--- library_name: transformers language: - qve license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer datasets: - cportoca/Quechua_dataset metrics: - wer model-index: - name: Whisper Large Ja-Qve - cportoca results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Quechua_dataset type: cportoca/Quechua_dataset args: 'config: Qve, split: train/test' metrics: - name: Wer type: wer value: 17.79102604330091 --- # Whisper Large Ja-Qve - cportoca This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Quechua_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.2409 - Wer: 17.7910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.2791 | 1.3550 | 1000 | 0.3439 | 32.1619 | | 0.137 | 2.7100 | 2000 | 0.2366 | 26.9532 | | 0.0305 | 4.0650 | 3000 | 0.2266 | 21.3367 | | 0.0142 | 5.4201 | 4000 | 0.2322 | 18.5441 | | 0.0048 | 6.7751 | 5000 | 0.2285 | 18.4500 | | 0.0014 | 8.1301 | 6000 | 0.2378 | 18.1362 | | 0.0007 | 9.4851 | 7000 | 0.2394 | 17.6969 | | 0.0004 | 10.8401 | 8000 | 0.2409 | 17.7910 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3