_dem = cbind(pred_pres_dem, outcome = "President")
|
106 |
+
pred_house_dem = cbind(pred_house_dem, outcome = "U.S. House")
|
107 |
+
pred_vote = bind_rows(pred_pres_dem, pred_house_dem) %>%
|
108 |
+
mutate(upper = fit + 1.96 * se.fit,
|
109 |
+
lower = fit - 1.96 * se.fit)
|
110 |
+
|
111 |
+
vote_plot = ggplot(pred_vote, aes(x = racial_flux, y = fit, ymin = lower, ymax = upper)) +
|
112 |
+
geom_line(color = "red4") +
|
113 |
+
geom_ribbon(alpha = .2, fill = "red1") +
|
114 |
+
facet_wrap(~ outcome, nrow = 1, scales = "free") +
|
115 |
+
labs(y = "Pr(Vote Democrat)",
|
116 |
+
x = "") +
|
117 |
+
geom_rug(data = dta %>% filter(white == 1), aes(x = racial_flux), inherit.aes = FALSE, sides = "b") +
|
118 |
+
scale_y_continuous(labels = number_format(accuracy = 0.01)) +
|
119 |
+
theme(legend.title = element_blank(),
|
120 |
+
panel.spacing = unit(1, "lines"),
|
121 |
+
axis.line.y = element_blank())
|
122 |
+
|
123 |
+
pred_rr = cbind(pred_rr, outcome = "Racial Resentment")
|
124 |
+
pred_affirm = cbind(pred_affirm, outcome = "Affirmative Action")
|
125 |
+
pred_att = bind_rows(pred_rr, pred_affirm) %>%
|
126 |
+
mutate(upper = fit + 1.96 * se.fit,
|
127 |
+
lower = fit - 1.96 * se.fit)
|
128 |
+
pred_att$outcome = factor(pred_att$outcome, levels = c("Racial Resentment",
|
129 |
+
"Affirmative Action"))
|
130 |
+
|
131 |
+
##############
|
132 |
+
## FIGURE 2 ##
|
133 |
+
##############
|
134 |
+
att_plot = ggplot(pred_att, aes(x = racial_flux, y = fit, ymin = lower, ymax = upper)) +
|
135 |
+
geom_line(color = "red4") +
|
136 |
+
geom_ribbon(alpha = .2, fill = "red1") +
|
137 |
+
facet_wrap(~ outcome, nrow = 1, scales = "free") +
|
138 |
+
labs(y = "Predicted Attitude",
|
139 |
+
x = "Racial Flux") +
|
140 |
+
geom_rug(data = dta %>% filter(white == 1), aes(x = racial_flux), inherit.aes = FALSE, sides = "b") +
|
141 |
+
scale_y_continuous(labels = number_format(accuracy = 0.01)) +
|
142 |
+
theme(legend.title = element_blank(),
|
143 |
+
panel.spacing = unit(1, "lines"),
|
144 |
+
axis.line.y = element_blank())
|
145 |
+
|
146 |
+
main = grid.arrange(vote_plot, att_plot, ncol = 1, nrow = 2)
|
147 |
+
ggsave(main, file = "03_output/main.png", height = 4, width = 4, units = "in", dpi = 600)
|
148 |
+
|
149 |
+
## Clear R
|
150 |
+
rm(list = ls())
|
4/replication_package/an_non_racial.R
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Non-racial attitudes (whites only)
|
2 |
+
## Brian T. Hamel and Bryan Wilcox-Archuleta
|
3 |
+
## First: 24 September 2019
|
4 |
+
## Last: 19 March 2020
|
5 |
+
|
6 |
+
## Loading packages
|
7 |
+
## install.packages(c("estimatr", "tidyverse", "magrittr", "texreg", "gridExtra", "scales"))
|
8 |
+
library(estimatr)
|
9 |
+
library(tidyverse)
|
10 |
+
library(magrittr)
|
11 |
+
library(texreg)
|
12 |
+
library(gridExtra)
|
13 |
+
library(scales)
|
14 |
+
|
15 |
+
## Loading data
|
16 |
+
load("01_data/dta.RData")
|
17 |
+
|
18 |
+
## Create shell
|
19 |
+
shell = dta %>% filter(white == 1) %$%
|
20 |
+
expand.grid(racial_flux = seq(min(racial_flux, na.rm = TRUE), max(racial_flux, na.rm = TRUE), by = 1),
|
21 |
+
pid7 = round(mean(pid7, na.rm = TRUE), digits = 2),
|
22 |
+
ideo5 = round(mean(ideo5, na.rm = TRUE), digits = 2),
|
23 |
+
female = round(mean(female, na.rm = TRUE), digits = 2),
|
24 |
+
age = round(mean(age, na.rm = TRUE), digits = 2),
|
25 |
+
faminc = round(mean(faminc, na.rm = TRUE), digit = 2),
|
26 |
+
educ = round(mean(educ, na.rm = TRUE), digits = 2),
|
27 |
+
pct_white = round(mean(pct_white, na.rm = TRUE), digits = 2),
|
28 |
+
pct_black = round(mean(pct_black, na.rm = TRUE), digits = 2),
|
29 |
+
pct_unemployed = round(mean(pct_unemployed, na.rm = TRUE), digits = 2),
|
30 |
+
pct_college = round(mean(pct_college, na.rm = TRUE), digits = 2),
|
31 |
+
log_per_cap_inc = round(mean(log_per_cap_inc, na.rm = TRUE), digits = 2),
|
32 |
+
gini = round(mean(gini, na.rm = TRUE), digits = 2),
|
33 |
+
south = round(mean(south, na.rm = TRUE), digits = 2),
|
34 |
+
non_rural = round(mean(non_rural, na.rm = TRUE), digits = 2),
|
35 |
+
log_pop_density = round(mean(log_pop_density, na.rm = TRUE), digits = 2)) %>%
|
36 |
+
na.omit()
|
37 |
+
|
38 |
+
## Models and predicted probabilities
|
39 |
+
abortion = lm_robust(abortion ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
40 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
41 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
42 |
+
+ log_pop_density, data = dta %>% filter(white == 1),
|
43 |
+
clusters = zipcode, se_type = "stata")
|
44 |
+
|
45 |
+
pred_abortion = cbind(predict(abortion, shell,
|
46 |
+
se.fit = TRUE, type = "response"),
|
47 |
+
shell)
|
48 |
+
|
49 |
+
climate = lm_robust(climate ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
50 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
51 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
52 |
+
+ log_pop_density, data = dta %>% filter(white == 1),
|
53 |
+
clusters = zipcode, se_type = "stata")
|
54 |
+
|
55 |
+
pred_climate = cbind(predict(climate, shell,
|
56 |
+
se.fit = TRUE, type = "response"),
|
57 |
+
shell)
|
58 |
+
|
59 |
+
guns = lm_robust(guns ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
60 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
61 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
62 |
+
+ log_pop_density, data = dta %>% filter(white == 1),
|
63 |
+
clusters = zipcode, se_type = "stata")
|
64 |
+
|
65 |
+
pred_guns = cbind(predict(guns, shell,
|
66 |
+
se.fit = TRUE, type = "response"),
|
67 |
+
shell)
|
68 |
+
|
69 |
+
## Table of coefs., and save
|
70 |
+
##############
|
71 |
+
## TABLE A5 ##
|
72 |
+
##############
|
73 |
+
texreg(list(abortion, climate, guns),
|
74 |
+
file = "03_output/non_racial.tex",
|
75 |
+
label = "non_racial",
|
76 |
+
caption = "Racial Flux and Non-Racial Attitudes (Whites)",
|
77 |
+
