--- dataset_info: features: - name: tokens sequence: string - name: tags sequence: int64 splits: - name: train num_bytes: 118725876 num_examples: 88619 - name: test num_bytes: 29511302 num_examples: 22110 download_size: 34363806 dataset_size: 148237178 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* task_categories: - token-classification --- # Mountain Names NER Dataset ## Dataset Description A Named Entity Recognition dataset focused on identifying mountain names in text. The dataset contains tokenized text with corresponding NER tags where: - Tag 1: Mountain name - Tag 0: Not a mountain name ## Dataset Structure The dataset contains two main columns: - `tokens`: List of tokenized words - `tags`: Corresponding NER tags (0 or 1) ## Example: ```python { 'tokens': ['The', 'Everest', 'is', 'the', 'highest', 'peak'], 'tags': [0, 1, 0, 0, 0, 0] } ``` ## Usage: ```python from datasets import load_dataset dataset = load_dataset("Gepe55o/mountain-ner-dataset") train_data = dataset["train"] test_data = dataset["test"] ``` ## Dataset creation: - Source data collected from [NERetrive](https://arxiv.org/pdf/2310.14282) and [Few-NERD](https://arxiv.org/pdf/2105.07464v6) datasets - Filtered for mountain-related entities - Converted to binary classification (mountain/non-mountain)