Updated README.md to include the latest command and performance.
Browse files
README.md
CHANGED
@@ -15,11 +15,14 @@ This quant modified some of the model code to fix an overflow issue when using f
|
|
15 |
|
16 |
To serve using vLLM with 8x 80GB GPUs, use the following command:
|
17 |
```sh
|
18 |
-
python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 12345 --max-model-len 65536 --trust-remote-code --tensor-parallel-size 8 --
|
19 |
```
|
20 |
-
|
21 |
-
You can download the wheel I built for PyTorch 2.6, Python 3.12 by clicking [here](https://huggingface.co/x2ray/wheels/resolve/main/vllm-0.7.1.dev69%2Bg4f4d427a.d20220101.cu126-cp312-cp312-linux_x86_64.whl).
|
22 |
|
23 |
Inference speed with batch size 1 and short prompt:
|
24 |
-
- 8x H100:
|
25 |
-
- 8x A100:
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
To serve using vLLM with 8x 80GB GPUs, use the following command:
|
17 |
```sh
|
18 |
+
VLLM_WORKER_MULTIPROC_METHOD=spawn python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 12345 --max-model-len 65536 --max-num-batched-tokens 65536 --trust-remote-code --tensor-parallel-size 8 --gpu-memory-utilization 0.97 --dtype float16 --served-model-name deepseek-reasoner --model cognitivecomputations/DeepSeek-R1-AWQ
|
19 |
```
|
20 |
+
You can download the wheel I built for PyTorch 2.6, Python 3.12 by clicking [here](https://huggingface.co/x2ray/wheels/resolve/main/vllm-0.7.3.dev187%2Bg0ff1a4df.d20220101.cu126-cp312-cp312-linux_x86_64.whl).
|
|
|
21 |
|
22 |
Inference speed with batch size 1 and short prompt:
|
23 |
+
- 8x H100: 48 TPS
|
24 |
+
- 8x A100: 38 TPS
|
25 |
+
|
26 |
+
Note:
|
27 |
+
- Inference speed will be better than FP8 at low batch size but worse than FP8 at high batch size, this is the nature of low bit quantization.
|
28 |
+
- vLLM supports MLA for AWQ now, you can run this model with full context length on just 8x 80GB GPUs.
|