custom.model.names = c("\\textit{Abortion}", "\\textit{Climate Change}",
|
78 |
+
"\\textit{Gun Control}"),
|
79 |
+
custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
|
80 |
+
"Ideology", "Female", "Age", "Family Income",
|
81 |
+
"Education", "% White", "% Black",
|
82 |
+
"% Unemployed", "% College",
|
83 |
+
"log(Per Capita Income)", "Gini Coef.", "South",
|
84 |
+
"Non-Rural", "log(Pop. Density)"),
|
85 |
+
reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
|
86 |
+
custom.gof.names = c(NA, NA, "Observations", NA, NA),
|
87 |
+
stars = c(0.05, 0.01, 0.001),
|
88 |
+
digits = 3,
|
89 |
+
center = TRUE,
|
90 |
+
include.ci = FALSE,
|
91 |
+
caption.above = TRUE)
|
92 |
+
|
93 |
+
## Plot, and save
|
94 |
+
pred_abortion = cbind(pred_abortion, outcome = "Abortion")
|
95 |
+
pred_climate = cbind(pred_climate, outcome = "Climate Change")
|
96 |
+
pred_guns = cbind(pred_guns, outcome = "Gun Control")
|
97 |
+
pred_att = bind_rows(pred_abortion, pred_climate, pred_guns) %>%
|
98 |
+
mutate(upper = fit + 1.96 * se.fit,
|
99 |
+
lower = fit - 1.96 * se.fit)
|
100 |
+
|
101 |
+
###############
|
102 |
+
## FIGURE A1 ##
|
103 |
+
###############
|
104 |
+
att_plot = ggplot(pred_att, aes(x = racial_flux, y = fit, ymin = lower, ymax = upper)) +
|
105 |
+
geom_line(color = "red4") +
|
106 |
+
geom_ribbon(alpha = .2, fill = "red1") +
|
107 |
+
facet_wrap(~ outcome, nrow = 2, ncol = 2, scales = "free") +
|
108 |
+
labs(y = "Predicted Attitude",
|
109 |
+
x = "Racial Flux") +
|
110 |
+
geom_rug(data = dta %>% filter(white == 1), aes(x = racial_flux), inherit.aes = FALSE, sides = "b") +
|
111 |
+
scale_y_continuous(labels = number_format(accuracy = 0.01)) +
|
112 |
+
theme(legend.title = element_blank(),
|
113 |
+
panel.spacing = unit(1, "lines"),
|
114 |
+
axis.line.y = element_blank()) +
|
115 |
+
ggsave(file = "03_output/non_racial.png", height = 4, width = 4, units = "in", dpi = 600)
|
116 |
+
|
117 |
+
## Clear R
|
118 |
+
rm(list = ls())
|
4/replication_package/an_retired.R
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Voting and racial attitudes (retired whites only)
|
2 |
+
## Brian T. Hamel and Bryan Wilcox-Archuleta
|
3 |
+
## First: 5 May 2019
|
4 |
+
## Last: 19 March 2020
|
5 |
+
|
6 |
+
## Loading packages
|
7 |
+
## install.packages(c("estimatr", "tidyverse", "magrittr", "texreg", "gridExtra", "scales"))
|
8 |
+
library(estimatr)
|
9 |
+
library(tidyverse)
|
10 |
+
library(magrittr)
|
11 |
+
library(texreg)
|
12 |
+
library(gridExtra)
|
13 |
+
library(scales)
|
14 |
+
|
15 |
+
## Loading data
|
16 |
+
load("01_data/dta.RData")
|
17 |
+
|
18 |
+
## Create shell
|
19 |
+
shell = dta %>% filter(white == 1 & retired == 1) %$%
|
20 |
+
expand.grid(racial_flux = seq(min(racial_flux, na.rm = TRUE), max(racial_flux, na.rm = TRUE), by = 1),
|
21 |
+
pid7 = round(mean(pid7, na.rm = TRUE), digits = 2),
|
22 |
+
ideo5 = round(mean(ideo5, na.rm = TRUE), digits = 2),
|
23 |
+
female = round(mean(female, na.rm = TRUE), digits = 2),
|
24 |
+
age = round(mean(age, na.rm = TRUE), digits = 2),
|
25 |
+
faminc = round(mean(faminc, na.rm = TRUE), digit = 2),
|
26 |
+
educ = round(mean(educ, na.rm = TRUE), digits = 2),
|
27 |
+
pct_white = round(mean(pct_white, na.rm = TRUE), digits = 2),
|
28 |
+
pct_black = round(mean(pct_black, na.rm = TRUE), digits = 2),
|
29 |
+
pct_unemployed = round(mean(pct_unemployed, na.rm = TRUE), digits = 2),
|
30 |
+
pct_college = round(mean(pct_college, na.rm = TRUE), digits = 2),
|
31 |
+
log_per_cap_inc = round(mean(log_per_cap_inc, na.rm = TRUE), digits = 2),
|
32 |
+
gini = round(mean(gini, na.rm = TRUE), digits = 2),
|
33 |
+
south = round(mean(south, na.rm = TRUE), digits = 2),
|
34 |
+
non_rural = round(mean(non_rural, na.rm = TRUE), digits = 2),
|
35 |
+
log_pop_density = round(mean(log_pop_density, na.rm = TRUE), digits = 2)) %>%
|
36 |
+
na.omit()
|
37 |
+
|
38 |
+
## Models and predicted probabilities
|
39 |
+
pres_dem = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
40 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
41 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
42 |
+
+ log_pop_density, data = dta %>% filter(white == 1 & retired == 1),
|
43 |
+
clusters = zipcode, se_type = "stata")
|
44 |
+
|
45 |
+
pred_pres_dem = cbind(predict(pres_dem, shell,
|
46 |
+
se.fit = TRUE, type = "response"),
|
47 |
+
shell)
|
48 |
+
|
49 |
+
house_dem = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
50 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
51 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
52 |
+
+ log_pop_density, data = dta %>% filter(white == 1 & retired == 1),
|
53 |
+
clusters = zipcode, se_type = "stata")
|
54 |
+
|
55 |
+
pred_house_dem = cbind(predict(house_dem, shell,
|
56 |
+
se.fit = TRUE, type = "response"),
|
57 |
+
shell)
|
58 |
+
|
59 |
+
rr = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
60 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
61 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
62 |
+
+ log_pop_density, data = dta %>% filter(white == 1 & retired == 1),
|
63 |
+
clusters = zipcode, se_type = "stata")
|
64 |
+
|
65 |
+
pred_rr = cbind(predict(rr, shell,
|
66 |
+
se.fit = TRUE, type = "response"),
|
67 |
+
shell)
|
68 |
+
|
69 |
+
affirm = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
70 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
71 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
72 |
+
+ log_pop_density, data = dta %>% filter(white == 1 & retired == 1),
|
73 |
+
clusters = zipcode, se_type = "stata")
|
74 |
+
|
75 |
+
pred_affirm = cbind(predict(affirm, shell,
|
76 |
+
se.fit = TRUE, type = "response"),
|
77 |
+
shell)
|
78 |
+
|
79 |
+
## Table of coefs., and save
|
80 |
+
##############
|
81 |
+
## TABLE A7 ##
|
82 |
+
##############
|
83 |
+
texreg(list(pres_dem, house_dem, rr, affirm),
|
84 |
+
file = "03_output/retired.tex",
|
85 |
+
label = "retired",
