File size: 13,453 Bytes
d5bdc55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
# -*- coding: utf-8 -*-
import sys
sys.path.append('./')
from typing import Dict
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
import torchvision
from einops import rearrange
import pytorch_lightning as pl
import copy
import csv
import cv2
import random
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
import json
import os, sys
import math
from torch.utils.data.distributed import DistributedSampler
import albumentations
import time
from tqdm import tqdm
import torch.nn.functional as F
import pdb
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
from ctypes import CDLL, c_void_p, c_int,c_int32, c_float,c_bool
quick_zbuff = CDLL("./lib/build/zbuff.so")
DEBUG=False
def get_coordinate_xy(coord_shape, device):
"""get meshgride coordinate of x, y and the shape is (B, H, W)"""
bs, height, width = coord_shape
y_coord, x_coord = torch.meshgrid([torch.arange(0, height, dtype=torch.float32, device=device),\
torch.arange(0, width, dtype=torch.float32, device=device)])
y_coord, x_coord = y_coord.contiguous(), x_coord.contiguous()
y_coord, x_coord = y_coord.unsqueeze(0).repeat(bs, 1, 1), \
x_coord.unsqueeze(0).repeat(bs, 1, 1)
return x_coord, y_coord
def read_dnormal(normald_path, cond_pos):
cond_cam_dis = np.linalg.norm(cond_pos, 2)
near = 0.867 #sqrt(3) * 0.5
near_distance = cond_cam_dis - near
normald = cv2.imread(normald_path, cv2.IMREAD_UNCHANGED).astype(np.float32)
depth = normald[...,3:]
depth[depth<near_distance] = 0
return depth
def get_intr(target_im):
h, w = target_im.shape[:2]
fx = fy = 1422.222
res_raw = 1024
f_x = f_y = fx * h / res_raw
K = torch.tensor([f_x, 0, w / 2, 0, f_y, h / 2, 0, 0, 1]).reshape(3, 3)
# print("intr: ", K)
return K
def convert_pose(C2W):
flip_yz = np.eye(4)
flip_yz[1, 1] = -1
flip_yz[2, 2] = -1
C2W = np.matmul(C2W, flip_yz)
return torch.from_numpy(C2W)
def read_camera_matrix_single(json_file):
with open(json_file, 'r', encoding='utf8') as reader:
json_content = json.load(reader)
# NOTE that different from unity2blender experiments.
camera_matrix = np.eye(4)
camera_matrix[:3, 0] = np.array(json_content['x'])
camera_matrix[:3, 1] = -np.array(json_content['y'])
camera_matrix[:3, 2] = -np.array(json_content['z'])
camera_matrix[:3, 3] = np.array(json_content['origin'])
'''
camera_matrix = np.eye(4)
camera_matrix[:3, 0] = np.array(json_content['x'])
camera_matrix[:3, 1] = np.array(json_content['y'])
camera_matrix[:3, 2] = np.array(json_content['z'])
camera_matrix[:3, 3] = np.array(json_content['origin'])
# print(camera_matrix)
'''
return camera_matrix
def read_w2c(camera):
tm = camera
tm = np.asarray(tm)
cam_pos = tm[:3, 3:]
world2cam = np.zeros_like(tm)
world2cam[:3, :3] = tm[:3,:3].transpose()
world2cam[:3,3:] = -tm[:3,:3].transpose() @ tm[:3,3:]
world2cam[-1, -1] = 1
return world2cam, np.linalg.norm(cam_pos, 2 , axis=0)
def get_camera_pos(camera):
tm = camera['transform_matrix']
