Elyordev commited on
Commit
7889fd7
·
verified ·
1 Parent(s): 7d2e23d

Upload my_stt_dataset.py

Browse files
Files changed (1) hide show
  1. my_stt_dataset.py +58 -56
my_stt_dataset.py CHANGED
@@ -20,9 +20,12 @@ class STTConfig(BuilderConfig):
20
  class MySTTDataset(datasets.GeneratorBasedBuilder):
21
  """
22
  Uzbek STT dataset yuklash skripti:
23
- - Audio fayllar .tar arxiv ichida joylashgan.
24
- - Transkripsiya ma'lumotlari mos TSV faylda.
25
- - "audio" ustuni Audio() tipida aniqlangan, shuning uchun Hub Viewer "play" tugmasini ko'rsatadi.
 
 
 
26
  """
27
  VERSION = datasets.Version("1.0.0")
28
 
@@ -40,13 +43,18 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
40
  def _info(self):
41
  """
42
  Dataset ustunlarini aniqlaydi.
43
- "audio" ustuni Audio() tipida belgilangan bu orqali Viewer audio faylni avtomatik dekodlaydi.
 
44
  """
45
  return datasets.DatasetInfo(
46
- description="Uzbek STT dataset: audio fayllar .tar arxivda, transcriptions esa TSV faylda saqlanadi.",
 
 
 
 
47
  features=datasets.Features({
48
  "id": datasets.Value("string"),
49
- "audio": Audio(sampling_rate=None), # Asl sampling rate saqlanadi
50
  "sentence": datasets.Value("string"),
51
  "duration": datasets.Value("float"),
52
  "age": datasets.Value("string"),
@@ -60,79 +68,73 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
60
 
61
  def _split_generators(self, dl_manager):
62
  """
63
- Har bir split uchun: tar arxiv va mos TSV fayllarining yo'llari aniqlanadi,
64
- va tar fayllar dl_manager.extract() orqali ochiladi.
65
  """
66
  config = self.config
67
- base_dir = config.data_dir # Misol: "Dataset_STT"
68
- lang = config.language_abbr # Misol: "uz"
69
 
 
70
  train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
71
- train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
72
-
73
  test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
74
- test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")
75
-
76
  val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
77
- val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")
78
 
79
- # Tar arxiv extract qilinadi:
80
- train_tar_extracted = dl_manager.extract(train_tar)
81
- test_tar_extracted = dl_manager.extract(test_tar)
82
- val_tar_extracted = dl_manager.extract(val_tar)
 
 
 
 
83
 
84
  return [
85
  datasets.SplitGenerator(
86
  name=datasets.Split.TRAIN,
87
- gen_kwargs={
88
- "archive_dir": train_tar_extracted,
89
- "tsv_path": train_tsv,
90
- },
91
  ),
92
  datasets.SplitGenerator(
93
  name=datasets.Split.TEST,
94
- gen_kwargs={
95
- "archive_dir": test_tar_extracted,
96
- "tsv_path": test_tsv,
97
- },
98
  ),
99
  datasets.SplitGenerator(
100
  name=datasets.Split.VALIDATION,
101
- gen_kwargs={
102
- "archive_dir": val_tar_extracted,
103
- "tsv_path": val_tsv,
104
- },
105
  ),
106
  ]
107
 
108
- def _generate_examples(self, archive_dir, tsv_path):
109
  """
110
  TSV faylini qatorma-qator o'qiydi va metadata lug'atini tuzadi.
111
- Keyin, archive papkasidan mos .mp3 faylni topib,
112
- audio ustunini quyidagicha shakllantiradi:
113
- {"path": <relative file name>, "bytes": <audio file baytlari>}
114
- Bu shakl Dataset Viewer tomonidan Audio() sifatida aniqlanib, "play" tugmasini ko'rsatishga imkon beradi.
 
 
115
  """
 
 
116
  with open(tsv_path, "r", encoding="utf-8") as f:
117
  reader = csv.DictReader(f, delimiter="\t")
118
- for idx, row in enumerate(reader):
119
- audio_id = row["id"]
120
- mp3_file = audio_id + ".mp3"
121
- full_path = os.path.join(archive_dir, mp3_file)
122
 
123
- if os.path.isfile(full_path):
124
- with open(full_path, "rb") as audio_file:
125
- audio_bytes = audio_file.read()
126
- # MUHIM: "path" qiymatini lokal extract qilingan papka o'rniga, faqat fayl nomi sifatida uzatamiz
127
- yield idx, {
128
- "id": audio_id,
129
- "audio": {"path": mp3_file, "bytes": audio_bytes},
130
- "sentence": row.get("sentence", ""),
131
- "duration": float(row.get("duration", 0.0)),
132
- "age": row.get("age", ""),
133
- "gender": row.get("gender", ""),
134
- "accents": row.get("accents", ""),
135
- "locale": row.get("locale", ""),
136
- }
137
- else:
138
- continue
 