|
86 |
+
caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Retired Whites)",
|
87 |
+
custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
|
88 |
+
"\\textit{Affirmative Action}"),
|
89 |
+
custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
|
90 |
+
"Ideology", "Female", "Age", "Family Income",
|
91 |
+
"Education", "% White", "% Black",
|
92 |
+
"% Unemployed", "% College",
|
93 |
+
"log(Per Capita Income)", "Gini Coef.", "South",
|
94 |
+
"Non-Rural", "log(Pop. Density)"),
|
95 |
+
reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
|
96 |
+
custom.gof.names = c(NA, NA, "Observations", NA, NA),
|
97 |
+
stars = c(0.05, 0.01, 0.001),
|
98 |
+
digits = 3,
|
99 |
+
center = TRUE,
|
100 |
+
include.ci = FALSE,
|
101 |
+
caption.above = TRUE,
|
102 |
+
scalebox = 0.7)
|
103 |
+
|
104 |
+
## Plot, and save
|
105 |
+
pred_pres_dem = cbind(pred_pres_dem, outcome = "President")
|
106 |
+
pred_house_dem = cbind(pred_house_dem, outcome = "U.S. House")
|
107 |
+
pred_vote = bind_rows(pred_pres_dem, pred_house_dem) %>%
|
108 |
+
mutate(upper = fit + 1.96 * se.fit,
|
109 |
+
lower = fit - 1.96 * se.fit)
|
110 |
+
|
111 |
+
vote_plot = ggplot(pred_vote, aes(x = racial_flux, y = fit, ymin = lower, ymax = upper)) +
|
112 |
+
geom_line(color = "red4") +
|
113 |
+
geom_ribbon(alpha = .2, fill = "red1") +
|
114 |
+
facet_wrap(~ outcome, nrow = 1, scales = "free") +
|
115 |
+
labs(y = "Pr(Vote Democrat)",
|
116 |
+
x = "") +
|
117 |
+
geom_rug(data = dta %>% filter(white == 1 & retired == 1),
|
118 |
+
aes(x = racial_flux), inherit.aes = FALSE, sides = "b") +
|
119 |
+
scale_y_continuous(labels = number_format(accuracy = 0.01)) +
|
120 |
+
theme(legend.title = element_blank(),
|
121 |
+
panel.spacing = unit(1, "lines"),
|
122 |
+
axis.line.y = element_blank())
|
123 |
+
|
124 |
+
pred_rr = cbind(pred_rr, outcome = "Racial Resentment")
|
125 |
+
pred_affirm = cbind(pred_affirm, outcome = "Affirmative Action")
|
126 |
+
pred_att = bind_rows(pred_rr, pred_affirm) %>%
|
127 |
+
mutate(upper = fit + 1.96 * se.fit,
|
128 |
+
lower = fit - 1.96 * se.fit)
|
129 |
+
pred_att$outcome = factor(pred_att$outcome, levels = c("Racial Resentment",
|
130 |
+
"Affirmative Action"))
|
131 |
+
|
132 |
+
###############
|
133 |
+
## FIGURE A3 ##
|
134 |
+
###############
|
135 |
+
att_plot = ggplot(pred_att, aes(x = racial_flux, y = fit, ymin = lower, ymax = upper)) +
|
136 |
+
geom_line(color = "red4") +
|
137 |
+
geom_ribbon(alpha = .2, fill = "red1") +
|
138 |
+
facet_wrap(~ outcome, nrow = 1, scales = "free") +
|
139 |
+
labs(y = "Predicted Attitude",
|
140 |
+
x = "Racial Flux") +
|
141 |
+
geom_rug(data = dta %>% filter(white == 1 & retired == 1),
|
142 |
+
aes(x = racial_flux), inherit.aes = FALSE, sides = "b") +
|
143 |
+
scale_y_continuous(labels = number_format(accuracy = 0.01)) +
|
144 |
+
theme(legend.title = element_blank(),
|
145 |
+
panel.spacing = unit(1, "lines"),
|
146 |
+
axis.line.y = element_blank())
|
147 |
+
|
148 |
+
main = grid.arrange(vote_plot, att_plot, ncol = 1, nrow = 2)
|
149 |
+
ggsave(main, file = "03_output/retired.png", height = 4, width = 4, units = "in", dpi = 600)
|
150 |
+
|
151 |
+
## Clear R
|
152 |
+
rm(list = ls())
|
4/replication_package/an_robust.R
ADDED
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Voting and racial attitudes (whites only) -- robustness checks for JOP
|
2 |
+
## Brian T. Hamel and Bryan Wilcox-Archuleta
|
3 |
+
## First: 11 March 2020
|
4 |
+
## Last: 16 March 2020
|
5 |
+
|
6 |
+
## Loading packages
|
7 |
+
## install.packages(c("estimatr", "tidyverse", "magrittr", "texreg", "gridExtra", "scales"))
|
8 |
+
library(estimatr)
|
9 |
+
library(tidyverse)
|
10 |
+
library(magrittr)
|
11 |
+
library(texreg)
|
12 |
+
library(gridExtra)
|
13 |
+
library(scales)
|
14 |
+
library(lme4)
|
15 |
+
|
16 |
+
## Loading data
|
17 |
+
load("01_data/dta.RData")
|
18 |
+
|
19 |
+
## Number of people per zipcode
|
20 |
+
people_per_zip = dta %>%
|
21 |
+
group_by(zipcode) %>%
|
22 |
+
mutate(n = 1) %>%
|
23 |
+
summarise(tot_people = sum(n, na.rm = TRUE))
|
24 |
+
|
25 |
+
mean(people_per_zip$tot_people)
|
26 |
+
sd(people_per_zip$tot_people)
|
27 |
+
|
28 |
+
people_per_zip %>%
|
29 |
+
filter(tot_people >= 30)
|
30 |
+
|
31 |
+
## Re-estimating the main models with random slope and intercept
|
32 |
+
pres_dem = lmer(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
33 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
34 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
35 |
+
+ log_pop_density + (1 | zipcode),
|
36 |
+
data = dta %>% filter(white == 1))
|
37 |
+
|
38 |
+
house_dem = lmer(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
39 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
40 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
41 |
+
+ log_pop_density + (1 | zipcode),
|
42 |
+
data = dta %>% filter(white == 1))
|
43 |
+
|
44 |
+
rr = lmer(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
45 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
46 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
47 |
+
+ log_pop_density + (1 | zipcode),
|
48 |
+
data = dta %>% filter(white == 1))
|
49 |
+
|
50 |
+
affirm = lmer(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
51 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
52 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
53 |
+
+ log_pop_density + (1 | zipcode),
|
54 |
+
data = dta %>% filter(white == 1))
|
55 |
+
|
56 |
+
## Table of coefs., and save
|
57 |
+
##############
|
58 |
+
## TABLE A4 ##
|
59 |
+
##############
|
60 |
+
texreg(list(pres_dem, house_dem, rr, affirm),
|
61 |
+
file = "03_output/mlm.tex",
|
62 |
+
label = "mlm",
|
63 |
+
caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- Models with Random Intercept for Zip Code",
|
64 |
+
custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
|
65 |
+