tm = np.asarray(tm)
cam_pos = tm[:3, 3:]
return cam_pos
def to_torch_tensor(input):
if isinstance(input, np.ndarray):
input = torch.from_numpy(input)
return input
def image_warping_v1(target_img, ref_img, K, c2w_t, c2w_r, target_depth, ref_depth, scale_factor=1.0, device=torch.device("cpu"), save_root=None):
# normalized input imgs [-1, 1]
target_img = target_img.astype(np.float32)
ref_img = ref_img.astype(np.float32)
target_img = target_img /255. * 2. -1
ref_img = ref_img / 255. * 2. - 1
with torch.no_grad():
ref_K = K
# target_img: [H, W, 3], target_depth:[H, W, 1], K:[3, 3], T_t2r:[4, 4]
t_img = to_torch_tensor(target_img).permute(2, 0, 1).unsqueeze(0).float().to(device) # [1, 3, H, W]
r_img = to_torch_tensor(ref_img).permute(2, 0, 1).unsqueeze(0).float().to(device) # [1, 3, H, W]
# T_t2r = to_torch_tensor(T_t2r).unsqueeze(0).float().to(device) # [1, 4, 4]
c2w_t = to_torch_tensor(c2w_t).unsqueeze(0).float().to(device)
c2w_r = to_torch_tensor(c2w_r).unsqueeze(0).float().to(device)
target_depth = to_torch_tensor(target_depth).permute(2, 0, 1).float().to(device) #[1, H, W]
ref_depth = to_torch_tensor(ref_depth).permute(2, 0, 1).float().to(device) #[1, H, W]
K = to_torch_tensor(K).unsqueeze(0).float().to(device) # [1, 3, 3]
ref_K = to_torch_tensor(ref_K).unsqueeze(0).float().to(device) # [1, 3, 3]
t_pose = {"intr": K, "extr": torch.inverse(c2w_t)}
r_pose = {"intr": K, "extr": torch.inverse(c2w_r)}
ref_img_warped, ref_depth_warpped = image_warpping_reproj(depth_ref=ref_depth,
depth_src=None,
ref_pose=r_pose,
src_pose=t_pose,
img_ref=r_img)
# only using in debug
if save_root is not None:
os.makedirs(save_root, exist_ok=True)
img_w = ref_img_warped[0].permute(1,2,0).detach().cpu().numpy()
t_img = t_img[0].permute(1,2,0).detach().cpu().numpy()
r_img = r_img[0].permute(1,2,0).detach().cpu().numpy()
img_blend = 0.5 * t_img + 0.5 * img_w
save_name = os.path.join(save_root, f"blend.jpg")
img_vis = np.hstack([t_img, img_w, r_img, img_blend, 0.5 * t_img + 0.5 * r_img])
cv2.imwrite(save_name, np.clip((img_vis + 1) / 2 * 255, 0, 255).astype(np.uint8)[:, :, (2, 1, 0)])
return ref_img_warped
def zbuff_check(xyz,bs,height,width):
p_xyz, depth = xyz[:, :2] / (xyz[:, 2:3].clamp(min=1e-10)),xyz[:,2:3]
x_src = p_xyz[:, 0].view([bs, 1, -1 ]).round() #[B, H, W]
y_src = p_xyz[:, 1].view([bs, 1, -1]).round()
valid_mask_0= torch.logical_and(x_src<width, y_src<height).view(-1)
valid_mask_1= torch.logical_and(x_src>=0, y_src>=0).view(-1)
valid_mask = torch.logical_and(valid_mask_0, valid_mask_1)
x_src = x_src.clamp(0, width - 1).long()
y_src = y_src.clamp(0, height - 1).long()
buffs= -torch.ones((height,width)).to(xyz)
z_buffs= -torch.ones((height,width)).to(xyz)
# zbuff_check
src_x = x_src.view(-1).numpy().astype(np.int32)
src_y = y_src.view(-1).numpy().astype(np.int32)
depth = depth.view(-1).numpy().astype(np.float32)
data_size = c_int(src_x.shape[0])
valid_mask = valid_mask.numpy()
