Upload my_stt_dataset.py
Browse files- my_stt_dataset.py +58 -56
my_stt_dataset.py
CHANGED
@@ -20,9 +20,12 @@ class STTConfig(BuilderConfig):
|
|
20 |
class MySTTDataset(datasets.GeneratorBasedBuilder):
|
21 |
"""
|
22 |
Uzbek STT dataset yuklash skripti:
|
23 |
-
- Audio fayllar .tar arxiv ichida
|
24 |
-
- Transkripsiya ma'lumotlari
|
25 |
-
-
|
|
|
|
|
|
|
26 |
"""
|
27 |
VERSION = datasets.Version("1.0.0")
|
28 |
|
@@ -40,13 +43,18 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
|
|
40 |
def _info(self):
|
41 |
"""
|
42 |
Dataset ustunlarini aniqlaydi.
|
43 |
-
"audio" ustuni Audio() tipida
|
|
|
44 |
"""
|
45 |
return datasets.DatasetInfo(
|
46 |
-
description=
|
|
|
|
|
|
|
|
|
47 |
features=datasets.Features({
|
48 |
"id": datasets.Value("string"),
|
49 |
-
"audio": Audio(sampling_rate=None),
|
50 |
"sentence": datasets.Value("string"),
|
51 |
"duration": datasets.Value("float"),
|
52 |
"age": datasets.Value("string"),
|
@@ -60,79 +68,73 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
|
|
60 |
|
61 |
def _split_generators(self, dl_manager):
|
62 |
"""
|
63 |
-
Har bir split uchun: tar arxiv va mos TSV fayllarining yo'llari aniqlanadi
|
64 |
-
|
65 |
"""
|
66 |
config = self.config
|
67 |
-
base_dir = config.data_dir #
|
68 |
-
lang = config.language_abbr #
|
69 |
|
|
|
70 |
train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
|
71 |
-
train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
|
72 |
-
|
73 |
test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
|
74 |
-
test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")
|
75 |
-
|
76 |
val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
|
77 |
-
val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
83 |
|
84 |
return [
|
85 |
datasets.SplitGenerator(
|
86 |
name=datasets.Split.TRAIN,
|
87 |
-
gen_kwargs={
|
88 |
-
"archive_dir": train_tar_extracted,
|
89 |
-
"tsv_path": train_tsv,
|
90 |
-
},
|
91 |
),
|
92 |
datasets.SplitGenerator(
|
93 |
name=datasets.Split.TEST,
|
94 |
-
gen_kwargs={
|
95 |
-
"archive_dir": test_tar_extracted,
|
96 |
-
"tsv_path": test_tsv,
|
97 |
-
},
|
98 |
),
|
99 |
datasets.SplitGenerator(
|
100 |
name=datasets.Split.VALIDATION,
|
101 |
-
gen_kwargs={
|
102 |
-
"archive_dir": val_tar_extracted,
|
103 |
-
"tsv_path": val_tsv,
|
104 |
-
},
|
105 |
),
|
106 |
]
|
107 |
|
108 |
-
def _generate_examples(self,
|
109 |
"""
|
110 |
TSV faylini qatorma-qator o'qiydi va metadata lug'atini tuzadi.
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
115 |
"""
|
|
|
|
|
116 |
with open(tsv_path, "r", encoding="utf-8") as f:
|
117 |
reader = csv.DictReader(f, delimiter="\t")
|
118 |
-
for
|
119 |
-
|
120 |
-
|
121 |
-
full_path = os.path.join(archive_dir, mp3_file)
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
20 |
class MySTTDataset(datasets.GeneratorBasedBuilder):
|
21 |
"""
|
22 |
Uzbek STT dataset yuklash skripti:
|
23 |
+
- Audio fayllar .tar arxiv ichida saqlangan.
|
24 |
+
- Transkripsiya ma'lumotlari TSV faylda joylashgan.
|
25 |
+
- Streaming rejimida, tar fayllar dl_manager.iter_archive() orqali o‘qiladi.
|
26 |
+
- "audio" ustuni Audio() tipida aniqlangan, ya'ni qiymat dictionary shaklida:
|
27 |
+
{"path": <tar ichidagi fayl nomi>, "bytes": <audio baytlari>}
|
28 |
+
bo‘lishi kerak, shunda Dataset Viewer "play" tugmasini ko‘rsatadi.
|
29 |
"""
|
30 |
VERSION = datasets.Version("1.0.0")
|
31 |
|
|
|
43 |
def _info(self):
|
44 |
"""
|
45 |
Dataset ustunlarini aniqlaydi.
|
46 |
+
"audio" ustuni Audio(sampling_rate=None) tipida berilgan, shuning uchun
|
47 |
+
audio fayllar avtomatik dekodlanadi va resample qilinadi.