"\\textit{Affirmative Action}"),
|
66 |
+
custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
|
67 |
+
"Ideology", "Female", "Age", "Family Income",
|
68 |
+
"Education", "% White", "% Black",
|
69 |
+
"% Unemployed", "% College",
|
70 |
+
"log(Per Capita Income)", "Gini Coef.", "South",
|
71 |
+
"Non-Rural", "log(Pop. Density)"),
|
72 |
+
reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
|
73 |
+
include.loglik = FALSE,
|
74 |
+
custom.gof.names = c(NA, NA, "\\# of Individuals", "\\# of Zip Codes", NA, NA),
|
75 |
+
stars = c(0.05, 0.01, 0.001),
|
76 |
+
digits = 3,
|
77 |
+
center = TRUE,
|
78 |
+
include.ci = FALSE,
|
79 |
+
caption.above = TRUE,
|
80 |
+
scalebox = 0.9)
|
81 |
+
|
82 |
+
|
83 |
+
## Adding past racial segregation -- 90
|
84 |
+
pres_dem_zseg90 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
85 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
86 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
87 |
+
+ log_pop_density + zipcode_dissim_90,
|
88 |
+
data = dta %>% filter(white == 1),
|
89 |
+
clusters = zipcode, se_type = "stata")
|
90 |
+
|
91 |
+
pres_dem_cseg90 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
92 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
93 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
94 |
+
+ log_pop_density + county_dissim_90,
|
95 |
+
data = dta %>% filter(white == 1),
|
96 |
+
clusters = zipcode, se_type = "stata")
|
97 |
+
|
98 |
+
house_dem_zseg90 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
99 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
100 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
101 |
+
+ log_pop_density + zipcode_dissim_90,
|
102 |
+
data = dta %>% filter(white == 1),
|
103 |
+
clusters = zipcode, se_type = "stata")
|
104 |
+
|
105 |
+
house_dem_cseg90 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
106 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
107 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
108 |
+
+ log_pop_density + county_dissim_90,
|
109 |
+
data = dta %>% filter(white == 1),
|
110 |
+
clusters = zipcode, se_type = "stata")
|
111 |
+
|
112 |
+
rr_zseg90 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
113 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
114 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
115 |
+
+ log_pop_density + zipcode_dissim_90,
|
116 |
+
data = dta %>% filter(white == 1),
|
117 |
+
clusters = zipcode, se_type = "stata")
|
118 |
+
|
119 |
+
rr_cseg90 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
120 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
121 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
122 |
+
+ log_pop_density + county_dissim_90,
|
123 |
+
data = dta %>% filter(white == 1),
|
124 |
+
clusters = zipcode, se_type = "stata")
|
125 |
+
|
126 |
+
affirm_zseg90 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
127 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
128 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
129 |
+
+ log_pop_density + zipcode_dissim_90,
|
130 |
+
data = dta %>% filter(white == 1),
|
131 |
+
clusters = zipcode, se_type = "stata")
|
132 |
+
|
133 |
+
affirm_cseg90 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
134 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
135 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
136 |
+
+ log_pop_density + county_dissim_90,
|
137 |
+
data = dta %>% filter(white == 1),
|
138 |
+
clusters = zipcode, se_type = "stata")
|
139 |
+
|
140 |
+
## Table of coefs., and save
|
141 |
+
##############
|
142 |
+
## TABLE A8 ##
|
143 |
+
##############
|
144 |
+
texreg(list(pres_dem_zseg90, pres_dem_cseg90,
|
145 |
+
house_dem_zseg90, house_dem_cseg90,
|
146 |
+
rr_zseg90, rr_cseg90,
|
147 |
+
affirm_zseg90, affirm_cseg90),
|
148 |
+
file = "03_output/seg90.tex",
|
149 |
+
label = "seg90",
|
150 |
+
caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- Controlling for Racial Segregation in 1990",
|
151 |
+
custom.model.names = c("\\textit{President}", "\\textit{President}",
|
152 |
+
"\\textit{U.S. House}", "\\textit{U.S. House}",
|
153 |
+
"\\textit{Racial Resentment}", "\\textit{Racial Resentment}",
|
154 |
+
"\\textit{Affirmative Action}", "\\textit{Affirmative Action}"),
|
155 |
+
custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
|
156 |
+
"Ideology", "Female", "Age", "Family Income",
|
157 |
+
"Education", "% White", "% Black",
|
158 |
+
"% Unemployed", "% College",
|
159 |
+
"log(Per Capita Income)", "Gini Coef.", "South",
|
160 |
+
"Non-Rural", "log(Pop. Density)",
|
161 |
+
"Zipcode Dissimilarity", "County Dissimilarity"),
|
162 |
+
reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1),
|
163 |
+
custom.gof.names = c(NA, NA, "Observations", NA, NA),
|
164 |
+
stars = c(0.05, 0.01, 0.001),
|
165 |
+
digits = 3,
|
166 |
+
center = TRUE,
|
167 |
+
include.ci = FALSE,
|
168 |
+
caption.above = TRUE,
|
169 |
+
scalebox = 0.7)
|
170 |
+
|
171 |
+
## Adding past racial segregation -- 00
|
172 |
+
pres_dem_zseg00 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
173 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
174 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
175 |
+
+ log_pop_density + zipcode_dissim_00,
|
176 |
+
data = dta %>% filter(white == 1),
|
177 |
+
clusters = zipcode, se_type = "stata")
|
178 |
+
|
179 |
+
pres_dem_cseg00 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
180 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
181 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
182 |
+
+ log_pop_density + county_dissim_00,
|
183 |
+
data = dta %>% filter(white == 1),
|
184 |
+
clusters = zipcode, se_type = "stata")
|
185 |
+
|
186 |
+
house_dem_zseg00 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
187 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
188 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