buffs= buffs.numpy().astype(np.float32)
z_buffs= z_buffs.numpy().astype(np.float32)
h, w = z_buffs.shape
# using C++ version
quick_zbuff.zbuff_check(src_x.ctypes.data_as(c_void_p), src_y.ctypes.data_as(c_void_p), \
depth.ctypes.data_as(c_void_p), data_size, valid_mask.ctypes.data_as(c_void_p), buffs.ctypes.data_as(c_void_p),\
z_buffs.ctypes.data_as(c_void_p), h, w)
'''
for idx, (x, y, z) in enumerate(zip(x_src.view(-1),y_src.view(-1), depth.view(-1))):
if not valid_mask[idx]:
continue
if buffs[y,x] ==-1:
buffs[y,x] =idx
z_buffs[y,x] =z
else:
if z_buffs[y,x] > z:
buffs[y,x] =idx
z_buffs[y,x] =z
'''
valid_buffs = torch.from_numpy(buffs[buffs!=-1])
return valid_buffs.long()
def reproject_with_depth_batch(depth_ref, depth_src, ref_pose, src_pose, xy_coords, img_ref):
"""project the reference point cloud into the source view, then project back"""
# img_src: [B, 3, H, W], depth:[B, H, W], extr: w2c
img_tgt = -torch.ones_like(img_ref)
depth_tgt = 5 * torch.ones_like(img_ref) # background setting to 5
intrinsics_ref, extrinsics_ref = ref_pose["intr"], ref_pose["extr"]
intrinsics_src, extrinsics_src = src_pose["intr"], src_pose["extr"]
bs, height, width = depth_ref.shape[:3]
## step1. project reference pixels to the source view
# reference view x, y
x_ref, y_ref = xy_coords # (B, H, W)
x_ref, y_ref = x_ref.view([bs, 1, -1]), y_ref.view([bs, 1, -1]) # (B, 1, H*W)
ref_indx = (y_ref * height+ x_ref).long().squeeze()
depth_mask = torch.logical_not(((depth_ref.view([bs, 1, -1]))[..., ref_indx] ==5.))[0,0]
x_ref = x_ref[..., depth_mask]
y_ref = y_ref[..., depth_mask]
depth_ref = depth_ref.view(bs, 1, -1)
depth_ref = depth_ref[..., depth_mask]
# reference 3D space, depth_view condition
xyz_ref = torch.matmul(torch.inverse(intrinsics_ref), torch.cat([x_ref, y_ref, torch.ones_like(x_ref)], dim=1) * depth_ref.view([bs, 1, -1])) # (B, 3, H*W)
# source 3D space
xyz_src = torch.matmul(torch.matmul(extrinsics_src, torch.inverse(extrinsics_ref)), \
torch.cat([xyz_ref, torch.ones_like(x_ref)], dim=1))[:, :3]
# source view x, y
k_xyz_src = torch.matmul(intrinsics_src, xyz_src)
zbuff_idx = zbuff_check(k_xyz_src, bs, height, width)
x_ref = x_ref[..., zbuff_idx]
y_ref = y_ref[..., zbuff_idx]
depth_ref= depth_ref[..., zbuff_idx]
k_xyz_src = k_xyz_src[...,zbuff_idx]
xy_src = k_xyz_src[:, :2] / (k_xyz_src[:, 2:3].clamp(min=1e-10)) # (B, 2, H*W)
src_depth = k_xyz_src[:, 2:3]
x_src = xy_src[:, 0].view([bs, 1, -1 ]).round() #[B, H, W]
y_src = xy_src[:, 1].view([bs, 1, -1]).round()
# x_src_norm = x_src / ((width - 1) / 2) - 1
# y_src_norm = y_src / ((height - 1) / 2) - 1
# xy_src_norm = torch.stack([x_src_norm, y_src_norm], dim=3)
x_src = x_src.clamp(0, width - 1).long()
y_src = y_src.clamp(0, height - 1).long()
img_tgt_tmp = img_tgt.permute(0, 2, 3, 1) #[B, H, W, 3]
depth_tgt_tmp = depth_tgt.permute(0, 2, 3, 1)[...,0] #[B, H, W, 1]
img_ref_tmp = img_ref.permute(0, 2, 3, 1) #[B, H, W, 3]
B, _, H, W = img_ref.shape