|
48 |
"""
|
49 |
return datasets.DatasetInfo(
|
50 |
+
description=(
|
51 |
+
"Uzbek STT dataset: audio fayllar tar arxivida saqlangan va "
|
52 |
+
"transcriptions esa TSV faylda mavjud. Streaming rejimi bilan tar "
|
53 |
+
"arxivdan audio fayllar o'qiladi."
|
54 |
+
),
|
55 |
features=datasets.Features({
|
56 |
"id": datasets.Value("string"),
|
57 |
+
"audio": Audio(sampling_rate=None),
|
58 |
"sentence": datasets.Value("string"),
|
59 |
"duration": datasets.Value("float"),
|
60 |
"age": datasets.Value("string"),
|
|
|
68 |
|
69 |
def _split_generators(self, dl_manager):
|
70 |
"""
|
71 |
+
Har bir split uchun: tar arxiv va mos TSV fayllarining yo'llari aniqlanadi.
|
72 |
+
Tar arxivlardan streaming rejimida o'qish uchun dl_manager.iter_archive() dan foydalanamiz.
|
73 |
"""
|
74 |
config = self.config
|
75 |
+
base_dir = config.data_dir # Masalan: "Dataset_STT"
|
76 |
+
lang = config.language_abbr # Masalan: "uz"
|
77 |
|
78 |
+
# Tar arxiv fayllari (extract qilinmaydi, balki iter_archive orqali o'qiladi)
|
79 |
train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
|
|
|
|
|
80 |
test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
|
|
|
|
|
81 |
val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
|
|
|
82 |
|
83 |
+
train_audio_files = dl_manager.iter_archive(train_tar)
|
84 |
+
test_audio_files = dl_manager.iter_archive(test_tar)
|
85 |
+
val_audio_files = dl_manager.iter_archive(val_tar)
|
86 |
+
|
87 |
+
# TSV fayllar yo'li
|
88 |
+
train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
|
89 |
+
test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")
|
90 |
+
val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")
|
91 |
|
92 |
return [
|
93 |
datasets.SplitGenerator(
|
94 |
name=datasets.Split.TRAIN,
|
95 |
+
gen_kwargs={"audio_files": train_audio_files, "tsv_path": train_tsv},
|
|
|
|
|
|
|
96 |
),
|
97 |
datasets.SplitGenerator(
|
98 |
name=datasets.Split.TEST,
|
99 |
+
gen_kwargs={"audio_files": test_audio_files, "tsv_path": test_tsv},
|
|
|
|
|
|
|
100 |
),
|
101 |
datasets.SplitGenerator(
|
102 |
name=datasets.Split.VALIDATION,
|
103 |
+
gen_kwargs={"audio_files": val_audio_files, "tsv_path": val_tsv},
|
|
|
|
|
|
|
104 |
),
|
105 |
]
|
106 |
|
107 |
+
def _generate_examples(self, audio_files, tsv_path):
|
108 |
"""
|
109 |
TSV faylini qatorma-qator o'qiydi va metadata lug'atini tuzadi.
|
110 |
+
So'ng, tar arxividan kelayotgan audio fayllarni (streaming iteratori orqali)
|
111 |
+
mos metadata bilan birlashtiradi.
|
112 |
+
|
113 |
+
Har bir audio ustuni qiymati quyidagicha shakllantiriladi:
|
114 |
+
{"path": <tar ichidagi fayl nomi>, "bytes": <audio fayl baytlari>}
|
115 |
+
Bu shakl Dataset Viewer tomonidan Audio() sifatida aniqlanadi.
|
116 |
"""
|
117 |
+
# TSV faylidan metadata lug'atini tuzamiz: kalit – fayl nomi (masalan, "ID.mp3")
|
118 |
+
metadata = {}
|
119 |
with open(tsv_path, "r", encoding="utf-8") as f:
|
120 |
reader = csv.DictReader(f, delimiter="\t")
|
121 |
+
for row in reader:
|
122 |
+
filename = row["id"] + ".mp3"
|
123 |
+
metadata[filename] = row
|
|
|
124 |
|
125 |
+
# Tar arxivdan streaming iterator orqali o'qilgan fayllar
|
126 |
+
for idx, (file_path, file_obj) in enumerate(audio_files):
|
127 |
+
# file_path: tar arxiv ichidagi nisbiy yo'l (masalan, "009f0d56-c7db-4de3-bd3e-92a37d6f0cb9.mp3")
|
128 |
+
if file_path in metadata:
|
129 |
+
row = metadata[file_path]
|
130 |
+
audio_bytes = file_obj.read()
|
131 |
+
yield idx, {
|
132 |
+
"id": row["id"],
|
133 |
+
"audio": {"path": file_path, "bytes": audio_bytes},
|
134 |
+
"sentence": row.get("sentence", ""),
|
135 |
+
"duration": float(row.get("duration", 0.0)),
|
136 |
+
"age": row.get("age", ""),
|
137 |
+
"gender": row.get("gender", ""),
|
138 |
+
"accents": row.get("accents", ""),
|
139 |
+
"locale": row.get("locale", ""),
|
140 |
+
}
|