189 |
+
+ log_pop_density + zipcode_dissim_00,
|
190 |
+
data = dta %>% filter(white == 1),
|
191 |
+
clusters = zipcode, se_type = "stata")
|
192 |
+
|
193 |
+
house_dem_cseg00 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
194 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
195 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
196 |
+
+ log_pop_density + county_dissim_00,
|
197 |
+
data = dta %>% filter(white == 1),
|
198 |
+
clusters = zipcode, se_type = "stata")
|
199 |
+
|
200 |
+
rr_zseg00 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
201 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
202 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
203 |
+
+ log_pop_density + zipcode_dissim_00,
|
204 |
+
data = dta %>% filter(white == 1),
|
205 |
+
clusters = zipcode, se_type = "stata")
|
206 |
+
|
207 |
+
rr_cseg00 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
208 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
209 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
210 |
+
+ log_pop_density + county_dissim_00,
|
211 |
+
data = dta %>% filter(white == 1),
|
212 |
+
clusters = zipcode, se_type = "stata")
|
213 |
+
|
214 |
+
affirm_zseg00 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
215 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
216 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
217 |
+
+ log_pop_density + zipcode_dissim_00,
|
218 |
+
data = dta %>% filter(white == 1),
|
219 |
+
clusters = zipcode, se_type = "stata")
|
220 |
+
|
221 |
+
affirm_cseg00 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
222 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
223 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
224 |
+
+ log_pop_density + county_dissim_00,
|
225 |
+
data = dta %>% filter(white == 1),
|
226 |
+
clusters = zipcode, se_type = "stata")
|
227 |
+
|
228 |
+
## Table of coefs., and save
|
229 |
+
##############
|
230 |
+
## TABLE A9 ##
|
231 |
+
##############
|
232 |
+
texreg(list(pres_dem_zseg00, pres_dem_cseg00,
|
233 |
+
house_dem_zseg00, house_dem_cseg00,
|
234 |
+
rr_zseg00, rr_cseg00,
|
235 |
+
affirm_zseg00, affirm_cseg00),
|
236 |
+
file = "03_output/seg00.tex",
|
237 |
+
label = "seg00",
|
238 |
+
caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- Controlling for Racial Segregation in 2000",
|
239 |
+
custom.model.names = c("\\textit{President}", "\\textit{President}",
|
240 |
+
"\\textit{U.S. House}", "\\textit{U.S. House}",
|
241 |
+
"\\textit{Racial Resentment}", "\\textit{Racial Resentment}",
|
242 |
+
"\\textit{Affirmative Action}", "\\textit{Affirmative Action}"),
|
243 |
+
custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
|
244 |
+
"Ideology", "Female", "Age", "Family Income",
|
245 |
+
"Education", "% White", "% Black",
|
246 |
+
"% Unemployed", "% College",
|
247 |
+
"log(Per Capita Income)", "Gini Coef.", "South",
|
248 |
+
"Non-Rural", "log(Pop. Density)",
|
249 |
+
"Zipcode Dissimilarity", "County Dissimilarity"),
|
250 |
+
reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1),
|
251 |
+
custom.gof.names = c(NA, NA, "Observations", NA, NA),
|
252 |
+
stars = c(0.05, 0.01, 0.001),
|
253 |
+
digits = 3,
|
254 |
+
center = TRUE,
|
255 |
+
include.ci = FALSE,
|
256 |
+
caption.above = TRUE,
|
257 |
+
scalebox = 0.7)
|
258 |
+
|
259 |
+
## Adding past racial conflict
|
260 |
+
pres_dem_conflict = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
261 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
262 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
263 |
+
+ log_pop_density + goldwater + protest,
|
264 |
+
data = dta %>% filter(white == 1),
|
265 |
+
clusters = zipcode, se_type = "stata")
|
266 |
+
|
267 |
+
house_dem_conflict = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
268 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
269 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
270 |
+
+ log_pop_density + goldwater + protest,
|
271 |
+
data = dta %>% filter(white == 1),
|
272 |
+
clusters = zipcode, se_type = "stata")
|
273 |
+
|
274 |
+
rr_conflict = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
275 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
276 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
277 |
+
+ log_pop_density + goldwater + protest,
|
278 |
+
data = dta %>% filter(white == 1),
|
279 |
+
clusters = zipcode, se_type = "stata")
|
280 |
+
|
281 |
+
affirm_conflict = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
282 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
283 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
284 |
+
+ log_pop_density + goldwater + protest,
|
285 |
+
data = dta %>% filter(white == 1),
|
286 |
+
clusters = zipcode, se_type = "stata")
|
287 |
+
|
288 |
+
## Table of coefs., and save
|
289 |
+
##############
|
290 |
+
## TABLE A10 ##
|
291 |
+
##############
|
292 |
+
texreg(list(pres_dem_conflict, house_dem_conflict, rr_conflict, affirm_conflict),
|
293 |
+
file = "03_output/conflict.tex",
|
294 |
+
label = "conflict",
|
295 |
+
caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- Controlling for Past Racial and Political Conflict",
|
296 |
+
custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
|
297 |
+
"\\textit{Affirmative Action}"),
|
298 |
+
custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
|
299 |
+
"Ideology", "Female", "Age", "Family Income",
|
300 |
+
"Education", "% White", "% Black",
|
301 |
+
"% Unemployed", "% College",
|
302 |
+
"log(Per Capita Income)", "Gini Coef.", "South",
|
303 |
+
"Non-Rural", "log(Pop. Density)",
|
304 |
+
"Support for Goldwater", "Civil Rights Protest"),
|
305 |
+
reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1),
|
306 |
+
custom.gof.names = c(NA, NA, "Observations", NA, NA),
|
307 |
+
stars = c(0.05, 0.01, 0.001),
|
308 |
+
digits = 3,
|
309 |
+
center = TRUE,
|
310 |
+
