File size: 5,009 Bytes
09218b9
 
 
 
 
 
 
 
e0b24fc
09218b9
 
 
44e8018
e0b24fc
 
fe8fa3c
2d36b5a
e0b24fc
 
 
 
 
 
52abff1
 
f19516c
 
 
d2fc767
52abff1
bc3a1a2
 
52abff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc3a1a2
52abff1
 
 
 
 
 
 
 
 
 
 
 
 
bc3a1a2
bfb1111
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: mit
language:
- en
base_model:
- deepseek-ai/DeepSeek-R1
pipeline_tag: text-generation
tags:
- deepseek-r1
- gguf-connector
---

# GGUF quantized version of **deepseek-r1**

### review
- no more error loading message: "unknown pre-tokenizer type: deepseek-r1-qwen"
- works fine for llama architecture

### run the model
use any gguf connector to interact with gguf file(s), i.e., [connector](https://pypi.org/project/gguf-connector/)

### reference
- base model: deepseek-ai/[DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1)
- tool used for quantization: [cutter](https://pypi.org/project/gguf-cutter)

### citation
[DeepSeek-R1](https://arxiv.org/pdf/2501.12948)

### appendices: model evaluation (written by deekseek-ai)

#### deepseek-r1-evaluation
 for all our (here refer to deekseek-ai) models, the maximum generation length is set to 32,768 tokens; for benchmarks requiring sampling, we use a temperature of $0.6$, a top-p value of $0.95$, and generate 64 responses per query to estimate pass@1.

| Category | Benchmark (Metric) | Claude-3.5-Sonnet-1022 | GPT-4o 0513 | DeepSeek V3 | OpenAI o1-mini | OpenAI o1-1217 | DeepSeek R1 |
|----------|-------------------|----------------------|------------|--------------|----------------|------------|--------------|
| | Architecture | - | - | MoE | - | - | MoE |
| | # Activated Params | - | - | 37B | - | - | 37B |
| | # Total Params | - | - | 671B | - | - | 671B |
| English | MMLU (Pass@1) | 88.3 | 87.2 | 88.5 | 85.2 | **91.8** | 90.8 |
| | MMLU-Redux (EM) | 88.9 | 88.0 | 89.1 | 86.7 | - | **92.9** |
| | MMLU-Pro (EM) | 78.0 | 72.6 | 75.9 | 80.3 | - | **84.0** |
| | DROP (3-shot F1) | 88.3 | 83.7 | 91.6 | 83.9 | 90.2 | **92.2** |
| | IF-Eval (Prompt Strict) | **86.5** | 84.3 | 86.1 | 84.8 | - | 83.3 |
| | GPQA-Diamond (Pass@1) | 65.0 | 49.9 | 59.1 | 60.0 | **75.7** | 71.5 |
| | SimpleQA (Correct) | 28.4 | 38.2 | 24.9 | 7.0 | **47.0** | 30.1 |
| | FRAMES (Acc.) | 72.5 | 80.5 | 73.3 | 76.9 | - | **82.5** |
| | AlpacaEval2.0 (LC-winrate) | 52.0 | 51.1 | 70.0 | 57.8 | - | **87.6** |
| | ArenaHard (GPT-4-1106) | 85.2 | 80.4 | 85.5 | 92.0 | - | **92.3** |
| Code | LiveCodeBench (Pass@1-COT) | 33.8 | 34.2 | - | 53.8 | 63.4 | **65.9** |
| | Codeforces (Percentile) | 20.3 | 23.6 | 58.7 | 93.4 | **96.6** | 96.3 |
| | Codeforces (Rating) | 717 | 759 | 1134 | 1820 | **2061** | 2029 |
| | SWE Verified (Resolved) | **50.8** | 38.8 | 42.0 | 41.6 | 48.9 | 49.2 |
| | Aider-Polyglot (Acc.) | 45.3 | 16.0 | 49.6 | 32.9 | **61.7** | 53.3 |
| Math | AIME 2024 (Pass@1) | 16.0 | 9.3 | 39.2 | 63.6 | 79.2 | **79.8** |
| | MATH-500 (Pass@1) | 78.3 | 74.6 | 90.2 | 90.0 | 96.4 | **97.3** |
| | CNMO 2024 (Pass@1) | 13.1 | 10.8 | 43.2 | 67.6 | - | **78.8** |
| Chinese | CLUEWSC (EM) | 85.4 | 87.9 | 90.9 | 89.9 | - | **92.8** |
| | C-Eval (EM) | 76.7 | 76.0 | 86.5 | 68.9 | - | **91.8** |
| | C-SimpleQA (Correct) | 55.4 | 58.7 | **68.0** | 40.3 | - | 63.7 |

#### distilled model evaluation

| Model                                    | AIME 2024 pass@1 | AIME 2024 cons@64 | MATH-500 pass@1 | GPQA Diamond pass@1 | LiveCodeBench pass@1 | CodeForces rating |
|------------------------------------------|------------------|-------------------|-----------------|----------------------|----------------------|-------------------|
| GPT-4o-0513                          | 9.3              | 13.4              | 74.6            | 49.9                 | 32.9                 | 759               |
| Claude-3.5-Sonnet-1022             | 16.0             | 26.7                 | 78.3            | 65.0                 | 38.9                 | 717               |
| o1-mini                              | 63.6             | 80.0              | 90.0            | 60.0                 | 53.8                 | **1820**          |
| QwQ-32B-Preview                              | 44.0             | 60.0                 | 90.6            | 54.5               | 41.9                 | 1316              |
| DeepSeek-R1-Distill-Qwen-1.5B       | 28.9             | 52.7              | 83.9            | 33.8                 | 16.9                 | 954               |
| DeepSeek-R1-Distill-Qwen-7B          | 55.5             | 83.3              | 92.8            | 49.1                 | 37.6                 | 1189              |
| DeepSeek-R1-Distill-Qwen-14B         | 69.7             | 80.0              | 93.9            | 59.1                 | 53.1                 | 1481              |
| DeepSeek-R1-Distill-Qwen-32B        | **72.6**         | 83.3              | 94.3            | 62.1                 | 57.2                 | 1691              |
| DeepSeek-R1-Distill-Llama-8B         | 50.4             | 80.0              | 89.1            | 49.0                 | 39.6                 | 1205              |
| DeepSeek-R1-Distill-Llama-70B        | 70.0             | **86.7**          | **94.5**        | **65.2**             | **57.5**             | 1633              |

\* these two tables are directly quoted from deepseek-ai