20
  class MySTTDataset(datasets.GeneratorBasedBuilder):
21
  """
22
  Uzbek STT dataset yuklash skripti:
23
+ - Audio fayllar .tar arxiv ichida saqlangan.
24
+ - Transkripsiya ma'lumotlari TSV faylda joylashgan.
25
+ - Streaming rejimida, tar fayllar dl_manager.iter_archive() orqali o‘qiladi.
26
+ - "audio" ustuni Audio() tipida aniqlangan, ya'ni qiymat dictionary shaklida:
27
+ {"path": <tar ichidagi fayl nomi>, "bytes": <audio baytlari>}
28
+ bo‘lishi kerak, shunda Dataset Viewer "play" tugmasini ko‘rsatadi.
29
  """
30
  VERSION = datasets.Version("1.0.0")
31
 
 
43
  def _info(self):
44
  """
45
  Dataset ustunlarini aniqlaydi.
46
+ "audio" ustuni Audio(sampling_rate=None) tipida berilgan, shuning uchun
47
+ audio fayllar avtomatik dekodlanadi va resample qilinadi.
48
  """
49
  return datasets.DatasetInfo(
50
+ description=(
51
+ "Uzbek STT dataset: audio fayllar tar arxivida saqlangan va "
52
+ "transcriptions esa TSV faylda mavjud. Streaming rejimi bilan tar "
53
+ "arxivdan audio fayllar o'qiladi."
54
+ ),
55
  features=datasets.Features({
56
  "id": datasets.Value("string"),
57
+ "audio": Audio(sampling_rate=None),
58
  "sentence": datasets.Value("string"),
59
  "duration": datasets.Value("float"),
60
  "age": datasets.Value("string"),
 
68
 
69
  def _split_generators(self, dl_manager):
70
  """
71
+ Har bir split uchun: tar arxiv va mos TSV fayllarining yo'llari aniqlanadi.
72
+ Tar arxivlardan streaming rejimida o'qish uchun dl_manager.iter_archive() dan foydalanamiz.
73
  """
74
  config = self.config
75
+ base_dir = config.data_dir # Masalan: "Dataset_STT"
76
+ lang = config.language_abbr # Masalan: "uz"
77
 
78
+ # Tar arxiv fayllari (extract qilinmaydi, balki iter_archive orqali o'qiladi)
79
  train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
 
 
80
  test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
 
 
81
  val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
 
82
 
83
+ train_audio_files = dl_manager.iter_archive(train_tar)
84
+ test_audio_files = dl_manager.iter_archive(test_tar)
85
+ val_audio_files = dl_manager.iter_archive(val_tar)
86
+
87
+ # TSV fayllar yo'li
88
+ train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
89
+ test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")
90
+ val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")
91
 
92
  return [
93
  datasets.SplitGenerator(
94
  name=datasets.Split.TRAIN,
95
+ gen_kwargs={"audio_files": train_audio_files, "tsv_path": train_tsv},
 
 
 
96
  ),
97
  datasets.SplitGenerator(
98
  name=datasets.Split.TEST,
99
+ gen_kwargs={"audio_files": test_audio_files, "tsv_path": test_tsv},
 
 
 
100
  ),
101
  datasets.SplitGenerator(
102
  name=datasets.Split.VALIDATION,
103
+ gen_kwargs={"audio_files": val_audio_files, "tsv_path": val_tsv},
 
 
 
104
  ),
105
  ]
106
 
107
+ def _generate_examples(self, audio_files, tsv_path):
108
  """
109
  TSV faylini qatorma-qator o'qiydi va metadata lug'atini tuzadi.
110
+ So'ng, tar arxividan kelayotgan audio fayllarni (streaming iteratori orqali)
111
+ mos metadata bilan birlashtiradi.
112
+
113
+ Har bir audio ustuni qiymati quyidagicha shakllantiriladi:
114
+ {"path": <tar ichidagi fayl nomi>, "bytes": <audio fayl baytlari>}
115
+ Bu shakl Dataset Viewer tomonidan Audio() sifatida aniqlanadi.
116
  """
117
+ # TSV faylidan metadata lug'atini tuzamiz: kalit – fayl nomi (masalan, "ID.mp3")
118
+ metadata = {}
119
  with open(tsv_path, "r", encoding="utf-8") as f:
120
  reader = csv.DictReader(f, delimiter="\t")
121
+ for row in reader:
122
+ filename = row["id"] + ".mp3"
123
+ metadata[filename] = row
 
124
 
125
+ # Tar arxivdan streaming iterator orqali o'qilgan fayllar
126
+ for idx, (file_path, file_obj) in enumerate(audio_files):
127
+ # file_path: tar arxiv ichidagi nisbiy yo'l (masalan, "009f0d56-c7db-4de3-bd3e-92a37d6f0cb9.mp3")
128
+ if file_path in metadata:
129
+ row = metadata[file_path]
130
+ audio_bytes = file_obj.read()
131
+ yield idx, {
132
+ "id": row["id"],
133
+ "audio": {"path": file_path, "bytes": audio_bytes},
134
+ "sentence": row.get("sentence", ""),
135
+ "duration": float(row.get("duration", 0.0)),
136
+ "age": row.get("age", ""),
137
+ "gender": row.get("gender", ""),
138
+ "accents": row.get("accents", ""),
139
+ "locale": row.get("locale", ""),
140
+ }