include.ci = FALSE,
|
311 |
+
caption.above = TRUE,
|
312 |
+
scalebox = 0.7)
|
313 |
+
|
314 |
+
## Adding past racial income gap -- 90
|
315 |
+
pres_dem_zinc90 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
316 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
317 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
318 |
+
+ log_pop_density + zipcode_inc_gap_90,
|
319 |
+
data = dta %>% filter(white == 1),
|
320 |
+
clusters = zipcode, se_type = "stata")
|
321 |
+
|
322 |
+
pres_dem_cinc90 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
323 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
324 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
325 |
+
+ log_pop_density + county_inc_gap_90,
|
326 |
+
data = dta %>% filter(white == 1),
|
327 |
+
clusters = zipcode, se_type = "stata")
|
328 |
+
|
329 |
+
house_dem_zinc90 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
330 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
331 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
332 |
+
+ log_pop_density + zipcode_inc_gap_90,
|
333 |
+
data = dta %>% filter(white == 1),
|
334 |
+
clusters = zipcode, se_type = "stata")
|
335 |
+
|
336 |
+
house_dem_cinc90 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
337 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
338 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
339 |
+
+ log_pop_density + county_inc_gap_90,
|
340 |
+
data = dta %>% filter(white == 1),
|
341 |
+
clusters = zipcode, se_type = "stata")
|
342 |
+
|
343 |
+
rr_zinc90 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
344 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
345 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
346 |
+
+ log_pop_density + zipcode_inc_gap_90,
|
347 |
+
data = dta %>% filter(white == 1),
|
348 |
+
clusters = zipcode, se_type = "stata")
|
349 |
+
|
350 |
+
rr_cinc90 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
351 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
352 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
353 |
+
+ log_pop_density + county_inc_gap_90,
|
354 |
+
data = dta %>% filter(white == 1),
|
355 |
+
clusters = zipcode, se_type = "stata")
|
356 |
+
|
357 |
+
affirm_zinc90 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
358 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
359 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
360 |
+
+ log_pop_density + zipcode_inc_gap_90,
|
361 |
+
data = dta %>% filter(white == 1),
|
362 |
+
clusters = zipcode, se_type = "stata")
|
363 |
+
|
364 |
+
affirm_cinc90 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
365 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
366 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
367 |
+
+ log_pop_density + county_inc_gap_90,
|
368 |
+
data = dta %>% filter(white == 1),
|
369 |
+
clusters = zipcode, se_type = "stata")
|
370 |
+
|
371 |
+
## Table of coefs., and save
|
372 |
+
###############
|
373 |
+
## TABLE A11 ##
|
374 |
+
###############
|
375 |
+
texreg(list(pres_dem_zinc90, pres_dem_cinc90,
|
376 |
+
house_dem_zinc90, house_dem_cinc90,
|
377 |
+
rr_zinc90, rr_cinc90,
|
378 |
+
affirm_zinc90, affirm_cinc90),
|
379 |
+
file = "03_output/inc90.tex",
|
380 |
+
label = "inc90",
|
381 |
+
caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- Controlling for the Racial Income Gap in 1990",
|
382 |
+
custom.model.names = c("\\textit{President}", "\\textit{President}",
|
383 |
+
"\\textit{U.S. House}", "\\textit{U.S. House}",
|
384 |
+
"\\textit{Racial Resentment}", "\\textit{Racial Resentment}",
|
385 |
+
"\\textit{Affirmative Action}", "\\textit{Affirmative Action}"),
|
386 |
+
custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
|
387 |
+
"Ideology", "Female", "Age", "Family Income",
|
388 |
+
"Education", "% White", "% Black",
|
389 |
+
"% Unemployed", "% College",
|
390 |
+
"log(Per Capita Income)", "Gini Coef.", "South",
|
391 |
+
"Non-Rural", "log(Pop. Density)",
|
392 |
+
"Zipcode White-Black Income Gap", "County White-Black Income Gap"),
|
393 |
+
reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1),
|
394 |
+
custom.gof.names = c(NA, NA, "Observations", NA, NA),
|
395 |
+
stars = c(0.05, 0.01, 0.001),
|
396 |
+
digits = 3,
|
397 |
+
center = TRUE,
|
398 |
+
include.ci = FALSE,
|
399 |
+
caption.above = TRUE,
|
400 |
+
scalebox = 0.7)
|
401 |
+
|
402 |
+
## Adding past racial income gap -- 00
|
403 |
+
pres_dem_zinc00 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
404 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
405 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
406 |
+
+ log_pop_density + zipcode_inc_gap_00,
|
407 |
+
data = dta %>% filter(white == 1),
|
408 |
+
clusters = zipcode, se_type = "stata")
|
409 |
+
|
410 |
+
pres_dem_cinc00 = lm_robust(pres_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
411 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
412 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
413 |
+
+ log_pop_density + county_inc_gap_00,
|
414 |
+
data = dta %>% filter(white == 1),
|
415 |
+
clusters = zipcode, se_type = "stata")
|
416 |
+
|
417 |
+
house_dem_zinc00 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
418 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
419 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
420 |
+
+ log_pop_density + zipcode_inc_gap_00,
|
421 |
+
data = dta %>% filter(white == 1),
|
422 |
+
clusters = zipcode, se_type = "stata")
|
423 |
+
|
424 |
+
house_dem_cinc00 = lm_robust(house_dem ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
425 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
426 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
427 |
+
+ log_pop_density + county_inc_gap_00,
|
428 |
+
data = dta %>% filter(white == 1),
|
429 |
+
clusters = zipcode, se_type = "stata")
|
430 |
+
|
431 |
+
