Datasets:

Modalities:
Tabular
Text
Libraries:
Datasets
License:
parquet-converter commited on
Commit
582974f
·
1 Parent(s): 34b2b51

Update parquet files

Browse files
README.md DELETED
@@ -1,3 +0,0 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
default/qa_adj-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27148f3e45bab017e5544efcfa7292ec1193f27fcbfd92fd93ca037143f302d0
3
+ size 287592
default/qa_adj-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4274c79b22ca50057d28f7118528869453f5438575bdd7f4f9b4679ddd93152
3
+ size 1231953
default/qa_adj-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afbec42529c767711c4fb0c63815517fea2f25736bb12fce4e3a5dabc56800c6
3
+ size 136567
full/qa_adj-propbank.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a16ad2f4c6227e549f2a970c53820943b8fdf864c6c6ddf09b21d93101c9a442
3
+ size 62344
full/qa_adj-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27148f3e45bab017e5544efcfa7292ec1193f27fcbfd92fd93ca037143f302d0
3
+ size 287592
full/qa_adj-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4274c79b22ca50057d28f7118528869453f5438575bdd7f4f9b4679ddd93152
3
+ size 1231953
full/qa_adj-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afbec42529c767711c4fb0c63815517fea2f25736bb12fce4e3a5dabc56800c6
3
+ size 136567
qa_adj.py DELETED
@@ -1,213 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """A Dataset loading script for the QA-Adj dataset."""
16
-
17
-
18
- from dataclasses import dataclass
19
- from typing import Optional, Tuple, Union, Iterable, Set
20
- from pathlib import Path
21
- import itertools
22
- import pandas as pd
23
- import datasets
24
-
25
-
26
- _DESCRIPTION = """\
27
- The dataset contains question-answer pairs to capture adjectival semantics.
28
- This dataset was annotated by selected workers from Amazon Mechanical Turk.
29
- """
30
-
31
- _LICENSE = """MIT License
32
-
33
- Copyright (c) 2022 Ayal Klein (kleinay)
34
-
35
- Permission is hereby granted, free of charge, to any person obtaining a copy
36
- of this software and associated documentation files (the "Software"), to deal
37
- in the Software without restriction, including without limitation the rights
38
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
39
- copies of the Software, and to permit persons to whom the Software is
40
- furnished to do so, subject to the following conditions:
41
-
42
- The above copyright notice and this permission notice shall be included in all
43
- copies or substantial portions of the Software.
44
-
45
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
46
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
47
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
48
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
49
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
50
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
51
- SOFTWARE."""
52
-
53
- URL = "https://github.com/kleinay/QA-Adj-Dataset/raw/main/QAADJ_Dataset.zip"
54
-
55
- SUPPOERTED_DOMAINS = {"wikinews", "wikipedia"}
56
-
57
- @dataclass
58
- class QAAdjBuilderConfig(datasets.BuilderConfig):
59
- domains: Union[str, Iterable[str]] = "all" # can provide also a subset of acceptable domains.
60
- full_dataset: bool = False
61
-
62
- class QaAdj(datasets.GeneratorBasedBuilder):
63
- """QAAdj: Question-Answer based semantics for adjectives.
64
- """
65
-
66
- VERSION = datasets.Version("1.0.0")
67
-
68
- BUILDER_CONFIG_CLASS = QAAdjBuilderConfig
69
-
70
- BUILDER_CONFIGS = [
71
- QAAdjBuilderConfig(
72
- name="default", version=VERSION, description="This provides the QAAdj dataset - train, dev and test"#, redistribute_dev=(0,1,0)
73
- ),
74
- QAAdjBuilderConfig(
75
- name="full", version=VERSION, full_dataset=True,
76
- description="""This provides the QAAdj dataset including gold reference
77
- (300 expert-annotated instances) and propbank comparison instances"""
78
- ),
79
- ]
80
-
81
- DEFAULT_CONFIG_NAME = (
82
- "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
83
- )
84
-
85
- def _info(self):
86
- features = datasets.Features(
87
- {
88
- "sentence": datasets.Value("string"),
89
- "sent_id": datasets.Value("string"),
90
- "predicate_idx": datasets.Value("int32"),
91
- "predicate_idx_end": datasets.Value("int32"),
92
- "predicate": datasets.Value("string"),
93
- "object_question": datasets.Value("string"),
94
- "object_answer": datasets.Sequence(datasets.Value("string")),
95
- "domain_question": datasets.Value("string"),