bs_tensor = torch.arange(B, dtype=x_src.dtype, device=x_src.device).unsqueeze(1).unsqueeze(1).repeat(1, H, W)
bs_tensor = torch.zeros_like(x_ref).long()
x_ref = x_ref.long()
y_ref = y_ref.long()
img_tgt_tmp[bs_tensor, y_src, x_src] = img_ref_tmp[bs_tensor, y_ref, x_ref]
img_tgt = img_tgt_tmp.permute(0, 3, 1, 2)
depth_tgt_tmp[bs_tensor,y_src,x_src]=src_depth
depth_tgt = depth_tgt_tmp.unsqueeze(1)
return img_tgt, depth_tgt
def image_warpping_reproj(depth_ref, depth_src, ref_pose, src_pose,
img_ref, mask_ref=None,
thres_p_dist=15, thres_d_diff=0.1, device=torch.device("cpu"), bg_color=1.0):
"""check geometric consistency
consider two factor:
1.disparity < 1
2.relative depth differ ratio < 0.001
# warp img_src to ref
depth_ref: depth reference
"""
# img_src: [B, 3, H, W], depth:[B, H, W], extr: w2c, mask_ref[B, H, W]
x_ref, y_ref = get_coordinate_xy(depth_ref.shape, device=device) # (B, H, W)
xy_coords = x_ref, y_ref
img_ref_warped, depth_ref_warpped = \
reproject_with_depth_batch(depth_ref, depth_src, ref_pose, src_pose, xy_coords, img_ref)
img = ((img_ref[0].permute(1,2,0) +1.) /2 * 255)
warp_img = ((img_ref_warped[0].permute(1,2,0) +1.) /2 * 255)
return img_ref_warped, depth_ref_warpped
def warp(img_list, normald_list, json_list, cond_idx, target_idx):
cond_img = img_list[cond_idx]
target_img = img_list[target_idx]
cond_camera_path= json_list[cond_idx]
cond_view_c2w = read_camera_matrix_single(cond_camera_path)
cond_view_pos = cond_view_c2w[:3, 3:]
cond_world_view_depth = read_dnormal(normald_list[cond_idx], cond_view_pos)
cond_world_view_depth = torch.from_numpy(cond_world_view_depth)
# background is mapped to far plane e.g. 5
cond_world_view_depth[cond_world_view_depth==0]=5.
cond_img = cv2.imread(cond_img)
# target parameters
target_camera_path= json_list[target_idx]
target_view_c2w = read_camera_matrix_single(target_camera_path)
target_view_pos = target_view_c2w[:3, 3:]
target_world_view_depth = read_dnormal(normald_list[target_idx], target_view_pos)
target_world_view_depth = torch.from_numpy(target_world_view_depth)
# background is mapped to far plane e.g. 5
target_world_view_depth[target_world_view_depth==0]=5.
K = get_intr(cond_world_view_depth) # fixed metric from our blender
target_img = cv2.imread(target_img)
cond_normal_warped = image_warping_v1(target_img, cond_img,
K,
convert_pose(target_view_c2w),
convert_pose(cond_view_c2w),
target_world_view_depth,
cond_world_view_depth,
scale_factor=1.0, device=torch.device("cpu"), save_root='./depth_warpping_exps')
if __name__ == '__main__':
img_handler = './campos_512_v4/{:05d}/{:05d}.png'
normald_handler = './campos_512_v4/{:05d}/{:05d}_nd.exr'
json_handler = './campos_512_v4/{:05d}/{:05d}.json'
img_list = [img_handler.format(i,i) for i in range(40)]
normald_list = [normald_handler.format(i,i) for i in range(40)]
json_list = [json_handler.format(i,i) for i in range(40)]
warp(img_list, normald_list, json_list, int(sys.argv[1]), int(sys.argv[2]))
|