rr_zinc00 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
432 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
433 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
434 |
+
+ log_pop_density + zipcode_inc_gap_00,
|
435 |
+
data = dta %>% filter(white == 1),
|
436 |
+
clusters = zipcode, se_type = "stata")
|
437 |
+
|
438 |
+
rr_cinc00 = lm_robust(mean_rr ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
439 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
440 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
441 |
+
+ log_pop_density + county_inc_gap_00,
|
442 |
+
data = dta %>% filter(white == 1),
|
443 |
+
clusters = zipcode, se_type = "stata")
|
444 |
+
|
445 |
+
affirm_zinc00 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
446 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
447 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
448 |
+
+ log_pop_density + zipcode_inc_gap_00,
|
449 |
+
data = dta %>% filter(white == 1),
|
450 |
+
clusters = zipcode, se_type = "stata")
|
451 |
+
|
452 |
+
affirm_cinc00 = lm_robust(affirm ~ racial_flux + pid7 + ideo5 + female + age + faminc
|
453 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
454 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
455 |
+
+ log_pop_density + county_inc_gap_00,
|
456 |
+
data = dta %>% filter(white == 1),
|
457 |
+
clusters = zipcode, se_type = "stata")
|
458 |
+
|
459 |
+
## Table of coefs., and save
|
460 |
+
###############
|
461 |
+
## TABLE A12 ##
|
462 |
+
###############
|
463 |
+
texreg(list(pres_dem_zinc00, pres_dem_cinc00,
|
464 |
+
house_dem_zinc00, house_dem_cinc00,
|
465 |
+
rr_zinc00, rr_cinc00,
|
466 |
+
affirm_zinc00, affirm_cinc00),
|
467 |
+
file = "03_output/inc00.tex",
|
468 |
+
label = "inc00",
|
469 |
+
caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- Controlling for the Racial Income Gap in 2000",
|
470 |
+
custom.model.names = c("\\textit{President}", "\\textit{President}",
|
471 |
+
"\\textit{U.S. House}", "\\textit{U.S. House}",
|
472 |
+
"\\textit{Racial Resentment}", "\\textit{Racial Resentment}",
|
473 |
+
"\\textit{Affirmative Action}", "\\textit{Affirmative Action}"),
|
474 |
+
custom.coef.names = c("Intercept", "Racial Flux", "Party ID",
|
475 |
+
"Ideology", "Female", "Age", "Family Income",
|
476 |
+
"Education", "% White", "% Black",
|
477 |
+
"% Unemployed", "% College",
|
478 |
+
"log(Per Capita Income)", "Gini Coef.", "South",
|
479 |
+
"Non-Rural", "log(Pop. Density)",
|
480 |
+
"Zipcode White-Black Income Gap", "County White-Black Income Gap"),
|
481 |
+
reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1),
|
482 |
+
custom.gof.names = c(NA, NA, "Observations", NA, NA),
|
483 |
+
stars = c(0.05, 0.01, 0.001),
|
484 |
+
digits = 3,
|
485 |
+
center = TRUE,
|
486 |
+
include.ci = FALSE,
|
487 |
+
caption.above = TRUE,
|
488 |
+
scalebox = 0.7)
|
489 |
+
|
490 |
+
## Subsetting to above median % white
|
491 |
+
pres_dem_median = lm_robust(pres_dem ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
|
492 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
493 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
494 |
+
+ log_pop_density,
|
495 |
+
data = dta %>% filter(white == 1 & pct_white >= median(dta$pct_white, na.rm = TRUE)),
|
496 |
+
clusters = zipcode, se_type = "stata")
|
497 |
+
|
498 |
+
house_dem_median = lm_robust(house_dem ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
|
499 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
500 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
501 |
+
+ log_pop_density,
|
502 |
+
data = dta %>% filter(white == 1 & pct_white >= median(dta$pct_white, na.rm = TRUE)),
|
503 |
+
clusters = zipcode, se_type = "stata")
|
504 |
+
|
505 |
+
rr_median = lm_robust(mean_rr ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
|
506 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
507 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
508 |
+
+ log_pop_density,
|
509 |
+
data = dta %>% filter(white == 1 & pct_white >= median(dta$pct_white, na.rm = TRUE)),
|
510 |
+
clusters = zipcode, se_type = "stata")
|
511 |
+
|
512 |
+
affirm_median = lm_robust(affirm ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
|
513 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
514 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
515 |
+
+ log_pop_density,
|
516 |
+
data = dta %>% filter(white == 1 & pct_white >= median(dta$pct_white, na.rm = TRUE)),
|
517 |
+
clusters = zipcode, se_type = "stata")
|
518 |
+
|
519 |
+
## Table of coefs., and save
|
520 |
+
###############
|
521 |
+
## TABLE A13 ##
|
522 |
+
###############
|
523 |
+
texreg(list(pres_dem_median, house_dem_median, rr_median, affirm_median),
|
524 |
+
file = "03_output/median.tex",
|
525 |
+
label = "median",
|
526 |
+
caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- % White > Median",
|
527 |
+
custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
|
528 |
+
"\\textit{Affirmative Action}"),
|
529 |
+
custom.coef.names = c("Intercept", "% Black Workers", "Party ID",
|
530 |
+
"Ideology", "Female", "Age", "Family Income",
|
531 |
+
"Education", "% White", "% Black",
|
532 |
+
"% Unemployed", "% College",
|
533 |
+
"log(Per Capita Income)", "Gini Coef.", "South",
|
534 |
+
"Non-Rural", "log(Pop. Density)"),
|
535 |
+
reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
|
536 |
+
custom.gof.names = c(NA, NA, "Observations", NA, NA),
|
537 |
+
stars = c(0.05, 0.01, 0.001),
|
538 |
+
digits = 3,
|
539 |
+
center = TRUE,
|
540 |
+
include.ci = FALSE,
|
541 |
+
caption.above = TRUE,
|
542 |
+
scalebox = 0.7)
|
543 |
+
|
544 |
+
## Subsetting to above 75th percentile % white
|
545 |
+
pres_dem_75 = lm_robust(pres_dem ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
|
546 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
547 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
