cirimus commited on
Commit
4bbf5e1
·
verified ·
1 Parent(s): 0562133

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +125 -153
README.md CHANGED
@@ -1,199 +1,171 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
 
 
 
 
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
 
132
 
 
 
 
 
 
 
133
 
 
 
134
 
135
- ## Model Examination [optional]
 
 
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
 
 
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
 
 
 
 
 
 
 
 
 
 
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
 
 
 
 
 
 
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
 
 
 
 
 
198
 
199
- [More Information Needed]
 
1
  ---
2
+ language: en
3
+ tags:
4
+ - text-classification
5
+ - pytorch
6
+ - ModernBERT
7
+ - bias
8
+ - multi-class-classification
9
+ - multi-label-classification
10
+ datasets:
11
+ - synthetic-biased-corpus
12
+ license: mit
13
+ metrics:
14
+ - accuracy
15
+ - f1
16
+ - precision
17
+ - recall
18
+ - matthews_correlation
19
+ base_model:
20
+ - answerdotai/ModernBERT-large
21
+ widget:
22
+ - text: Women are bad at math.
23
  library_name: transformers
 
24
  ---
25
 
26
+ ![banner](https://huggingface.co/cirimus/modernbert-large-bias-type-classifier/resolve/main/banner.jpg)
27
 
28
+ ### Overview
29
 
30
+ This model was fine-tuned from [ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on a synthetic dataset of biased statements and questions, generated by Mistal 7B as part of the [GUS-Net paper](https://huggingface.co/papers/2410.08388). The model is designed to identify and classify text bias into multiple categories, including racial, religious, gender, age, and other biases, making it a valuable tool for bias detection and mitigation in natural language processing tasks.
31
 
32
+ ---
33
 
34
+ ### Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
+ - **Base Model**: [ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large)
37
+ - **Fine-Tuning Dataset**: Synthetic biased corpus
38
+ - **Number of Labels**: 11
39
+ - **Problem Type**: Multi-label classification
40
+ - **Language**: English
41
+ - **License**: [MIT](https://opensource.org/licenses/MIT)
42
+ - **Fine-Tuning Framework**: Hugging Face Transformers
43
 
44
+ ---
45
 
46
+ ### Example Usage
47
 
48
+ Here’s how to use the model with Hugging Face Transformers:
49
 
50
+ ```python
51
+ from transformers import pipeline
52
 
53
+ # Load the model
54
+ classifier = pipeline(
55
+ "text-classification",
56
+ model="answerdotai/modernbert-large-bias-type-classifier",
57
+ return_all_scores=True
58
+ )
59
 
60
+ text = "Tall people are so clumsy."
61
+ predictions = classifier(text)
62
 
63
+ # Print predictions
64
+ for pred in predictions:
65
+ print(f"{pred['label']}: {pred['score']:.3f}")
66
+ ```
67
 
68
+ ---
69
 
70
+ ### How the Model Was Created
71
 
72
+ The model was fine-tuned for bias detection using the following hyperparameters:
73
 
74
+ - **Learning Rate**: `3e-5`
75
+ - **Batch Size**: 16
76
+ - **Weight Decay**: `0.01`
77
+ - **Warmup Steps**: 500
78
+ - **Optimizer**: AdamW
79
+ - **Evaluation Metrics**: Precision, Recall, F1 Score (weighted), Accuracy
80
 
81
+ ---
82
 
83
+ ### Dataset
 
 
 
 
84
 
85
+ The synthetic dataset consists of biased statements and questions generated by Mistal 7B as part of the GUS-Net paper. It covers 11 bias categories:
86
 
87
+ 1. Racial
88
+ 2. Religious
89
+ 3. Gender
90
+ 4. Age
91
+ 5. Nationality
92
+ 6. Sexuality
93
+ 7. Socioeconomic
94
+ 8. Educational
95
+ 9. Disability
96
+ 10. Political
97
+ 11. Physical
98
 
99
+ ---
100
 
101
+ ### Evaluation Results
102
 
103
+ The model was evaluated on the synthetic dataset’s test split. The overall metrics using a threshold of `0.5` are as follows:
104
 
105
+ #### Macro Averages:
106
 
107
+ | Metric | Value |
108
+ |--------------|--------|
109
+ | Accuracy | 0.983 |
110
+ | Precision | 0.930 |
111
+ | Recall | 0.914 |
112
+ | F1 | 0.921 |
113
+ | MCC | 0.912 |
114
 
115
+ #### Per-Label Results:
116
 
117
+ | Label | Accuracy | Precision | Recall | F1 | MCC | Support | Threshold |
118
+ |----------------|----------|-----------|--------|-------|-------|---------|-----------|
119
+ | Racial | 0.975 | 0.871 | 0.889 | 0.880 | 0.866 | 388 | 0.5 |
120
+ | Religious | 0.994 | 0.962 | 0.970 | 0.966 | 0.962 | 335 | 0.5 |
121
+ | Gender | 0.976 | 0.930 | 0.925 | 0.927 | 0.913 | 615 | 0.5 |
122
+ | Age | 0.990 | 0.964 | 0.931 | 0.947 | 0.941 | 375 | 0.5 |
123
+ | Nationality | 0.972 | 0.924 | 0.881 | 0.902 | 0.886 | 554 | 0.5 |
124
+ | Sexuality | 0.993 | 0.960 | 0.957 | 0.958 | 0.955 | 301 | 0.5 |
125
+ | Socioeconomic | 0.964 | 0.909 | 0.818 | 0.861 | 0.842 | 516 | 0.5 |
126
+ | Educational | 0.982 | 0.873 | 0.933 | 0.902 | 0.893 | 330 | 0.5 |
127
+ | Disability | 0.986 | 0.923 | 0.887 | 0.905 | 0.897 | 283 | 0.5 |
128
+ | Political | 0.988 | 0.958 | 0.938 | 0.948 | 0.941 | 438 | 0.5 |
129
+ | Physical | 0.993 | 0.961 | 0.920 | 0.940 | 0.936 | 238 | 0.5 |
130
 
131
+ ---
132
 
133
+ ### Intended Use
134
 
135
+ The model is designed to detect and classify bias in text across 11 categories. It can be used in applications such as:
136
 
137
+ - Content moderation
138
+ - Bias analysis in research
139
+ - Ethical AI development
140
 
141
+ ---
142
 
143
+ ### Limitations and Biases
144
 
145
+ - **Synthetic Nature**: The dataset consists of synthetic text, which may not fully represent real-world biases.
146
+ - **Category Overlap**: Certain biases may overlap, leading to challenges in precise classification.
147
+ - **Domain-Specific Generalization**: The model may not generalize well to domains outside the synthetic dataset’s scope.
148
 
149
+ ---
150
 
151
+ ### Environmental Impact
152
 
153
+ - **Hardware Used**: NVIDIA RTX4090
154
+ - **Training Time**: ~2 hours
155
+ - **Carbon Emissions**: ~0.08 kg CO2 (calculated via [ML CO2 Impact Calculator](https://mlco2.github.io/impact)).
156
 
157
+ ---
158
 
159
+ ### Citation
160
 
161
+ If you use this model, please cite it as follows:
162
 
163
+ ```bibtex
164
+ @inproceedings{YourCitation,
165
+ title = {Bias Detection with ModernBERT-Large},
166
+ author = {Enric Junqué de Fortuny},
167
+ year = {2025},
168
+ howpublished = {\url{https://huggingface.co/answerdotai/modernbert-large-bias-type-classifier}},
169
+ }
170
+ ```
171