--- base_model: SpanBERT/spanbert-base-cased tags: - generated_from_trainer datasets: - squad metrics: - f1 - exact_match # Optional. Add this if you want to encode your eval results in a structured way. model-index: - name: spanbert-base-finetuned-squad results: - task: type: question-answering # Required. Example: automatic-speech-recognition name: Closed-Domain Question Answering # Optional. Example: Speech Recognition dataset: type: squad # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: SQuAD # Required. A pretty name for the dataset. Example: Common Voice (French) config: squad # Optional. The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name split: validation # Optional. Example: test metrics: - type: exact_match # Required. Example: wer. Use metric id from https://hf.co/metrics value: 84.6168 # Required. Example: 20.90 name: Exact Match # Optional. Example: Test WER - type: f1 # Required. Example: wer. Use metric id from https://hf.co/metrics value: 91.6134 # Required. Example: 20.90 name: F1 # Optional. Example: Test WER --- # spanbert-base-finetuned-squad This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1 - Datasets 2.12.0 - Tokenizers 0.13.2