548 |
+
+ log_pop_density,
|
549 |
+
data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.75, na.rm = TRUE)),
|
550 |
+
clusters = zipcode, se_type = "stata")
|
551 |
+
|
552 |
+
house_dem_75 = lm_robust(house_dem ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
|
553 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
554 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
555 |
+
+ log_pop_density,
|
556 |
+
data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.75, na.rm = TRUE)),
|
557 |
+
clusters = zipcode, se_type = "stata")
|
558 |
+
|
559 |
+
rr_75 = lm_robust(mean_rr ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
|
560 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
561 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
562 |
+
+ log_pop_density,
|
563 |
+
data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.75, na.rm = TRUE)),
|
564 |
+
clusters = zipcode, se_type = "stata")
|
565 |
+
|
566 |
+
affirm_75 = lm_robust(affirm ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
|
567 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
568 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
569 |
+
+ log_pop_density,
|
570 |
+
data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.75, na.rm = TRUE)),
|
571 |
+
clusters = zipcode, se_type = "stata")
|
572 |
+
|
573 |
+
## Table of coefs., and save
|
574 |
+
###############
|
575 |
+
## TABLE A14 ##
|
576 |
+
###############
|
577 |
+
texreg(list(pres_dem_75, house_dem_75, rr_75, affirm_75),
|
578 |
+
file = "03_output/p75.tex",
|
579 |
+
label = "p75",
|
580 |
+
caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- % White > 75th Percentile",
|
581 |
+
custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
|
582 |
+
"\\textit{Affirmative Action}"),
|
583 |
+
custom.coef.names = c("Intercept", "% Black Workers", "Party ID",
|
584 |
+
"Ideology", "Female", "Age", "Family Income",
|
585 |
+
"Education", "% White", "% Black",
|
586 |
+
"% Unemployed", "% College",
|
587 |
+
"log(Per Capita Income)", "Gini Coef.", "South",
|
588 |
+
"Non-Rural", "log(Pop. Density)"),
|
589 |
+
reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
|
590 |
+
custom.gof.names = c(NA, NA, "Observations", NA, NA),
|
591 |
+
stars = c(0.05, 0.01, 0.001),
|
592 |
+
digits = 3,
|
593 |
+
center = TRUE,
|
594 |
+
include.ci = FALSE,
|
595 |
+
caption.above = TRUE,
|
596 |
+
scalebox = 0.7)
|
597 |
+
|
598 |
+
## Subsetting to above 90th percentile % white
|
599 |
+
pres_dem_90 = lm_robust(pres_dem ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
|
600 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
601 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
602 |
+
+ log_pop_density,
|
603 |
+
data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.9, na.rm = TRUE)),
|
604 |
+
clusters = zipcode, se_type = "stata")
|
605 |
+
|
606 |
+
house_dem_90 = lm_robust(pres_dem ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
|
607 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
608 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
609 |
+
+ log_pop_density,
|
610 |
+
data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.9, na.rm = TRUE)),
|
611 |
+
clusters = zipcode, se_type = "stata")
|
612 |
+
|
613 |
+
rr_90 = lm_robust(mean_rr ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
|
614 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
615 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
616 |
+
+ log_pop_density,
|
617 |
+
data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.9, na.rm = TRUE)),
|
618 |
+
clusters = zipcode, se_type = "stata")
|
619 |
+
|
620 |
+
affirm_90 = lm_robust(affirm ~ wac_pct_black + pid7 + ideo5 + female + age + faminc
|
621 |
+
+ educ + pct_white + pct_black + pct_unemployed
|
622 |
+
+ pct_college + log_per_cap_inc + gini + south + non_rural
|
623 |
+
+ log_pop_density,
|
624 |
+
data = dta %>% filter(white == 1 & pct_white >= quantile(dta$pct_white, 0.9, na.rm = TRUE)),
|
625 |
+
clusters = zipcode, se_type = "stata")
|
626 |
+
|
627 |
+
## Table of coefs., and save
|
628 |
+
###############
|
629 |
+
## TABLE A15 ##
|
630 |
+
###############
|
631 |
+
texreg(list(pres_dem_90, house_dem_90, rr_90, affirm_90),
|
632 |
+
file = "03_output/p90.tex",
|
633 |
+
label = "p90",
|
634 |
+
caption = "Racial Flux, Voting Behavior, and Racial Attitudes (Whites) --- % White > 90th Percentile",
|
635 |
+
custom.model.names = c("\\textit{President}", "\\textit{U.S. House}", "\\textit{Racial Resentment}",
|
636 |
+
"\\textit{Affirmative Action}"),
|
637 |
+
custom.coef.names = c("Intercept", "% Black Workers", "Party ID",
|
638 |
+
"Ideology", "Female", "Age", "Family Income",
|
639 |
+
"Education", "% White", "% Black",
|
640 |
+
"% Unemployed", "% College",
|
641 |
+
"log(Per Capita Income)", "Gini Coef.", "South",
|
642 |
+
"Non-Rural", "log(Pop. Density)"),
|
643 |
+
reorder.coef = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1),
|
644 |
+
custom.gof.names = c(NA, NA, "Observations", NA, NA),
|
645 |
+
stars = c(0.05, 0.01, 0.001),
|
646 |
+
digits = 3,
|
647 |
+
center = TRUE,
|
648 |
+
include.ci = FALSE,
|
649 |
+
caption.above = TRUE,
|
650 |
+
scalebox = 0.7)
|
4/replication_package/dta.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e0162578ffce79c472e8f599bcbead101397fa93248c82b433b2124087ac8fe
|
3 |
+
size 9079006
|
4/replication_package/racial_flux.RData
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:948c3dce81ba842ba3cd7292a8fb992391025a9a6861aab344c7bb4abfb7e707
|
3 |
+
size 303333
|
4/replication_package/readme.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:033cfb988cc7fd12f856475cc26669e5e7315bad4cf983b005ac13bffcd4eee0
|
3 |
+
size 670
|
4/should_reproduce.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:355986b3de113d57f142f3c12760e0adfec4f983e34aa6535d850a9315dc6d9c
|
3 |
+
size 17
|