96
- "domain_answer": datasets.Sequence(datasets.Value("string")),
97
- "reference_question": datasets.Value("string"),
98
- "reference_answer": datasets.Sequence(datasets.Value("string")),
99
- "extent_question": datasets.Value("string"),
100
- "extent_answer": datasets.Sequence(datasets.Value("string")),
101
- }
102
- )
103
- return datasets.DatasetInfo(
104
- # This is the description that will appear on the datasets page.
105
- description=_DESCRIPTION,
106
- # This defines the different columns of the dataset and their types
107
- features=features, # Here we define them above because they are different between the two configurations
108
- # If there's a common (input, target) tuple from the features,
109
- # specify them here. They'll be used if as_supervised=True in
110
- # builder.as_dataset.
111
- supervised_keys=None,
112
- # Homepage of the dataset for documentation
113
- # homepage=_HOMEPAGE,
114
- # License for the dataset if available
115
- license=_LICENSE,
116
- # Citation for the dataset
117
- # citation=_CITATION,
118
- )
119
-
120
- def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager):
121
- """Returns SplitGenerators."""
122
-
123
- # Handle domain selection
124
- domains: Set[str] = []
125
- if self.config.domains == "all":
126
- domains = SUPPOERTED_DOMAINS
127
- elif isinstance(self.config.domains, str):
128
- if self.config.domains in SUPPOERTED_DOMAINS:
129
- domains = {self.config.domains}
130
- else:
131
- raise ValueError(f"Unrecognized domain '{self.config.domains}'; only {SUPPOERTED_DOMAINS} are supported")
132
- else:
133
- domains = set(self.config.domains) & SUPPOERTED_DOMAINS
134
- if len(domains) == 0:
135
- raise ValueError(f"Unrecognized domains '{self.config.domains}'; only {SUPPOERTED_DOMAINS} are supported")
136
- self.config.domains = domains
137
-
138
- self.corpus_base_path = Path(dl_manager.download_and_extract(URL))
139
-
140
- splits = [
141
- datasets.SplitGenerator(
142
- name=datasets.Split.TRAIN,
143
- # These kwargs will be passed to _generate_examples
144
- gen_kwargs={
145
- "csv_fn": self.corpus_base_path / "train.csv",
146
- },
147
- ),
148
- datasets.SplitGenerator(
149
- name=datasets.Split.VALIDATION,
150
- # These kwargs will be passed to _generate_examples
151
- gen_kwargs={
152
- "csv_fn": self.corpus_base_path / "dev.csv",
153
- },
154
- ),
155
- datasets.SplitGenerator(
156
- name=datasets.Split.TEST,
157
- # These kwargs will be passed to _generate_examples
158
- gen_kwargs={
159
- "csv_fn": self.corpus_base_path / "test.csv",
160
- },
161
- ),
162
- ]
163
- if self.config.full_dataset:
164
- splits = splits + [
165
- # ##TODO change "reference_data.csv" to be in same format and add it to zip file
166
- # datasets.SplitGenerator(
167
- # name="gold_reference",
168
- # # These kwargs will be passed to _generate_examples
169
- # gen_kwargs={
170
- # "csv_fn": self.corpus_base_path / "reference_data.csv",
171
- # },
172
- # ),
173
- datasets.SplitGenerator(
174
- name="propbank",
175
- # These kwargs will be passed to _generate_examples
176
- gen_kwargs={
177
- "csv_fn": self.corpus_base_path / "propbank_comparison_data.csv",
178
- },
179
- ),
180
- ]
181
-
182
- return splits
183
-
184
- def _generate_examples(self, csv_fn):
185
- df = pd.read_csv(csv_fn)
186
- for counter, row in df.iterrows():
187
- yield counter, {
188
- "sentence": row['Input.sentence'],
189
- "sent_id": row['Input.qasrl_id'],
190
- "predicate_idx": row['Input.adj_index_start'],
191
- "predicate_idx_end": row['Input.adj_index_end'],
192
- "predicate": row['Input.target'],
193
- "object_question": self._get_optional_question(row.object_q),
194
- "object_answer": self._get_optional_answer(row["Answer.answer1"]),
195
- "domain_question": self._get_optional_question(row.domain_q),
196
- "domain_answer": self._get_optional_answer(row["Answer.answer3"]),
197
- "reference_question": self._get_optional_question(row.comparison_q),
198
- "reference_answer": self._get_optional_answer(row["Answer.answer2"]),
199
- "extent_question": self._get_optional_question(row.degree_q),
200
- "extent_answer": self._get_optional_answer(row["Answer.answer4"]),
201
- }
202
-
203
- def _get_optional_answer(self, val):
204
- if pd.isnull(val): # no answer
205
- return []
206
- else:
207
- return val.split("+")
208
- def _get_optional_question(self, val):
209
- if pd.isnull(val): # no question
210
- return ""
211
- else:
212
- return val
213
-